Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Different Carotenoid Enrichment in Two Climacteric Fruits after Post- Harvest UV-B Treatment

Author(s): Carolina F. Assumpção, Médelin M. da Silva , Vanessa S. Hermes, Annamaria Ranieri, Ester A. Ferreira, André Jablonski, Simone H. Flôres and Alessandro de O. Rios*

Volume 16, Issue 2, 2020

Page: [102 - 108] Pages: 7

DOI: 10.2174/1573407214666180807114449

Price: $65

Abstract

Background: Ultraviolet B (UV-B) radiation is a promising and environmentally friendly technique, which in a low flow rate, can induce bioactive compound synthesis. This work aimed at evaluating the effectiveness of post-harvest UV-B treatment in order to improve carotenoid content in climacteric fruits like persimmon and guava fruits.

Methods: The fruits were harvested at commercial maturity and placed into climatic chambers equipped with UV-B lamps. For control treatment, the UV-B lamps were covered by a benzophenone film, known to block the radiation. This radiation was applied during 48 hours and fruits were sampled at 25, 30 and 48 hours of each treatment. HPLC analysis was performed to separate and identify carotenoid compounds from fruit skin after a saponification process.

Results: Fruit from 30 hours treatment began to present a carotenoid accumulation since the majority of analyzed compounds exhibited its synthesis stimulated from this time on. In persimmon skin, it was observed that the maximum content was reached after 48 hours of UV-B treatment.

Conclusion: These results suggest that this post-harvest UV-B treatment can be an innovative and a viable method to induce beneficial effects on guava and mainly on persimmon fruit.

Keywords: Climacteric fruits, Psidium guajava, Diospyros kaki, UV-B radiation, postharvest, carotenoid.

Graphical Abstract
[1]
Sgherri, C.; Pinzino, C.; Quartacci, M.F. Reactive oxygen species and photosynthetic functioning: past and present.Reactive oxygen species in plants: boon or bane? Revisiting the Role of ROS; ; Singh, V.P.; Singh, S.; Tripathi, D.K.; Prasad, S.M.; Chauhan, D.K., Eds.; . J. Wiley & Sons: New York, USA, 2017, pp. 137-155.
[http://dx.doi.org/10.1002/9781119324928.ch7]
[2]
Raposo, M.F.; de Morais, A.M.; de Morais, R.M. Carotenoids from marine microalgae: A valuable natural source for the prevention of chronic diseases. Mar. Drugs, 2015, 13(8), 5128-5155.
[http://dx.doi.org/10.3390/md13085128] [PMID: 26287216]
[3]
Cuvelier, M-E.; Bondet, V.; Berset, C. Behavior of phenolic antioxidants in a partitioned medium: Structure-Activity relationship. J. Am. Oil Chem. Soc., 2000, 77(8), 819.
[http://dx.doi.org/10.1007/s11746-000-0131-4]
[4]
Lin-Wang, K.; Micheletti, D.; Palmer, J.; Volz, R.; Lozano, L.; Espley, R.; Hellens, R.P.; Chagnè, D.; Rowan, D.D.; Troggio, M.; Iglesias, I.; Allan, A.C. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ., 2011, 34(7), 1176-1190.
[http://dx.doi.org/10.1111/j.1365-3040.2011.02316.x] [PMID: 21410713]
[5]
Schreiner, M.; Huyskens-Keil, S. Phytochemicals in fruit and vegetables: Health promotion and postharvest elicitors. Crit. Rev. Plant Sci., 2006, 25(3), 267-278.
[http://dx.doi.org/10.1080/07352680600671661]
[6]
Castagna, A.; Chiavaro, E.; Dall’asta, C.; Rinaldi, M.; Galaverna, G.; Ranieri, A. Effect of postharvest UV-B irradiation on nutraceutical quality and physical properties of tomato fruits. Food Chem., 2013, 137(1-4), 151-158.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.095] [PMID: 23200003]
[7]
Jansen, M.A.K.; Hectors, K.; O’Brien, N.M.; Guisez, Y.; Potters, G. Plant stress and human health: Do human consumers benefit from UV-B acclimated crops? Plant Sci., 2008, 175(4), 449-458.
[http://dx.doi.org/10.1016/j.plantsci.2008.04.010]
[8]
Hagen, S.F.; Borge, G.I.A.; Bengtsson, G.B.; Bilger, W.; Berge, A.; Haffner, K.; Solhaug, K.A. Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh, cv. Aroma): Effect of postharvest UV-B irradiation. Postharvest Biol. Technol., 2007, 45, 1-10.
[http://dx.doi.org/10.1016/j.postharvbio.2007.02.002]
[9]
Scattino, C.; Castagna, A.; Neugart, S.; Chan, H.M.; Schreiner, M.; Crisosto, C.H.; Tonutti, P.; Ranieri, A. Post-harvest UV-B irradiation induces changes of phenol contents and corresponding biosynthetic gene expression in peaches and nectarines. Food Chem., 2014, 163, 51-60.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.077] [PMID: 24912695]
[10]
Liu, C.; Han, X.; Cai, L.; Lu, X.; Ying, T.; Jiang, Z. Postharvest UV-B irradiation maintains sensory qualities and enhances antioxidant capacity in tomato fruit during storage. Postharvest Biol. Technol., 2011, 59, 232-237.
[http://dx.doi.org/10.1016/j.postharvbio.2010.09.003]
[11]
Eichholz, I.; Rohn, S.; Gamm, A.; Beesk, N.; Herppich, W.B.; Kroh, L.W.; Ulrichs, C.; Huyskens-Keil, S. UV-B-mediated flavonoid synthesis in white asparagus (Asparagus officinalis L.). Food Res. Int., 2012, 48(1), 196-201.
[http://dx.doi.org/10.1016/j.foodres.2012.03.008]
[12]
Interdonato, R.; Rosa, M.; Nieva, C.B.; González, J.A.; Hilal, M.; Prado, F.E. Effects of low UV-B doses on the accumulation of UV-B absorbing compounds and total phenolics and carbohydrate metabolism in the peel of harvested lemons. Environ. Exp. Bot., 2011, 70(2), 204-211.
[http://dx.doi.org/10.1016/j.envexpbot.2010.09.006]
[13]
Brown, B.A.; Cloix, C.; Jiang, G.H.; Kaiserli, E.; Herzyk, P.; Kliebenstein, D.J.; Jenkins, G.I. A UV-B-specific signaling component orchestrates plant UV protection. Proc. Natl. Acad. Sci. USA, 2005, 102(50), 18225-18230.
[http://dx.doi.org/10.1073/pnas.0507187102] [PMID: 16330762]
[14]
Mercadante, A.Z.; Rodriguez-Amaya, D.B. Effects of ripening, cultivar differences, and processing on the carotenoid composition of mango. J. Agric. Food Chem., 1998, 46(1), 128-130.
[http://dx.doi.org/10.1021/jf9702860] [PMID: 10554207]
[15]
Cao-Hoang, L.; Fougère, R.; Waché, Y. Increase in stability and change in supramolecular structure of β-carotene through encapsulation into polylactic acid nanoparticles. Food Chem., 2011, 124(1), 42-49.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.100]
[16]
Palozza, P.; Mele, M.C.; Cittadini, A.; Mastrantoni, M. Potential interactions of carotenoids with other bioactive food components in the prevention of chronic diseases. Curr. Bioact. Compd., 2011, 7(4), 243-261.
[http://dx.doi.org/10.2174/157340711798375877]
[17]
Giuntini, D.; Graziani, G.; Lercari, B.; Fogliano, V.; Soldatini, G.F.; Ranieri, A. Changes in carotenoid and ascorbic acid contents in fruits of different tomato genotypes related to the depletion of UV-B radiation. J. Agric. Food Chem., 2005, 53(8), 3174-3181.
[http://dx.doi.org/10.1021/jf0401726] [PMID: 15826075]
[18]
Calvenzani, V.; Martinelli, M.; Lazzeri, V.; Giuntini, D.; Dall’Asta, C.; Galaverna, G.; Tonelli, C.; Ranieri, A.; Petroni, K. Response of wild-type and high pigment-1 tomato fruit to UV-B depletion: flavonoid profiling and gene expression. Planta, 2010, 231(3), 755-765.
[http://dx.doi.org/10.1007/s00425-009-1082-4] [PMID: 20033231]
[19]
Shklar, G.; Schwartz, J.; Trickler, D.; Cheverie, S.R. The effectiveness of a mixture of β-carotene, α-tocopherol, glutathione, and ascorbic acid for cancer prevention. Nutr. Cancer, 1993, 20(2), 145-151.
[http://dx.doi.org/10.1080/01635589309514281] [PMID: 8233980]
[20]
Toma, S.; Losardo, P.L.; Vincent, M.; Palumbo, R. Effectiveness of beta-carotene in cancer chemoprevention. Eur. J. Cancer Prev., 1995, 4(3), 213-224.
[http://dx.doi.org/10.1097/00008469-199506000-00002] [PMID: 7647689]
[21]
Turner, T.; Burri, B.J.; Jamil, K.M.; Jamil, M. The effects of daily consumption of β-cryptoxanthin-rich tangerines and β-carotene-rich sweet potatoes on vitamin A and carotenoid concentrations in plasma and breast milk of Bangladeshi women with low vitamin A status in a randomized controlled trial. Am. J. Clin. Nutr., 2013, 98(5), 1200-1208.
[http://dx.doi.org/10.3945/ajcn.113.058180] [PMID: 24004891]
[22]
Assumpção, C.F.; Hermes, V.S.; Bortolin, R.C.; Moreira, J.C.F.; Manfroi, V.; Jablonski, A.; Flôres, S.H.; de Rios, A.O. Carotenoid content and antioxidant activity of organic and conventional grape juice processing waste. Curr. Bioact. Compd., 2015, 11, 249-255.
[http://dx.doi.org/10.2174/1573407212666151214221952]
[23]
Sommer, A.; Vyas, K.S. A global clinical view on vitamin A and carotenoids. Am. J. Clin. Nutr., 2012, 96(5), 1204S-1206S.
[http://dx.doi.org/10.3945/ajcn.112.034868] [PMID: 23053551]
[24]
Burri, B.J. Beta-cryptoxanthin as a source of vitamin A. J. Sci. Food Agric., 2015, 95(9), 1786-1794.
[25]
Serpeloni, J.M.; Cólus, I.M.S.; de Oliveira, F.S.; Aissa, A.F.; Mercadante, A.Z.; Bianchi, M.L.P.; Antunes, L.M.G. Diet carotenoid lutein modulates the expression of genes related to oxygen transporters and decreases DNA damage and oxidative stress in mice. Food Chem. Toxicol., 2014, 70, 205-213.
[http://dx.doi.org/10.1016/j.fct.2014.05.018] [PMID: 24865317]
[26]
Gammone, M.A.; Riccioni, G.; D’Orazio, N. Carotenoids: potential allies of cardiovascular health? Food Nutr. Res., 2015, 59, 26762.
[http://dx.doi.org/10.3402/fnr.v59.26762] [PMID: 25660385]
[27]
Chiu, C-J.; Taylor, A. Nutritional antioxidants and age-related cataract and maculopathy. Exp. Eye Res., 2007, 84(2), 229-245.
[http://dx.doi.org/10.1016/j.exer.2006.05.015] [PMID: 16879819]
[28]
Keffous, F.; Belboukhari, N.; Djaradi, H.; Cheriti, A.; Sekkoum, K.; Aboul-Enein, H.Y. Total antioxidant capacity, reducing power and cyclic voltammetry of Zilla macroptera (Brassicaceae) aqueous extract. Curr. Bioact. Compd., 2016, 12, 39-43.
[http://dx.doi.org/10.2174/1573407212666160210230707]
[29]
Lazzeri, V.; Calvenzani, V.; Petroni, K.; Tonelli, C.; Castagna, A.; Ranieri, A. Carotenoid profiling and biosynthetic gene expression in flesh and peel of wild-type and hp-1 tomato fruit under UV-B depletion. J. Agric. Food Chem., 2012, 60(19), 4960-4969.
[http://dx.doi.org/10.1021/jf205000u] [PMID: 22533968]
[30]
Ibañez, S.; Rosa, M.; Hilal, M.; González, J.A.; Prado, F.E. Leaves of Citrus aurantifolia exhibit a different sensibility to solar UV-B radiation according to development stage in relation to photosynthetic pigments and UV-B absorbing compounds production. J. Photochem. Photobiol. B, 2008, 90(3), 163-169.
[http://dx.doi.org/10.1016/j.jphotobiol.2008.01.002] [PMID: 18272387]
[31]
Du, W-X.; Avena-Bustillos, R.J.; Breksa, A.P., III; McHugh, T.H. Effect of UV-B light and different cutting styles on antioxidant enhancement of commercial fresh-cut carrot products. Food Chem., 2012, 134(4), 1862-1869.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.097] [PMID: 23442631]
[32]
González, J.A.; Rosa, M.; Parrado, M.F.; Hilal, M.; Prado, F.E. Morphological and physiological responses of two varieties of a highland species (Chenopodium quinoa Willd.) growing under near-ambient and strongly reduced solar UV-B in a lowland location. J. Photochem. Photobiol. B, 2009, 96(2), 144-151.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.05.003] [PMID: 19540773]
[33]
Becatti, E.; Petroni, K.; Giuntini, D.; Castagna, A.; Calvenzani, V.; Serra, G.; Mensuali-Sodi, A.; Tonelli, C.; Ranieri, A. Solar UV-B radiation influences carotenoid accumulation of tomato fruit through both ethylene-dependent and -independent mechanisms. J. Agric. Food Chem., 2009, 57(22), 10979-10989.
[http://dx.doi.org/10.1021/jf902555x] [PMID: 19877686]
[34]
Solovchenko, A.; Schmitz-Eiberger, M. Significance of skin flavonoids for UV-B-protection in apple fruits. J. Exp. Bot., 2003, 54(389), 1977-1984.
[http://dx.doi.org/10.1093/jxb/erg199] [PMID: 12815032]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy