Clinical Management of Drug-resistant Mycobacterium tuberculosis Strains: Pathogen-targeted Versus Host-directed Treatment Approaches

Author(s): Hawra Al-Ghafli , Sahal Al-Hajoj* .

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Despite exerted efforts to control and treat Mycobacterium tuberculosis (MTB) strains, Tuberculosis (TB) remains a public health menace. The emergence of complex drug-resistant profiles, such as multi-drug resistant and extensively drug-resistant MTB strains, emphasizes the need for early diagnosis of resistant cases, shorter treatment options, and effective medical interventions.

Objective: Solutions for better clinical management of drug-resistant cases are either pathogencentered (novel chemotherapy agents) or host-directed approaches (modulating host immune response to prevent MTB invasion and pathogenesis).

Results: Despite the overall potentiality of several chemotherapy agents, it is feared that their effectiveness could be challenged by sequential pathogen adaptation tactics. On the contrary, host-directed therapy options might offer a long-term conceivable solution.

Conclusion: This review discusses the main suggestions proposed so far to resolve the clinical challenges associated with drug resistance, in the context of TB. These suggestions include novel drug delivery approaches that could optimize treatment outcome and increase patients’ compliance to the treatment.

Keywords: Clinical management, pathogen-targeted, drug resistant Mycobacterium tuberculosis strains, host-directed treatment approaches, treatment approaches, TB-control programs.

[1]
Global Tuberculosis Report 2017, World Health Orginization: Geneva, Switzerland., 2017
[2]
Velayati, A.A.; Masjedi, M.R.; Farnia, P.; Tabarsi, P.; Ghanavi, J. ZiaZarifi, A.H.; Hoffner, S.E. Emergence of new forms of totally drug-resistant Tuberculosis bacilli: Super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest, 2009, 136(2), 420-425.
[3]
Udwadia, Z.; Vendoti, D. Totally drug-resistant tuberculosis (TDR-TB) in India: Every dark cloud has a silver lining. J. Epidemiol. Community Health, 2013, 67(6), 471-472.
[4]
Migliori, G.B.; De Iaco, G.; Besozzi, G.; Centis, R.; Cirillo, D.M. First tuberculosis cases in Italy resistant to all tested drugs. Eur. Commun. Dis. Bullet., 2007, 12(5), E0705171.
[5]
World Health Organization stop TB department drug-resistant tuberculosis: Frequently asked questions. http://www.who.int/tb/ challenges/mdr/TDRFAQs160112final.pdf
[6]
Nasiruddin, M.; Neyaz, M.K.; Das, S. Nanotechnology-based approach in tuberculosis treatment. Tuberc. Res. Treat., 2017, 2017, 4920209.
[7]
Kolloli, A.; Subbian, S. Host-directed therapeutic strategies for tuberculosis. Front. Med., 2017, 4, 171.
[8]
Swaney, S.M.; Aoki, H.; Ganoza, M.C.; Shinabarger, D.L. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob. Agents Chemother., 1998, 42(12), 3251-3255.
[9]
Lee, M.; Lee, J.; Carroll, M.W.; Choi, H.; Min, S.; Song, T.; Via, L.E.; Goldfeder, L.C.; Kang, E.; Jin, B.; Park, H.; Kwak, H.; Kim, H.; Jeon, H-S.; Jeong, I.; Joh, J.S.; Chen, R.Y.; Olivier, K.N.; Shaw, P.A.; Follmann, D.; Song, S.D.; Lee, J-K.; Lee, D.; Kim, C.T.; Dartois, V.; Park, S-K.; Cho, S-N.; Barry, C.E. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N. Engl. J. Med., 2012, 367(16), 1508-1518.
[10]
Sotgiu, G.; Centis, R.; D’Ambrosio, L.; Spanevello, A.; Migliori, G.B. Linezolid to treat extensively drug-resistant TB: Retrospective data are confirmed by experimental evidence. Eur. Respir. J., 2013, 42(1), 288-290.
[11]
Shaw, K.J.; Barbachyn, M.R. The oxazolidinones: Past, present, and future. Ann. N. Y. Acad. Sci., 2011, 1241, 48-70.
[12]
Alffenaar, J.W.; van der Laan, T.; Simons, S.; van der Werf, T.S.; van de Kasteele, P.J.; de Neeling, H.; van Soolingen, D. Susceptibility of clinical Mycobacterium tuberculosis isolates to a potentially less toxic derivate of linezolid, PNU-100480. Antimicrob. Agents Chemother., 2011, 55(3), 1287-1289.
[13]
Balasubramanian, V.; Solapure, S.; Iyer, H.; Ghosh, A.; Sharma, S.; Kaur, P.; Deepthi, R.; Subbulakshmi, V.; Ramya, V.; Ramachandran, V.; Balganesh, M.; Wright, L.; Melnick, D.; Butler, S.L.; Sambandamurthy, V.K. Bactericidal activity and mechanism of action of AZD5847, a novel oxazolidinone for treatment of tuberculosis. Antimicrob. Agents Chemother., 2014, 58(1), 495-502.
[14]
Jeong, J.W.; Jung, S.J.; Lee, H.H.; Kim, Y.Z.; Park, T.K.; Cho, Y.L.; Chae, S.E.; Baek, S.Y.; Woo, S.H.; Lee, H.S.; Kwak, J.H. In vitro and in vivo activities of LCB01-0371, a new oxazolidinone. Antimicrob. Agents Chemother., 2010, 54(12), 5359-5362.
[15]
Kim, T.S.; Choe, J.H.; Kim, Y.J.; Yang, C.S.; Kwon, H.J.; Jeong, J.; Kim, G.; Park, D.E.; Jo, E.K.; Cho, Y.L.; Jang, J. Activity of LCB01-0371, a Novel Oxazolidinone, against Mycobacterium abscessus. Antimicrob. Agents Chemother., 2017, 61(9), e02752-e16.
[16]
Li, C.R.; Zhai, Q.Q.; Wang, X.K.; Hu, X.X.; Li, G.Q.; Zhang, W.X.; Pang, J.; Lu, X.; Yuan, H.; Gordeev, M.F.; Chen, L.T.; Yang, X.Y.; You, X.F. In vivo antibacterial activity of MRX-I, a new oxazolidinone. Antimicrob. Agents Chemother., 2014, 58(4), 2418-2421.
[18]
Li, X.; Hernandez, V.; Rock, F.L.; Choi, W.; Mak, Y.S.L.; Mohan, M.; Mao, W.; Zhou, Y.; Easom, E.E.; Plattner, J.J.; Zou, W.; Perez-Herran, E.; Giordano, I.; Mendoza-Losana, A.; Alemparte, C.; Rullas, J.; Angulo-Barturen, I.; Crouch, S.; Ortega, F.; Barros, D.; Alley, M.R.K. Discovery of a potent and specific M. tuberculosis leucyl-tRNA synthetase inhibitor: (S)-3-(Aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2]oxaborol-1(3H)-ol (GSK656). J. Med. Chem., 2017, 60(19), 8011-8026.
[19]
Palencia, A.; Li, X.; Bu, W.; Choi, W.; Ding, C.Z.; Easom, E.E.; Feng, L.; Hernandez, V.; Houston, P.; Liu, L.; Meewan, M.; Mohan, M.; Rock, F.L.; Sexton, H.; Zhang, S.; Zhou, Y.; Wan, B.; Wang, Y.; Franzblau, S.G.; Woolhiser, L.; Gruppo, V.; Lenaerts, A.J.; O’Malley, T.; Parish, T.; Cooper, C.B.; Waters, M.G.; Ma, Z.; Ioerger, T.R.; Sacchettini, J.C.; Rullas, J.; Angulo-Barturen, I.; Perez-Herran, E.; Mendoza, A.; Barros, D.; Cusack, S.; Plattner, J.J.; Alley, M.R. Discovery of novel oral protein synthesis inhibitors of Mycobacterium tuberculosis that target leucyl-tRNA synthetase. Antimicrob. Agents Chemother., 2016, 60(10), 6271-6280.
[20]
Cohen, J. Infectious disease. Approval of novel TB drug celebrated with restraint. Science, (New York, N.Y.)., 2013, 339(16 16), 130.
[21]
Gler, M.T.; Skripconoka, V.; Sanchez-Garavito, E.; Xiao, H.; Cabrera-Rivero, J.L.; Vargas-Vasquez, D.E.; Gao, M.; Awad, M.; Park, S.K.; Shim, T.S.; Suh, G.Y.; Danilovits, M.; Ogata, H.; Kurve, A.; Chang, J.; Suzuki, K.; Tupasi, T.; Koh, W.J.; Seaworth, B.; Geiter, L.J.; Wells, C.D. Delamanid for multidrug-resistant pulmonary tuberculosis. N. Engl. J. Med., 2012, 366(23), 2151-2160.
[22]
Matsumoto, M.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Tsubouchi, H.; Sasaki, H.; Shimokawa, Y.; Komatsu, M. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med., 2006, 3(11), e466.
[23]
Andries, K.; Verhasselt, P.; Guillemont, J.; Gohlmann, H.W.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science (New York, N.Y.)., 2005, 307(5707), 223-227.
[24]
Koul, A.; Vranckx, L.; Dendouga, N.; Balemans, W.; Van den Wyngaert, I.; Vergauwen, K.; Gohlmann, H.W.; Willebrords, R.; Poncelet, A.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J. Biologic. Chem., 2008, 283(37), 25273-25280.
[25]
Diacon, A.H.; Pym, A.; Grobusch, M.; Patientia, R.; Rustomjee, R.; Page-Shipp, L.; Pistorius, C.; Krause, R.; Bogoshi, M.; Churchyard, G.; Venter, A.; Allen, J.; Palomino, J.C.; De Marez, T.; van Heeswijk, R.P.; Lounis, N.; Meyvisch, P.; Verbeeck, J.; Parys, W.; de Beule, K.; Andries, K.; Mc Neeley, D.F. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med., 2009, 360(23), 2397-2405.
[26]
Voelker, R. MDR-TB has new drug foe after fast-track approval. JAMA, 2013, 309(5), 430.
[27]
Sutherland, H.S.; Tong, A.S.T.; Choi, P.J.; Conole, D.; Blaser, A.; Franzblau, S.G.; Cooper, C.B.; Upton, A.M.; Lotlikar, M.U.; Denny, W.A.; Palmer, B.D. Structure-activity relationships for analogs of the tuberculosis drug bedaquiline with the naphthalene unit replaced by bicyclic heterocycles. Bioorg. Med. Chem., 2018, 26(8), 1797-1809.
[28]
Choi, P.J.; Sutherland, H.S.; Tong, A.S.T.; Blaser, A.; Franzblau, S.G.; Cooper, C.B.; Lotlikar, M.U.; Upton, A.M.; Guillemont, J.; Motte, M.; Queguiner, L.; Andries, K.; Van den Broeck, W.; Denny, W.A.; Palmer, B.D. Synthesis and evaluation of analogues of the tuberculosis drug bedaquiline containing heterocyclic B-ring units. Bioorg. Med. Chem. Lett., 2017, 27(23), 5190-5196.
[29]
Tahlan, K.; Wilson, R.; Kastrinsky, D.B.; Arora, K.; Nair, V.; Fischer, E.; Barnes, S.W.; Walker, J.R.; Alland, D.; Barry, C.E., III; Boshoff, H.I. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2012, 56(4), 1797-1809.
[30]
Migliori, G.B.; Sotgiu, G.; Gandhi, N.R.; Falzon, D.; DeRiemer, K.; Centis, R.; Hollm-Delgado, M.G.; Palmero, D.; Perez-Guzman, C.; Vargas, M.H.; D’Ambrosio, L.; Spanevello, A.; Bauer, M.; Chan, E.D.; Schaaf, H.S.; Keshavjee, S.; Holtz, T.H.; Menzies, D. Drug resistance beyond extensively drug-resistant tuberculosis: Individual patient data meta-analysis. Eur. Respir. J., 2013, 42(1), 169-179.
[31]
Reddy, V.M.; Einck, L.; Andries, K.; Nacy, C.A. In vitro interactions between new antitubercular drug candidates SQ109 and TMC207. Antimicrob. Agents Chemother., 2010, 54(7), 2840-2846.
[32]
Chen, P.; Gearhart, J.; Protopopova, M.; Einck, L.; Nacy, C.A. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. J. Antimicrob. Chemother., 2006, 58(2), 332-337.
[33]
Pethe, K.; Bifani, P.; Jang, J.; Kang, S.; Park, S.; Ahn, S.; Jiricek, J.; Jung, J.; Jeon, H.K.; Cechetto, J.; Christophe, T.; Lee, H.; Kempf, M.; Jackson, M.; Lenaerts, A.J.; Pham, H.; Jones, V.; Seo, M.J.; Kim, Y.M.; Seo, M.; Seo, J.J.; Park, D.; Ko, Y.; Choi, I.; Kim, R.; Kim, S.Y.; Lim, S.; Yim, S.A.; Nam, J.; Kang, H.; Kwon, H.; Oh, C.T.; Cho, Y.; Jang, Y.; Kim, J.; Chua, A.; Tan, B.H.; Nanjundappa, M.B.; Rao, S.P.; Barnes, W.S.; Wintjens, R.; Walker, J.R.; Alonso, S.; Lee, S.; Kim, J.; Oh, S.; Oh, T.; Nehrbass, U.; Han, S.J.; No, Z.; Lee, J.; Brodin, P.; Cho, S.N.; Nam, K.; Kim, J. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat. Med., 2013, 19(9), 1157-1160.
[34]
Lu, P.; Asseri, A.H.; Kremer, M.; Maaskant, J.; Ummels, R.; Lill, H.; Bald, D. The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd. Sci. Rep., 2018, 8(1), 2625.
[35]
Gao, C.; Peng, C.; Shi, Y.; You, X.; Ran, K.; Xiong, L.; Ye, T-h.; Zhang, L.; Wang, N.; Zhu, Y.; Liu, K.; Zuo, W.; Yu, L.; Wei, Y. Benzothiazinethione is a potent preclinical candidate for the treatment of drug-resistant tuberculosis. Sci. Rep., 2016, 6, 29717.
[36]
Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med., 2014, 6(3), 372-383.
[37]
Wilson, C.R.; Gessner, R.K.; Moosa, A.; Seldon, R.; Warner, D.F.; Mizrahi, V.; Soares de Melo, C.; Simelane, S.B.; Nchinda, A.; Abay, E.; Taylor, D.; Njoroge, M.; Brunschwig, C.; Lawrence, N.; Boshoff, H.I.M.; Barry, C.E.; Sirgel, F.A.; van Helden, P.; Harris, C.J.; Gordon, R.; Ghidelli-Disse, S.; Pflaumer, H.; Boesche, M.; Drewes, G.; Sanz, O.; Santos, G.; Rebollo-Lopez, M.J.; Urones, B.; Selenski, C.; Lafuente-Monasterio, M.J.; Axtman, M.; Lelièvre, J.; Ballell, L.; Mueller, R.; Street, L.J.; Ghorpade, S.R.; Chibale, K. Novel antitubercular 6-dialkylaminopyrimidine carboxamides from phenotypic whole-cell high throughput screening of a softfocus library: Structure-activity relationship and target identification studies. J. Med. Chem., 2017, 60(24), 10118-10134.
[38]
Stop TB partnership https://www.newtbdrugs.org/ (accessed Feb).
[39]
Schoeman, J.F.; Fieggen, G.; Seller, N.; Mendelson, M.; Hartzenberg, B. Intractable intracranial tuberculous infection responsive to thalidomide: Report of four cases. J. Child Neurol., 2006, 21(4), 301-308.
[40]
Dey, T.; Brigden, G.; Cox, H.; Shubber, Z.; Cooke, G.; Ford, N. Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: A systematic review and meta-analysis. J. Antimicrob. Chemother., 2013, 68(2), 284-293.
[41]
Fu, L.M.; Fu-Liu, C.S. Thalidomide and tuberculosis. Int. J. Tuberc. Lung Dis., 2002, 6(7), 569-572.
[42]
Ordway, D.; Viveiros, M.; Leandro, C.; Bettencourt, R.; Almeida, J.; Martins, M.; Kristiansen, J.E.; Molnar, J.; Amaral, L. Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2003, 47(3), 917-922.
[43]
Kinnings, S.L.; Liu, N.; Buchmeier, N.; Tonge, P.J.; Xie, L.; Bourne, P.E. Drug discovery using chemical systems biology: Repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLOS Comput. Biol., 2009, 5(7), e1000423.
[44]
De Lorenzo, S.; Alffenaar, J.W.; Sotgiu, G.; Centis, R.; D’Ambrosio, L.; Tiberi, S.; Bolhuis, M.S.; van Altena, R.; Viggiani, P.; Piana, A.; Spanevello, A.; Migliori, G.B. Efficacy and safety of meropenem-clavulanate added to linezolid-containing regimens in the treatment of MDR-/XDR-TB. Eur. Respir. J., 2013, 41(6), 1386-1392.
[45]
Payen, M.C.; De Wit, S.; Martin, C.; Sergysels, R.; Muylle, I.; Van Laethem, Y.; Clumeck, N. Clinical use of the meropenem-clavulanate combination for extensively drug-resistant tuberculosis. Int. J. Tuberc. Lung Dis., 2012, 16(4), 558-560.
[46]
Hugonnet, J.E.; Blanchard, J.S. Irreversible inhibition of the Mycobacterium tuberculosis beta-lactamase by clavulanate. Biochemistry, 2007, 46(43), 11998-12004.
[47]
Horita, Y.; Maeda, S.; Kazumi, Y.; Doi, N. In vitro susceptibility of Mycobacterium tuberculosis isolates to an oral carbapenem alone or in combination with beta-lactamase inhibitors. Antimicrob. Agents Chemother., 2014, 58(11), 7010-7014.
[48]
Lim, L.E.; Vilcheze, C.; Ng, C.; Jacobs, W.R., Jr; Ramon-Garcia, S.; Thompson, C.J. Anthelmintic avermectins kill Mycobacterium tuberculosis, including multidrug-resistant clinical strains. Antimicrob. Agents Chemother., 2013, 57(2), 1040-1046.
[49]
Maartens, G.; Brill, M.J.E.; Pandie, M.; Svensson, E.M. Pharmacokinetic interaction between bedaquiline and clofazimine in patients with drug-resistant tuberculosis. Int. J. Tuberc. Lung Dis., 2018, 22(1), 26-29.
[50]
Piubello, A.; Harouna, S.H.; Souleymane, M.B.; Boukary, I.; Morou, S.; Daouda, M.; Hanki, Y.; Van Deun, A. High cure rate with standardised short-course multidrug-resistant tuberculosis treatment in Niger: No relapses. Int. J. Tuberc. Lung Dis., 2014, 18(10), 1188-1194.
[51]
Moodley, R.; Godec, T.R. Short-course treatment for multidrug-resistant tuberculosis: The STREAM trials. Eur. Respir. Rev., 2016, 25(139), 29-35.
[52]
Kuaban, C.; Noeske, J.; Rieder, H.L.; Ait-Khaled, N.; Abena Foe, J.L.; Trebucq, A. High effectiveness of a 12-month regimen for MDR-TB patients in Cameroon. Int. J. Tuberc. Lung Dis., 2015, 19(5), 517-524.
[53]
Amaral, L.; Kristiansen, J.E.; Viveiros, M.; Atouguia, J. Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: A review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy. J. Antimicrob. Chemother., 2001, 47(5), 505-511.
[54]
Amaral, L.; Viveiros, M. Why thioridazine in combination with antibiotics cures extensively drug-resistant Mycobacterium tuberculosis infections. Int. J. Antimicrob. Agents, 2012, 39(5), 376-380.
[55]
Amaral, L.; Boeree, M.J.; Gillespie, S.H.; Udwadia, Z.F.; van Soolingen, D. Thioridazine cures extensively drug-resistant tuberculosis (XDR-TB) and the need for global trials is now! Int. J. Antimicrob. Agents, 2010, 35(6), 524-526.
[56]
Reddy, V.M.; Dubuisson, T.; Einck, L.; Wallis, R.S.; Jakubiec, W.; Ladukto, L.; Campbell, S.; Nacy, C.A. SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro. J. Antimicrob. Chemother., 2012, 67(5), 1163-1166.
[57]
Wallis, R.S.; Jakubiec, W.; Mitton-Fry, M.; Ladutko, L.; Campbell, S.; Paige, D.; Silvia, A.; Miller, P.F. Rapid evaluation in whole blood culture of regimens for XDR-TB containing PNU-100480 (sutezolid), TMC207, PA-824, SQ109, and pyrazinamide. PLoS One, 2012, 7(1), e30479.
[58]
Safety and efficacy trial of delamanid for 6 months in patients with multidrug resistant tuberculosis. ClinicalTrials.gov: 2018.
[59]
Pragmatic clinical trial for a more effective concise and less Toxic MDR-TB Treatment Regimen(s) (TB-PRACTECAL). ClinicalTrials. gov: 2018.
[60]
The evaluation of a standard treatment regimen of anti-tuberculosis drugs for patients with MDR-TB (STREAM). ClinicalTrials.gov: 2018.
[61]
Vilaplana, C.; Montane, E.; Pinto, S.; Barriocanal, A.M.; Domenech, G.; Torres, F.; Cardona, P.J.; Costa, J. Double-blind, randomized, placebo-controlled Phase I clinical trial of the therapeutical antituberculous vaccine RUTI. Vaccine, 2010, 28(4), 1106-1116.
[62]
Prabowo, S.A.; Groschel, M.I.; Schmidt, E.D.; Skrahina, A.; Mihaescu, T.; Hasturk, S.; Mitrofanov, R.; Pimkina, E.; Visontai, I.; de Jong, B.; Stanford, J.L.; Cardona, P.J.; Kaufmann, S.H.; van der Werf, T.S. Targeting multidrug-resistant tuberculosis (MDR-TB) by therapeutic vaccines. Med. Microbiol. Immunol., 2013, 202(2), 95-104.
[63]
Dlugovitzky, D.; Stanford, C.; Stanford, J. Immunological basis for the introduction of immunotherapy with Mycobacterium vaccae into the routine treatment of TB. Immunotherapy, 2011, 3(4), 557-568.
[64]
Katoch, K.; Singh, P.; Adhikari, T.; Benara, S.K.; Singh, H.B.; Chauhan, D.S.; Sharma, V.D.; Lavania, M.; Sachan, A.S.; Katoch, V.M. Potential of Mw as a prophylactic vaccine against pulmonary tuberculosis. Vaccine, 2008, 26(9), 1228-1234.
[65]
Coler, R.N.; Bertholet, S.; Pine, S.O.; Orr, M.T.; Reese, V.; Windish, H.P.; Davis, C.; Kahn, M.; Baldwin, S.L.; Reed, S.G. Therapeutic immunization against Mycobacterium tuberculosis is an effective adjunct to antibiotic treatment. J. Infect. Dis., 2013, 207(8), 1242-1252.
[66]
Aagaard, C.; Hoang, T.; Dietrich, J.; Cardona, P.J.; Izzo, A.; Dolganov, G.; Schoolnik, G.K.; Cassidy, J.P.; Billeskov, R.; Andersen, P. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat. Med., 2011, 17(2), 189-194.
[67]
Grode, L.; Ganoza, C.A.; Brohm, C.; Weiner, J., III; Eisele, B.; Kaufmann, S.H. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine, 2013, 31(9), 1340-1348.
[68]
Malowany, J.I.; McCormick, S.; Santosuosso, M.; Zhang, X.; Aoki, N.; Ngai, P.; Wang, J.; Leitch, J.; Bramson, J.; Wan, Y.; Xing, Z. Development of cell-based tuberculosis vaccines: Genetically modified dendritic cell vaccine is a much more potent activator of CD4 and CD8 T cells than peptide- or protein-loaded counterparts. Molecul. Ther., 2006, 13(4), 766-775.
[69]
Skrahin, A.; Ahmed, R.K.; Ferrara, G.; Rane, L.; Poiret, T.; Isaikina, Y.; Skrahina, A.; Zumla, A.; Maeurer, M.J. Autologous mesenchymal stromal cell infusion as adjunct treatment in patients with multidrug and extensively drug-resistant tuberculosis: An open-label phase 1 safety trial. Lancet Respir. Med., 2014, 2(2), 108-122.
[70]
Singh, V.; Jain, S.; Gowthaman, U.; Parihar, P.; Gupta, P.; Gupta, U.D.; Agrewala, J.N. Co-administration of IL-1+IL-6+TNF-alpha with Mycobacterium tuberculosis infected macrophages vaccine induces better protective T cell memory than BCG. PLoS One, 2011, 6(1), e16097.
[71]
Martineau, A.R.; Honecker, F.U.; Wilkinson, R.J.; Griffiths, C.J. Vitamin D in the treatment of pulmonary tuberculosis. J. Steroid Biochem. Mol. Biol., 2007, 103.
[72]
Baeke, F.; Takiishi, T.; Korf, H.; Gysemans, C.; Mathieu, C.; Vitamin, D. Modulator of the immune system. Curr. Opin. Pharmacol., 2010, 10(4), 482-496.
[73]
Chan, T.Y. Vitamin D deficiency and susceptibility to tuberculosis. Calcif. Tissue Int., 2000, 66(6), 476-478.
[74]
Coussens, A.K.; Wilkinson, R.J.; Hanifa, Y.; Nikolayevskyy, V.; Elkington, P.T.; Islam, K.; Timms, P.M.; Venton, T.R.; Bothamley, G.H.; Packe, G.E.; Darmalingam, M.; Davidson, R.N.; Milburn, H.J.; Baker, L.V.; Barker, R.D.; Mein, C.A.; Bhaw-Rosun, L.; Nuamah, R.; Young, D.B.; Drobniewski, F.A.; Griffiths, C.J.; Martineau, A.R. Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc. Natl. Acad. Sci. USA, 2012, 109(38), 15449-15454.
[75]
Aharonian, F.; Akhperjanian, A.G.; Barres de Almeida, U.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; Beilicke, M.; Benbow, W.; Bernlohr, K.; Boisson, C.; Bochow, A.; Borrel, V.; Braun, I.; Brion, E.; Brucker, J.; Brun, P.; Buhler, R.; Bulik, T.; Busching, I.; Boutelier, T.; Carrigan, S.; Chadwick, P.M.; Charbonnier, A.; Chaves, R.C.; Chounet, L.M.; Clapson, A.C.; Coignet, G.; Costamante, L.; Dalton, M.; Degrange, B.; Deil, C.; Dickinson, H.J.; Djannati-Atai, A.; Domainko, W.; Drury, L.O.; Dubois, F.; Dubus, G.; Dyks, J.; Egberts, K.; Emmanoulopoulos, D.; Espigat, P.; Farnier, C.; Feinstein, F.; Fiasson, A.; Forster, A.; Fontaine, G.; Fussling, M.; Gabici, S.; Gallant, Y.A.; Gerard, L.; Giebels, B.; Glicenstein, J.F.; Gluck, B.; Goret, P.; Hadjichristidis, C.; Hauser, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J.A.; Hoffmann, A.; Hofmann, W.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O.C.; Jung, I.; Katarzynski, K.; Kaufmann, S.; Kendziorra, E.; Kerschhaggl, M.; Khangulyan, D.; Khelifi, B.; Keogh, D.; Komin, N.; Kosack, K.; Lamanna, G.; Lenain, J.P.; Lohse, T.; Marandon, V.; Martin, J.M.; Martineau-Huynh, O.; Marcowith, A.; Maurin, D.; McComb, T.J.; Medina, C.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Niemiec, J.; Nolan, S.J.; Ohm, S.; Olive, J.F.; de Ona Wilhelmi, E.; Orford, K.J.; Osborne, J.L.; Ostrowski, M.; Panter, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.O.; Pita, S.; Puhlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B.C.; Raue, M.; Rayner, S.M.; Renaud, M.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Ruppel, J.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schock, F.M.; Schroder, R.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Skilton, J.L.; Sol, H.; Spangler, D.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Superina, G.; Tam, P.H.; Tavernet, J.P.; Terrier, R.; Tibolla, O.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J.P.; Vincent, P.; Vivier, M.; Volk, H.J.; Volpe, F.; Wagner, S.J.; Ward, M.; Zdziarski, A.A.; Zech, A.; Collaboration, H.E.S.S. Limits on an energy dependence of the speed of light from a flare of the active galaxy PKS 2155-304. Phys. Rev. Lett., 2008, 101(17), 170402.
[76]
Sonawane, A.; Santos, J.C.; Mishra, B.B.; Jena, P.; Progida, C.; Sorensen, O.E.; Gallo, R.; Appelberg, R.; Griffiths, G. Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cell. Microbiol., 2011, 13(10), 1601-1617.
[77]
Gutierrez, M.G.; Master, S.S.; Singh, S.B.; Taylor, G.A.; Colombo, M.I.; Deretic, V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004, 119(6), 753-766.
[78]
Yuk, J.M.; Shin, D.M.; Lee, H.M.; Yang, C.S.; Jin, H.S.; Kim, K.K.; Lee, Z.W.; Lee, S.H.; Kim, J.M.; Jo, E.K. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe, 2009, 6(3), 231-243.
[79]
Martineau, A.R.; Timms, P.M.; Bothamley, G.H.; Hanifa, Y.; Islam, K.; Claxton, A.P.; Packe, G.E.; Moore-Gillon, J.C.; Darmalingam, M.; Davidson, R.N.; Milburn, H.J.; Baker, L.V.; Barker, R.D.; Woodward, N.J.; Venton, T.R.; Barnes, K.E.; Mullett, C.J.; Coussens, A.K.; Rutterford, C.M.; Mein, C.A.; Davies, G.R.; Wilkinson, R.J.; Nikolayevskyy, V.; Drobniewski, F.A.; Eldridge, S.M.; Griffiths, C.J. High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: A double-blind randomised controlled trial. Lancet, 2011, 377(9761), 242-250.
[80]
Kota, S.K.; Jammula, S.; Kota, S.K.; Tripathy, P.R.; Panda, S.; Modi, K.D. Effect of vitamin D supplementation in type 2 diabetes patients with pulmonary tuberculosis. Diabetes Metab. Syndr., 2011, 5(2), 85-89.
[81]
Nursyam, E.W.; Amin, Z.; Rumende, C.M. The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med. Indones., 2006, 38(1), 3-5.
[82]
Vilcheze, C.; Hartman, T.; Weinrick, B.; Jacobs, W.R., Jr Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat. Commun., 2013, 4, 1881.
[83]
Tobin, D.M.; Roca, F.J.; Oh, S.F.; McFarland, R.; Vickery, T.W.; Ray, J.P.; Ko, D.C.; Zou, Y.; Bang, N.D.; Chau, T.T.; Vary, J.C.; Hawn, T.R.; Dunstan, S.J.; Farrar, J.J.; Thwaites, G.E.; King, M.C.; Serhan, C.N.; Ramakrishnan, L. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell, 2012, 148(3), 434-446.
[84]
Critchley, J.A.; Young, F.; Orton, L.; Garner, P. Corticosteroids for prevention of mortality in people with tuberculosis: A systematic review and meta-analysis. Lancet Infect. Dis., 2013, 13(3), 223-237.
[85]
Misra, U.K.; Kalita, J.; Nair, P.P. Role of aspirin in tuberculous meningitis: A randomized open label placebo controlled trial. J. Neurol. Sci., 2010, 293(1-2), 12-17.
[86]
Tobin, D.M.; Vary, J.C., Jr; Ray, J.P.; Walsh, G.S.; Dunstan, S.J.; Bang, N.D.; Hagge, D.A.; Khadge, S.; King, M.C.; Hawn, T.R.; Moens, C.B.; Ramakrishnan, L. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell, 2010, 140(5), 717-730.
[87]
Guzman, J.D.; Evangelopoulos, D.; Gupta, A.; Birchall, K.; Mwaigwisya, S.; Saxty, B.; McHugh, T.D.; Gibbons, S.; Malkinson, J.; Bhakta, S. Antitubercular specific activity of ibuprofen and the other 2-arylpropanoic acids using the HT-SPOTi whole-cell phenotypic assay. BMJ Open, 2013, 3(6), e002672.
[88]
Vilaplana, C.; Marzo, E.; Tapia, G.; Diaz, J.; Garcia, V.; Cardona, P.J. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J. Infect. Dis., 2013, 208(2), 199-202.
[89]
Gupta, S.; Cohen, K.A.; Winglee, K.; Maiga, M.; Diarra, B.; Bishai, W.R. Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, 58(1), 574-576.
[90]
Gupta, S.; Tyagi, S.; Almeida, D.V.; Maiga, M.C.; Ammerman, N.C.; Bishai, W.R. Acceleration of tuberculosis treatment by adjunctive therapy with verapamil as an efflux inhibitor. Am. J. Respir. Crit. Care Med., 2013, 188(5), 600-607.
[91]
Goldman, J.M.; Melo, J.V. Chronic myeloid leukemia-advances in biology and new approaches to treatment. N. Engl. J. Med., 2003, 349(15), 1451-1464.
[92]
Napier, R.J.; Rafi, W.; Cheruvu, M.; Powell, K.R.; Zaunbrecher, M.A.; Bornmann, W.; Salgame, P.; Shinnick, T.M.; Kalman, D. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe, 2011, 10(5), 475-485.
[93]
Vudattu, N.K.; Magalhaes, I.; Hoehn, H.; Pan, D.; Maeurer, M.J. Expression analysis and functional activity of interleukin-7 splice variants. Genes Immun., 2009, 10(2), 132-140.
[94]
Rane, L.; Rahman, S.; Magalhaes, I.; Ahmed, R.; Spangberg, M.; Kondova, I.; Verreck, F.; Andersson, J.; Brighenti, S.; Maeurer, M.J. Increased (6 exon) interleukin-7 production after M. tuberculosis infection and soluble interleukin-7 receptor expression in lung tissue. Genes Immun., 2011, 12(7), 513-522.
[95]
Tsenova, L.; Mangaliso, B.; Muller, G.; Chen, Y.; Freedman, V.H.; Stirling, D.; Kaplan, G. Use of IMiD3, a thalidomide analog, as an adjunct to therapy for experimental tuberculous meningitis. Antimicrob. Agents Chemother., 2002, 46(6), 1887-1895.
[96]
Koo, M.S.; Manca, C.; Yang, G.; O’Brien, P.; Sung, N.; Tsenova, L.; Subbian, S.; Fallows, D.; Muller, G.; Ehrt, S.; Kaplan, G. Phosphodiesterase 4 inhibition reduces innate immunity and improves isoniazid clearance of Mycobacterium tuberculosis in the lungs of infected mice. PLoS One, 2011, 6(2), e17091.
[97]
Subbian, S.; Tsenova, L.; O’Brien, P.; Yang, G.; Koo, M.S.; Peixoto, B.; Fallows, D.; Dartois, V.; Muller, G.; Kaplan, G. Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated clearance of Mycobacterium tuberculosis in rabbit lungs. PLoS Pathog., 2011, 7(9), e1002262.
[98]
Subbian, S.; Tsenova, L.; O’Brien, P.; Yang, G.; Koo, M.S.; Peixoto, B.; Fallows, D.; Zeldis, J.B.; Muller, G.; Kaplan, G. Phosphodiesterase-4 inhibition combined with isoniazid treatment of rabbits with pulmonary tuberculosis reduces macrophage activation and lung pathology. Am. J. Pathol., 2011, 179(1), 289-301.
[99]
Maiga, M.; Ammerman, N.C.; Maiga, M.C.; Tounkara, A.; Siddiqui, S.; Polis, M.; Murphy, R.; Bishai, W.R. Adjuvant host-directed therapy with types 3 and 5 but not type 4 phosphodiesterase inhibitors shortens the duration of tuberculosis treatment. J. Infect. Dis., 2013, 208(3), 512-519.
[100]
Maiga, M.; Agarwal, N.; Ammerman, N.C.; Gupta, R.; Guo, H.; Maiga, M.C.; Lun, S.; Bishai, W.R. Successful shortening of tuberculosis treatment using adjuvant host-directed therapy with FDA-approved phosphodiesterase inhibitors in the mouse model. PLoS One, 2012, 7(2), e30749.
[101]
Choi, A.M.; Ryter, S.W.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med., 2013, 368(7), 651-662.
[102]
Lazebnik, Y.A.; Kaufmann, S.H.; Desnoyers, S.; Poirier, G.G.; Earnshaw, W.C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature, 1994, 371(6495), 346-347.
[103]
Munoz-Planillo, R.; Kuffa, P.; Martinez-Colon, G.; Smith, B.L.; Rajendiran, T.M.; Nunez, G.K. (+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 2013, 38(6), 1142-1153.
[104]
Dooley, K.E.; Obuku, E.A.; Durakovic, N.; Belitsky, V.; Mitnick, C.; Nuermberger, E.L. World Health Organization group 5 drugs for the treatment of drug-resistant tuberculosis: Unclear efficacy or untapped potential? J. Infect. Dis., 2013, 207(9), 1352-1358.
[105]
Cholo, M.C.; Steel, H.C.; Fourie, P.B.; Germishuizen, W.A.; Anderson, R. Clofazimine: Current status and future prospects. J. Antimicrob. Chemother., 2012, 67(2), 290-298.
[106]
Xu, H.B.; Jiang, R.H.; Xiao, H.P. Clofazimine in the treatment of multidrug-resistant tuberculosis. Clin. Microbiol. Infect., 2012, 18(11), 1104-1110.
[107]
Couvreur, P.; Vauthier, C. Nanotechnology: Intelligent design to treat complex disease. Pharm. Res., 2006, 23(7), 1417-1450.
[108]
Sharma, A.; Sharma, S.; Khuller, G.K. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J. Antimicrob. Chemother., 2004, 54(4), 761-766.
[109]
Pandey, R.; Sharma, A.; Zahoor, A.; Sharma, S.; Khuller, G.K.; Prasad, B. Poly (dl-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother., 2003, 52(6), 981-986.
[110]
Sosnik, A.; Carcaboso, Á.M.; Glisoni, R.J.; Moretton, M.A.; Chiappetta, D.A. New old challenges in tuberculosis: Potentially effective nanotechnologies in drug delivery. Adv. Drug Deliv. Rev., 2010, 62(4), 547-559.
[111]
Kisich, K.O.; Gelperina, S.; Higgins, M.P.; Wilson, S.; Shipulo, E.; Oganesyan, E.; Heifets, L. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int. J. Pharm., 2007, 345(1), 154-162.
[112]
Anisimova, Y.V.; Gelperina, S.I.; Peloquin, C.A.; Heifets, L.B. Nanoparticles as antituberculosis drugs carriers: Effect on activity against Mycobacterium tuberculosis in human monocyte-derived macrophages. J. Nanopart. Res., 2000, 2(2), 165-171.
[113]
Muttil, P.; Kaur, J.; Kumar, K.; Yadav, A.B.; Sharma, R.; Misra, A. Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur. J. Pharm. Sci., 2007, 32(2), 140-150.
[114]
Singh, R.; Lillard, J.W., Jr Nanoparticle-based targeted drug delivery. Experiment. Molecul. Pathol., 2009, 86(3), 215-223.
[115]
Garcia-Contreras, L.; Fiegel, J.; Telko, M.J.; Elbert, K.; Hawi, A.; Thomas, M.; VerBerkmoes, J.; Germishuizen, W.A.; Fourie, P.B.; Hickey, A.J.; Edwards, D. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a guinea pig model. Antimicrob. Agents Chemother., 2007, 51(8), 2830-2836.
[116]
Hussain, N.; Jaitley, V.; Florence, A.T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev., 2001, 50(1-2), 107-142.
[117]
Ahmad, Z.; Sharma, S.; Khuller, G.K. The potential of azole antifungals against latent/persistent tuberculosis. FEMS Microbiol. Lett., 2006, 258(2), 200-203.
[118]
Fifis, T.; Gamvrellis, A.; Crimeen-Irwin, B.; Pietersz, G.A.; Li, J.; Mottram, P.L.; McKenzie, I.F.; Plebanski, M. Size-dependent immunogenicity: Therapeutic and protective properties of nano-vaccines against tumors. J. Immunol., 2004, 173(5), 3148-3154.
[119]
Xiang, S.D.; Scholzen, A.; Minigo, G.; David, C.; Apostolopoulos, V.; Mottram, P.L.; Plebanski, M. Pathogen recognition and development of particulate vaccines: Does size matter? Methods, 2006, 40(1), 1-9.
[120]
Dhiman, N.; Khuller, G.K. Protective efficacy of mycobacterial 71-kDa cell wall associated protein using poly (dl-lactide-co-glycolide) microparticles as carrier vehicles. FEMS Immunol. Med. Microbiol., 1998, 21(1), 19-28.
[121]
Marais, B.J.; Brittle, W.; Painczyk, K.; Hesseling, A.C.; Beyers, N.; Wasserman, E.; van Soolingen, D.; Warren, R.M. Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum. Clin. Infect. Dis., 2008, 47(2), 203-207.
[122]
Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children: Policy Update. World Health Organization 2013.: Geneva, 2013.
[123]
Xpert MTB/RIF Implementation Manual: Technical and Operational 'How-To'; Practical Considerations, World Health Organization 2014.: Geneva, 2014.
[124]
Zijenah, L.S.; Kadzirange, G.; Bandason, T.; Chipiti, M.M.; Gwambiwa, B.; Makoga, F.; Chungu, P.; Kaguru, P.; Dheda, K. Comparative performance characteristics of the urine lipoarabinomannan strip test and sputum smear microscopy in hospitalized HIV-infected patients with suspected tuberculosis in Harare, Zimbabwe. BMC Infect. Dis., 2016, 16, 20.
[125]
Kroidl, I.; Clowes, P.; Reither, K.; Mtafya, B.; Rojas-Ponce, G.; Ntinginya, E.N.; Kalomo, M.; Minja, L.T.; Kowuor, D.; Saathoff, E.; Kroidl, A.; Heinrich, N.; Maboko, L.; Bates, M.; O’Grady, J.; Zumla, A.; Hoelscher, M.; Rachow, A. Performance of urine lipoarabinomannan assays for paediatric tuberculosis in Tanzania. Eur. Respir. J., 2015, 46(3), 761-770.
[126]
Nakiyingi, L.; Moodley, V.M.; Manabe, Y.C.; Nicol, M.P.; Holshouser, M.; Armstrong, D.T.; Zemanay, W.; Sikhondze, W.; Mbabazi, O.; Nonyane, B.A.; Shah, M.; Joloba, M.L.; Alland, D.; Ellner, J.J.; Dorman, S.E. Diagnostic accuracy of a rapid urine lipoarabinomannan test for tuberculosis in HIV-infected adults. J. Acquired Immune Def. Syndrom., (1999), 2014, 66(3), 270-279.
[127]
Ling, D.I.; Zwerling, A.A.; Pai, M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: A meta-analysis. Eur. Respir. J., 2008, 32(5), 1165-1174.
[128]
Tagliani, E.; Cabibbe, A.M.; Miotto, P.; Borroni, E.; Toro, J.C.; Mansjo, M.; Hoffner, S.; Hillemann, D.; Zalutskaya, A.; Skrahina, A.; Cirillo, D.M. Diagnostic performance of the new version (v2.0) of GenoType MTBDRsl assay for detection of resistance to fluoroquinolones and second-line injectable drugs: A multicenter study. J. Clin. Microbiol., 2015, 53(9), 2961-2969.
[129]
Walker, T.M.; Kohl, T.A.; Omar, S.V.; Hedge, J.; Del Ojo Elias, C.; Bradley, P.; Iqbal, Z.; Feuerriegel, S.; Niehaus, K.E.; Wilson, D.J.; Clifton, D.A.; Kapatai, G.; Ip, C.L.C.; Bowden, R.; Drobniewski, F.A.; Allix-Béguec, C.; Gaudin, C.; Parkhill, J.; Diel, R.; Supply, P.; Crook, D.W.; Smith, E.G.; Walker, A.S.; Ismail, N.; Niemann, S.; Peto, T.E.A. Modernizing medical microbiology informatics, whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: A retrospective cohort study. Lancet Infect. Dis., 2015, 15(10), 1193-1202.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 4
Year: 2019
Page: [272 - 284]
Pages: 13
DOI: 10.2174/1389201019666180731120544
Price: $58

Article Metrics

PDF: 31
HTML: 5