Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Phytochemical Profile, Antimicrobial and Antioxidant Activities of Cistus clusii Essential oil From Algeria

Author(s): Souad Khebri, Naima Benkiki, Mouloud Yahia and Hamada Haba*

Volume 16, Issue 2, 2020

Page: [109 - 114] Pages: 6

DOI: 10.2174/1573407214666180802125128

Price: $65

Abstract

Objective: In this work, we investigated the chemical composition and the antioxidant and antimicrobial activities of the Algerian Cistus clusii Dunal essential oil.

Methods: Cistus clusii essential oil has been extracted using hydrodistillation method and characterized by GC/MS. The antioxidant activity was evaluated by two different methods DPPH free radical scavenging, and β-carotene bleaching test. The antimicrobial activity was carried out using disc diffusion method against reference strains; Pseudomonas aeruginosa (ATCC 27865), Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), clinical bacterial (Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus) and fungal (Candida albicans) isolates.

Results: The chemical profile of the oil showed 31 compounds. This profile was dominated by the presence of monoterpene hydrocarbons (78.4%), oxygenated derivatives (18.8%) and sesquiterpene hydrocarbons as minor constituents of this essential oil (1.9%). The major constituents were Camphene (20.6%), γ-Terpinene (16.5%), Sabinene (12.8%), and Terpineol-4 (13.5%). Other compounds were found in moderately good amounts like α-Terpinene (8.9%), α-Thujene (5.9%), α-Pinene (4.2%), and α- Terpinolene (3.1%). The results of the antimicrobial activity showed that the highest activity was observed against C. albicans and it was higher than positive control Fluconazole. The essential oil exhibited a strong antioxidant activity, especially in the β-carotene system.

Conclusion: This study indicates that Cistus clusii essential oil showed potent antioxidant and moderate antimicrobial activities which could be used to explain the use of this species in traditional medicine.

Keywords: Cistus clusii, GC/MS, Candida albicans, clinical strains, essential oil, antibacterial agents.

Graphical Abstract
[1]
Papaefthimiou, D.; Papanikolaou, A.; Falara, V.; Givanoudi, S.; Kostas, S.; Kanellis, A.K. Genus Cistus: a model for exploring labdane-type diterpenes’ biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties. Front Chem., 2014, 2, 35.
[http://dx.doi.org/10.3389/fchem.2014.00035] [PMID: 24967222]
[2]
Frazão, D.F.; Raimundo, J.R.; Domingues, J.L.; Quintela-Sabarís, C.; Gonçalves, J.C.; Delgado, F. Cistus ladanifer (Cistaceae): A natural resource in Mediterranean-type ecosystems. Planta, 2017, 247(2), 289-300.
[http://dx.doi.org/10.1007/s00425-017-2825-2] [PMID: 29218421]
[3]
Bedoya, L.M.; Bermejo, P.; Abad, M.J. Anti-infectious activity in the Cistaceae family in the Iberian Peninsula. Mini Rev. Med. Chem., 2009, 9(5), 519-525.
[http://dx.doi.org/10.2174/138955709788167600] [PMID: 19456283]
[4]
Barrajón-Catalán, E.; Fernández-Arroyo, S.; Saura, D.; Guillén, E.; Fernández-Gutiérrez, A.; Segura-Carretero, A.; Micol, V. Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food Chem. Toxicol., 2010, 48(8-9), 2273-2282.
[http://dx.doi.org/10.1016/j.fct.2010.05.060] [PMID: 20510328]
[5]
Arjouni, M.Y.; Romane, A.; El Fels, M.A.; Boukir, A. El gabr, M. Antioxidant activity and chemical composition of essential oil of Cupressus atlantica Gaussen. Curr. Bioact. Compd., 2015, 11, 56-60.
[http://dx.doi.org/10.2174/157340721101150804151917]
[6]
Robles, C.; Garzino, S. Essential oil composition of Cistus albidus leaves. Phytochemistry, 1998, 48, 1341-1345.
[http://dx.doi.org/10.1016/S0031-9422(97)01124-2]
[7]
Bazdi, B.; Dahdouh, A.; Lamarti, A.; Mansour, A.I. Composition of the essential oils of Cistus ladaniferusand, C. monspeliensis from Moroco. J. Essent. Oil Res., 2005, 17, 553-555.
[http://dx.doi.org/10.1080/10412905.2005.9698992]
[8]
Benbelaïd, F.; Khadir, A.; Bendahou, M.; Abdoune, M.A. Muselli.; Costa, J. Composition and antimicrobial activity of Cistus munbyi essential oil: An endemic plant from Algeria. J. For. Res., 2017, 28(6), 1129-1134.
[http://dx.doi.org/10.1007/s11676-017-0387-6]
[9]
Robles, C.; Garzino, S. Infraspecific variability in the essential oil composition of Cistus monspeliensis leaves. Phytochemistry, 2000, 53(1), 71-75.
[http://dx.doi.org/10.1016/S0031-9422(99)00460-4] [PMID: 10656410]
[10]
Council of Europe (COE) - European directorate for the quality of medicines. European Pharmacopoeia, 6th ed.; Strasbourg. 2007.
[11]
Adams, R.P. Identification of Essential Oil Components by Gas Chroma-tography/Mass spectrometry; Allured Publ. Corp.: Carol Stream, IL, 2007.
[12]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[13]
Bansod, S.; Rai, M. Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World J. Med. Sci., 2008, 3(2), 81-88.
[14]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181, 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[15]
Oke, F.; Aslim, B.; Ozturk, S.; Altundag, S. Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Ten. Food Chem., 2009, 112(4), 874-879.
[http://dx.doi.org/10.1016/j.foodchem.2008.06.061]
[16]
Zidane, H.; Fauconnier, M.L.; Sindic, M.; El Bachiri, A. Comparative study of volatile secondary metabolite of Cistus libanotis during different process. J. Chem. Pharm. Res., 2014, 6, 281-28.
[17]
Loizzo, M.R.; Ben Jemia, M.; Senatore, F.; Bruno, M.; Menichini, F.; Tundis, R. Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils. Food Chem. Toxicol., 2013, 59, 586-594.
[http://dx.doi.org/10.1016/j.fct.2013.06.040] [PMID: 23831310]
[18]
Zidan, H.; Elmiz, M.; Aouinti, F.; Tahani, A.; Wathelet, J.; Sindic, M.; Elbachiri, A. Chemical composition and antioxidant activity of essential oil, various organic extracts of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco. Afr. J. Biotechnol., 2013, 12(34), 5314-5320.
[http://dx.doi.org/10.5897/AJB2013.12868]
[19]
Angelopoulou, D.; Demetzos, C.; Perdetzoglou, D. An interpopulation study of the essential oils of Cistus parviflorus L. growing in Crete (Greece). Biochem. Syst. Ecol., 2001, 29(4), 405-415.
[http://dx.doi.org/10.1016/S0305-1978(00)00071-5] [PMID: 11182488]
[20]
Rudbäck, J.; Bergström, M.A.; Börje, A.; Nilsson, U.; Karlberg, A.T. α-Terpinene, an antioxidant in tea tree oil, autoxidizes rapidly to skin allergens on air exposure. Chem. Res. Toxicol., 2012, 25(3), 713-721.
[http://dx.doi.org/10.1021/tx200486f] [PMID: 22250748]
[21]
Choi, H.S.; Song, H.S.; Ukeda, H.; Sawamura, M. Radical-scavenging activities of citrus essential oils and their components: detection using 1,1-diphenyl-2-picrylhydrazyl. J. Agric. Food Chem., 2000, 48(9), 4156-4161.
[http://dx.doi.org/10.1021/jf000227d] [PMID: 10995330]
[22]
Quintans-Júnio, L.; Moreira, F.C-J.; Pasquali, M.A.B.; Rabie, M.S.; Pires, S.A.; Schröder, R.; Rabelo, K.T.; Santos, J-P.A.; Lima, S.S.; Cavalcanti, S-C.H.; Araújo, S.A.; Quintans, S.S-J.; Gelain, P.D. Antinociceptive activity and redox profile of (+)-Camphene, P-Cymene, and Geranyl acetate in experemental models. ISRN Toxicol., 2013, ID459530, 11.
[http://dx.doi.org/10.1155/2013/459530]
[23]
Cox, S.D.; Markham, J.L. Susceptibility and intrinsic tolerance of Pseudomonas aeruginosa to selected plant volatile compounds. J. Appl. Microbiol., 2007, 103(4), 930-936.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03353.x] [PMID: 17897196]
[24]
Erkmen, O.; Özcan, M. Antimicrobial effects of essential oils on growth of bacteria, yeasts and molds. J. Essent. Oil Bear. Plants., 2004, 7(3), 279-287.
[http://dx.doi.org/10.1080/0972-060X.2004.10643408]
[25]
Stappen, I.; Alib, A.; Tabancab, N.; Khanb, A.I.; Wannerc, J.; Gochev, V.K.; Singh, V.; Lal, B.; Jaitak, V.; Kaul, V.K.; Schmidt, E.; Jirovetz, L. Antimicrobial and repellent activity of the essential oils of two Lamiaceae cultivated in Western Himalaya. Curr. Bioact. Compd., 2015, 11, 23-30.
[http://dx.doi.org/10.2174/157340721101150804143954]
[26]
Saïdana, D.; Mahjoub, M.A.; Boussaada, O.; Chriaa, J.; Chéraif, I.; Daami, M.; Mighri, Z.; Helal, A.N. Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae). Microbiol. Res., 2008, 163(4), 445-455.
[http://dx.doi.org/10.1016/j.micres.2006.07.009] [PMID: 17223327]
[27]
Burt, S. Essential oils: their antibacterial properties and potential applications in foods--a review. Int. J. Food Microbiol., 2004, 94(3), 223-253.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022] [PMID: 15246235]
[28]
Thakre, D.A.; Mulange, V.S.; Kodgire, S.S.; Zore, B.G.; Karuppayil, M.S. Effects of cinnamaldehyde, ocimene, camphene, curcumin and farnesene on Candida albicans. Adv. Microbiol., 2016, 6, 627-643.
[http://dx.doi.org/10.4236/aim.2016.69062]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy