Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

4-Formylpyrazoles: Applications in Organic Synthesis

Author(s): Renu Bala, Poonam Kumari, Sumit Sood and Karan Singh*

Volume 16, Issue 2, 2019

Page: [193 - 203] Pages: 11

DOI: 10.2174/1570193X15666180712121527

Price: $65

Abstract

4-Formylpyrazoles are useful building blocks in organic synthesis. This review focuses on the applications of 4-formylpyrazoles to generate a large variety of organic compounds and heterocycles such as Schiff bases, pyrazolylpyrazolines, pyrazoloquinolinones, 4H-pyrazolopyran, pyrazolylbenzoxazole, pyrazolothiadiazepines, pyrazolyloxazolone, pyrazolyloxadiazolines, pyrazolylthiadiazolines, imidazolylpyrazoles, pyrazolopyridines, chromenopyrazolones, thiopyranothiazolylpyrazoles and many others. Many of these molecules exhibit excellent biological activities.

Keywords: Schiff bases, pyrazolylpyrazolines, pyrazoloquinolinones, 4H-pyrazolopyran, pyrazolylbenzoxazole, pyrazolothiadiazepines, pyrazolyloxazolone, pyrazolyloxadiazolines, pyrazolylthiadiazolines.

« Previous
Graphical Abstract
[1]
Sullivan, T.J.; Truglio, J.J.; Boyne, M.E.; Novichenok, P.; Zhang, X.; Stratton, C.F.; Li, H.J.; Kaur, T.; Amin, A.; Johnson, F.; Slayden, R.A.; Kisker, C.; Tonge, P.J. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem. Biol., 2006, 1, 43-53.
[2]
Liu, X.H.; Cui, P.; Song, B.A.; Bhadury, P.S.; Zhu, H.L.; Wang, S.F. Synthesis, structure and antibacterial activity of novel 1-(5-substituted-3-substituted-4,5-dihydropyrazol-1-yl) ethanone oxime ester derivatives. Bioorg. Med. Chem., 2008, 16, 4075-4082.
[3]
Foks, H.; Pancechowska-Ksepko, D.; Kedzia, A.; Zwolska, Z.; Janowiec, M.; Augustynowicz-Kopec, E. Synthesis and antibacterial activity of 1H-pyrazolo[3,4-b]pyrazine and -pyridine derivatives. II Farmaco, 2005, 60, 513-517.
[4]
Gilbert, A.M.; Failli, A.; Shumsky, J.; Yang, Y.; Severin, A.; Singh, G.; Hu, W.; Keeney, D.; Petersen, P.J.; Katz, A.H. Pyrazolidine-3,5-diones and 5-Hydroxy-1H-pyrazol-3(2H)-ones, Inhibitors of UDP-N-acetylenolpyruvyl glucosamine reductase. J. Med. Chem., 2006, 49, 6027-6036.
[5]
Shamroukh, A.H.; Zaki, M.E.A.; Morsy, E.M.H.; Abdel-Motti, F.M.; AbdelMegeid, F.M.E. Synthesis, isomerization and antimicrobial evaluation of some pyrazolopyranotriazolopyrimidine derivatives. Arch. Pharm. Chem. Life Sci., 2007, 340, 345-351.
[6]
Prakash, O.; Kumar, R.; Parkash, V. Synthesis and antifungal activity of some new 3-hydroxy-2-(1-phenyl-3-aryl-4-pyrazolyl)chrom-ones. Eur. J. Med. Chem., 2008, 43, 435-440.
[7]
Prakash, O.; Pundeer, R.; Ranjan, P.; Pannu, K.; Dhingra, Y.; Aneja, K.R. Synthesis and antibacterial activity of 1,3-diaryl-4-cyanopyrazoles. Indian J. Chem., 2009, 48B, 563-568.
[8]
Magedov, I.V.; Manpadi, M. Van slambrouck, S.; Steelant, W.F.A.; Rozhkova, E.; Przheval'skii, N.M.; Rogelj, S.; Kornienko, A. Discovery and investigation of antiproliferative and apoptosis-inducing properties of new heterocyclic podophyllotoxin analogues accessible by a one-step multicomponent synthesis. J. Med. Chem., 2007, 50, 5183-5192.
[9]
Tewari, A.K.; Srivastava, P.; Singh, V.P.; Singh, A.; Goel, R.K.; Mohan, C.G. Novel anti-inflammatory agents based on pyrazole based dimeric compounds; design, synthesis, docking and in vivo activity. Chem. Pharm. Bull. (Tokyo), 2010, 58, 634-638.
[10]
Szabo, G.; Fischer, J.; Kis-Varga, A.; Gyires, K. New celecoxib derivatives as anti-inflammatory agents. J. Med. Chem., 2008, 51, 142-147.
[11]
Benaamane, N.; Nedjar-Kolli, B.; Bentarzi, Y.; Hammal, L.; Geronikaki, A.; Eleftheriou, P.; Langunin, A. Synthesis and in silico biological activity evaluation of new N-substituted pyrazolo-oxazin-2-one systems. Bioorg. Med. Chem., 2008, 6, 3059-3066.
[12]
Rosati, O.; Curini, M.; Marcotullio, M.C.; Macchiarulo, A.; Perfumi, M.; Mattioli, L.; Rismondo, F.; Cravotto, G. Synthesis, docking studies and anti-inflammatory activity of 4,5,6,7-tetrahydro-2H-indazole derivatives. Bioorg. Med. Chem., 2007, 15, 3463-3473.
[13]
Palaske, E.; Aytemir, M.; Uzbay, I.T.; Erol, D. Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur. J. Med. Chem., 2001, 36, 539-543.
[14]
Rajendra, P.Y.; Lakshmana, R.A.; Prasoona, L.; Murali, K.; Ravi, K.P. Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2"'-hydroxynaphthalen-1"'-yl)-1,5-diphenyl-2-pyrazolines. Bioorg. Med. Chem. Lett., 2005, 15, 5030-5034.
[15]
Ozdemir, Z.; Kandilici, H.B.; Gumusel, B.; Calis, U.; Bilgin, A.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42, 373-379.
[16]
Ruhogluo, O.; Ozdemir, Z.; Calis, U.; Gumusel, B.; Bilgin, A.A. Synthesis of and pharmacological studies on the antidepressant and anticonvulsant activities of some 1,3,5-trisubstituted pyrazolines. Arzneimittelforschung, 2005, 55, 431-436.
[17]
Sener, A.; Kasimogullari, R.; Sener, M.K.; Bildirici, I.; Akcamur, Y. Studies on the reactions of cyclic oxalyl compounds with hydrazines or hydrazones: Synthesis and reactions of 4-benzoyl-1-(3-nitrophenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid. J. Heterocycl. Chem., 2002, 39, 869-875.
[18]
Wachter, G.A.; Hartmann, R.W.; Sergejew, T.; Grun, G.L.; Ledergerber, D. Tetrahydronaphthalenes:Influence of heterocyclic substituents on inhibition of steroidogenic enzymes P450 arom and P450 17. J. Med. Chem., 1996, 39, 834-841.
[19]
Chaudhry, F.; Naureen, S.; Huma, R.; Shaukat, A.; Al-Rashida, M.; Asif, N.; Ashraf, M.; Munawar, M.; Khan, M.A. In search of new α-glucosidase inhibitors: Imidazolylpyrazole derivatives. Bioorg. Chem., 2017, 71, 102-109.
[20]
Palomer, A.; Cabre, F.; Pascual, J.; Campos, J.; Trujillo, M.A.; Entrena, A.; Gallo, M.A.; Garcia, L.; Mauleon, D.; Espinosa, A. Identification of novel cyclooxygenages-2 selective inhibitors using pharmacophoremodels. J. Med. Chem., 2002, 45, 1402-1411.
[21]
Kucukguzel, S.G.; Rollas, S.; Erdeniz, H.; Kiraz, M.; Ekinci, A.C.; Vidin, A. Synthesis characterization and pharmacological properties of some 4-arylhydrazono-2-pyrazoline-5-one derivatives obtained from heterocyclic amines. Eur. J. Med. Chem., 2000, 35, 761-771.
[22]
Genin, M.J.; Allwine, D.A.; Anderson, D.J.; Barbachyn, M.R.; Emmert, D.E.; Garmon, S.A.; Graber, D.R. Substituent effect on the antibacterial activity of nitrogen- carbon- linked (Azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenza and Moraxella catarrhalis. J. Med. Chem., 2000, 43, 953-970.
[23]
Sridhar, R.; Perumal, P.T.; Etti, S.; Shanmugam, G.; Ponnuswamy, M.N.; Prabavathy, V.R.; Mathivanan, N. Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates. Bioorg. Med. Chem. Lett., 2004, 14, 6035-6040.
[24]
Bekhit, A.A.; Fahmy, H.T.Y.; Rostom, S.A.F.; Baraka, A.M. Design and synthesis of some substituted 1H-pyrazolyl-thiazolo[4,5-d]pyrimidines as anti-inflammatory-antimicrobial agents. Eur. J. Med. Chem., 2003, 8, 27-36.
[25]
Bekhit, A.A.; Fahmy, H.T.Y. Design and synthesis of some substituted 1H-pyrazolyl-oxazolidines or 1H-pyrazolyl-thiazolidines as anti-inflammatory-antimicrobial agents. Arch. Pharm. Pharm. Med. Chem, 2003, 336, 111-118.
[26]
Bekhit, A.A.; Ashour, H.M.; Abdel Ghany, Y.S. Bekhit, Ael-D.; Baraka, A. Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. Eur. J. Med. Chem., 2008, 43, 456-463.
[27]
Bekhit, A.A.; Ashour, H.M.A.; Guemei, A. Novel pyrazole derivatives as potential promising anti-inflammatory antimicrobial agents. Arch. Pharm. Chem. Life, 2005, 338, 167-174.
[28]
Sharma, P.K.; Kumar, S.; Kumar, P.; Kaushik, P.; Kaushik, D.; Dhingra, Y.; Aneja, K.R. Synthesis and biological evaluation of some pyrazolylpyrazolines as anti-inflammatory-antimicrobial agents. Eur. J. Med. Chem., 2010, 45, 2650-2655.
[29]
Thumar, N.J.; Patel, M.P. Synthesis and in vitro antimicrobial evaluation of 4H-pyrazolopyran, benzopyran and napthopyran derivatives of 1H-pyrazole. ARKIVOC; Xiii, 2009, pp. 363-380.
[30]
Khloya, P.; Kumar, P.; Mittal, A.; Aggarwal, N.K.; Sharma, P.K. Synthesis of some novel 4-arylidene pyrazoles as potential antimicrobial agents. Org. Med. Chem. Lett., 2013, 3, 1-7.
[31]
Felding, J.; Kristensen, J.; Bjerregaard, T.; Sander, L.; Vedso, P.; Begtrup, M. Synthesis of 4-substituted 1-(benzyloxy)pyrazoles via iodine-magnesium exchange of 1-(benzyloxy)-4-iodopyrazole. J. Org. Chem., 1999, 64, 4196-4198.
[32]
Abdel-Wahab, B.F.; Khidre, R.E.; Farahatd, A.A. Pyrazole-3(4)-carbaldehyde: Synthesis, reactions and biological activity. ARKIVOC, 2011, i, 196-245.
[33]
Balle, T.; Vedso, P.; Begtrup, M. Regioselective introduction of electrophiles in the 4-position of 1-hydroxypyrazole via bromine-lithium exchange. J. Org. Chem., 1999, 64, 5366-5370.
[34]
Stensbol, T.B.; Uhlmann, P.; Morel, S.; Eriksen, B.L.; Felding, J.; Kromann, H.; Hermit, M.B.; Greenwood, J.R.; Brauner-Osborne, H.; Madsen, U.; Junager, F.; Krogsggard-Larsen, P.; Begtrup, M.; Vedso, P. Novel 1-hydroxyazole bioisosteres of glutamic acid. Synthesis, protolytic properties, and pharmacology. J. Med. Chem., 2002, 45, 19-31.
[35]
Vedso, P.; Begtrup, M. Synthesis of 5-substituted 1-hydroxypyrazoles through directed lithiation of 1-(benzyloxy) pyrazole. J. Org. Chem., 1995, 60, 4995-4998.
[36]
Arbaciauskiene, E.; Kazlauskas, K.; Miasojedovas, A.; Jursenas, S.; Jankauskas, V.; Holzer, W.; Getautis, V.; Sackus, A. Pyrazolyl-substituted polyconjugated molecules for optoelectronic applications. Dyes Pigments, 2010, 85, 79-85.
[37]
Arbaciauskiene, E.; Kazlauskas, K.; Miasojedovas, A.; Jursenas, S.; Jankauskas, V.; Holzer, W.; Getautis, V.; Sackus, A. Multifunctional polyconjugated molecules with carbazolyl and pyrazolyl moieties for optoelectronic applications. Synth. Met., 2010, 160, 490-498.
[38]
Lidia, D.L.; Giampaolo, G.; Simonetta, M.; Andrea, P. A mild procedure for the preparation of 3-aryl-4-formylpyrazoles. Synlett, 2004, 13, 2299-2302.
[39]
Vera-DiVaio, M.A.F.; Freitas, A.C.C.; Castro, H.C.; de Albuquerque, S.; Cabral, L.M.; Rodrigues, C.R.; Albuquerque, M.G.; Martins, R.C.A.; Henriques, M.G.M.O. Synthesis, antichagasic in vitro evaluation, cytotoxicity assays, molecular modeling and SAR/QSAR studies of a 2-phenyl-3-(1-phenyl-1H-pyrazol-4-yl)-acrylic acid benzylidene-carbohydrazide series. Bioorg. Med. Chem., 2009, 17, 295-302.
[40]
Luo, Y.; Zhong, P.; Zhang, X.H.; Lin, Q.L.; Chen, Y.N. Formylation of N-arylpyrazole containing active amino group using Vilsmeier-Hacck reaction. Chin. Chem. Lett., 2008, 19, 383.
[41]
Nagamallu, R.; Srinivasan, B.; Ningappa, M.B.; Kariyappa, A.K. Synthesis of novel coumarin appended bis(formylpyrazole) derivatives: Studies on their antimicrobial and antioxidant activities. Bioorg. Med. Chem. Lett., 2016, 26, 690-694.
[42]
Vaarla, K.; Kesharwani, R.K.; Santosh, K.; Rao, R.; Kotamraju, S.; Toopurani, M.K. Synthesis, biological activity evaluation and molecular docking studies of novel coumarin substituted thiazolyl-3-aryl-pyrazole-4-carbaldehydes. Bioorg. Med. Chem. Lett., 2015, 25, 5797-5803.
[43]
Sharma, P.K.; Singh, K.; Dhawan, S.N.; Singh, S.P. Synthesis and characterization of some novel 4-formyl pyrazolylthiazoles of potential medicinal interest using Vilsmeier-Haack reaction. Indian J. Chem., 2002, 41A, 2071-2075.
[44]
Singh, K.; Ralhan, S.; Sharma, P.K.; Dhawan, S.N. Vilsmeier-Haack reaction on hydrazones: A convenient synthesis of 4-formylpyrazoles. J. Chem. Res., 2005, , 316-318.
[45]
Dai, H.; Yu, H-B.; Liu, J-B.; Li, Y-Q.; Qui, X.; Zhang, X.; Qin, Z-F.; Wang, T-T.; Fang, J-X. Synthesis and bioactivities of novel trifluoromethylated pyrazole oxime ether derivatives containing a pyridyl moiety. ARKIVOC, 2009, vii, 126-142.
[46]
Arbaciauskiene, E.; Martynaitis, V.; Krikstolaityte, S.; Holzer, W.; Sackusa, A. Synthesis of 3-substituted 1-phenyl-1H-pyrazole-4-carbaldehydes and the corresponding ethanones by Pd-catalysed cross-coupling reactions. ARKIVOC, 2011, xi, 1-21.
[47]
Kucukguzel, G.; Kocatepe, A.; Clercq, E.D.; Sahin, F.; Gulluce, M. Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide. Eur. J. Med. Chem., 2006, 41, 353-359.
[48]
Kalsi, R.; Shrimali, M.; Bhalla, T.N.; Barthwal, J.P. Synthesis and anti-inflammatory activity of indolylazetidinones. Indian J. Pharm. Sci., 1990, 52, 129-134.
[49]
Patole, J.; Shingnapurkar, D.; Padhye, S.; Ratledge, C. Schiffs base conjugates of p-aminosalicyclic acid as antimycobacterial agents. Bioorg. Med. Chem. Lett., 2006, 16, 1514-1517.
[50]
Hearn, M.J.; Cynamon, M.H. Design and synthesis of antituberculars: Preparation and evaluation against mycobacterium tuberculosis of an isoniazid Schiff base. J. Antimicrob. Chemother., 2004, 53, 185-191.
[51]
Ren, S.; Wang, R.; Komatsu, K.; Bonaz-Krause, P.; Zyrianov, Y.; McKenna, C.E.; Cipke, C.; Tokes, Z.A.; Lien, E.J. Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of new schiff bases of hydroxysemicarbazide as potential antitumor agents. J. Med. Chem., 2002, 45, 410-419.
[52]
Bhandari, S.V.; Bothara, K.G.; Raut, M.K.; Patil, A.A.; Sarkate, A.P.; Mokale, V.J. Synthesis and evaluation of anti-inflammatory, analgesic and ulcerogenicity studies of novel S-substituted phenacyl-1,3,4-oxadiazole-2-thiol and Schiff bases of diclofenac acid as nonulcerogenic derivatives. Bioorg. Med. Chem., 2008, 16, 1822-1831.
[53]
Sridhar, S.K.; Pandeya, S.N.; Stables, J.P.; Ramesh, A. Anticonvulsant activity of hydrazones, Schiff and Mannich bases of isatin derivatives. Eur. J. Pharm. Sci., 2002, 16, 129-132.
[54]
Kaplan, J.P.; Raizon, B.M.; Desarmenien, M.; Feltz, P.; Headley, P.M.; Worms, P.; Lloyd, K.G.; Bartholini, G. New anticonvulsants: Schiff bases of I3-aminobutyric acid and I3-aminobutyramide. J. Med. Chem., 1980, 23, 702-704.
[55]
Shi, L.; Ge, H.M.; Tan, S.H.; Li, H.Q.; Song, Y.C.; Zhu, H.L.; Tan, R.X. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur. J. Med. Chem., 2007, 42, 558-564.
[56]
Malladi, S.; Isloor, A.M.; Isloor, S.; Akhila, D.S.; Hoong-Kun, F. Synthesis, characterization and antibacterial activity of some new pyrazole based Schiff-bases. Arab. J. Chem., 2013, 6, 335-340.
[57]
Vora, J.J.; Vasava, S.B.; Parmar, K.C.; Chauhan, S.K.; Sharma, S.S. Synthesis, spectral and microbial studies of some novel Schiff base derivatives of 4-methylpyridin-2-amine. E-J. Chem., 2009, 6, 1205-1210.
[58]
Sharma, K.; Jain, R. Synthesis, reactions and anthelmintic activity of 1-[benzimidazol-2-yl]-4-formyl-3-[2'(-substituted phenyl) indole-3-yl] pyrazoles. Indian J. Chem., 2012, 51B, 1462-1469.
[59]
Abd El-Wahab, A.H.F.; Al-Fifi, Z.I.A.; Bedair, A.H.; Ali, F.M.; Halawa, A.H.A.; El-Agrody, A.M. Synthesis, reactions and biological evaluation of some new naphtho[2,1-b]furan derivatives bearing a pyrazole nucleus. Molecules, 2011, 16, 307-318.
[60]
Sharma, P.K.; Kumar, S.; Kumar, P.; Kaushik, P.; Kaushik, D.; Dhingra, Y.; Aneja, K.R. Synthesis and biological evaluation of some pyrazolylpyrazolines as anti-inflammatory-antimicrobial agents. Eur. J. Med. Chem., 2010, 45, 2650-2655.
[61]
Khloya, P.; Kumar, P.; Mittal, A.; Aggarwal, N.K.; Sharma, P.K. Synthesis of some novel 4-arylidene pyrazoles as potential antimicrobial agents. Org. Med. Chem. Lett., 2013, 3, 9.
[62]
Maurer, F.; Fuchs, R.; Konze, J.; Turberg, A.; Erdelen, C. Substituted 4-pyrazolyl pyrazonlines used for pest control. US 7345080 B2 2008.
[63]
Khloya, P.; Ceruso, M.; Ram, S.; Supuran, C.T.; Sharma, P.K. Sulfonamide bearing pyrazolylpyrazolines as potent inhibitors of carbonic anhydrase isoforms I, II, IX and XII. Bioorg. Med. Chem. Lett., 2015, 25, 3208-3212.
[64]
Shelke, S.N.; Dalvi, N.R.; Kale, S.B.; Mor, M.S.; Karale, B.K. Environmentally being synthesis of fluorinated pyrazolone derivatives and their antimicrobial activity. Indian J. Chem., 2007, 46B, 1174-1178.
[65]
Siddiqui, Z.N.; Praveen, S.; Mohammed, M.T.N. Synthesis and antibacterial evaluation of novel heterocycles from 5-chloro-3-methyl-1-phenylpyrazole-4-carbaldehyde. Indian J. Chem., 2011, 50B, 910-917.
[66]
Ferlin, M.G.; Chiarelotto, G.; Acqua, S.D.; Maciocco, E.; Mascia, M.P.; Pisu, M.G.; Biggio, G. Novel anellated pyrazoloquinolin-3-ones: Synthesis and in vitro BZR activity. Bioorg. Med. Chem., 2005, 13, 3531-3541.
[67]
Thumar, N.J.; Patel, M.P. Synthesis, characterization, and antimicrobial evaluation of carbostyril derivatives of 1H-pyrazole. Saudi Pharm. J., 2011, 19, 75-83.
[68]
Chang, W.; Sun, Y.; Huang, Y. One-pot green synthesis of benzoxazole derivatives through molecular sieve-catalyzed oxidative cyclization reaction. Heteroatom Chem., 2017, 28, e21360.
[69]
Prakash, O.; Pannu, K.; Kumar, A. Synthesis of some new 2-(3-aryl-1-phenyl-4-pyrazolyl)-benzoxazoles using hypervalent iodine mediated oxidative cyclization of Schiff's bases. Molecules, 2006, 11, 43-48.
[70]
Gupta, M.; Paul, S.; Gupta, R. Microwave-assisted one-pot synthesis of antifungal active 1-substituted-3,7-dialkyl/aryl-4H-pyrazolo [4,5-f]-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazepines using solid support. Indian J. Chem., 2009, 48B, 460-466.
[71]
Argade, N.D.; Kalrale, B.K.; Gill, C.H. Microwave assisted improved method for the synthesis of pyrazole containing 2,4-disubstituted oxazole-5-one and their antimicrobial activity. E-J. Chem., 2008, 5, 120-129.
[72]
Zoghbi, M.; Warkentin, J. Spiro-fused β-lactam oxadiazolines by formal [2+2] cycloaddition of 2-imino- I"3-1,3,4-oxadiazolines to ketenes. Can. J. Chem., 1993, 71, 912-918.
[73]
Abadi, A.H.; Eissa, A.A.H.; Hassan, G.S. Synthesis of novel 1,3,4-trisubstituted pyrazole derivatives and their evaluation as antitumor and antiangiogenic agents. Chem. Pharm. Bull. (Tokyo), 2003, 51, 838-844.
[74]
Fatondji, H.R.; Gbaguidi, F.; Kpoviessi, S.; Bero, J.; Hannaert, V.; Quetin-Leclercq, J.; Poupaert, J.; Moudachirou, M.; Accrombessi, G.C. Synthesis, characterization and trypanocidal activity of some aromatic thiosemicarbazones and their 1, 3, 4-thiadiazolines derivatives. Afr. J. Pure Appl. Chem., 2011, 5, 59-64.
[75]
Visagaperumal, D.; Kumar, R.J.; Vijayaraj, R.; Anbalagan, N. Microwave induced synthesis of some new 3- substituted-1, 3-thiazolidin-4-ones for their potent anti-microbial and anti-tubercular activities. Int. J. Comput. Appl., 2009, 1, 1048-1051.
[76]
Abdel-Wahab, B.F.; Khidre, R.E. Azolylimidazoles: Synthetic strategies and medicinal applications. Turk. J. Chem., 2014, 38, 1-27.
[77]
Metwally, N.H.; Badawy, M.A.; Okpy, D.S. Synthesis and Anticancer activity of some new thiopyrano[2,3-d] thiazoles incorporating pyrazole moiety. Chem. Pharm. Bull. (Tokyo), 2015, 63, 495-03.
[78]
Metwally, N.H. A simple green synthesis of (Z)-5-arylmethylene-4-thioxothiazolidines and thiopyrano[2,3-d]thiazolidine-2-thiones in PEG-400 under catalyst-free conditions. J. Sulfur Chem., 2014, 35, 528-537.
[79]
Li, H.; Liu, C.; Zhang, Y.; Sun, Y.; Wang, B.; Liu, W. Green method for the synthesis of chromeno[2,3-c]pyrazol-4(1H)-ones through ionic liquid promoted directed annulation of 5-(aryloxy)-1H-pyrazole-4-carbaldehydes in aqueous media. Org. Lett., 2015, 17, 932-935.
[80]
Palka, B.; Di Capua, A.; Anzini, M.; VilkauskaitA(c), G.; Sackus, A.; Holzer, W. Synthesis of trifluoromethyl-substituted pyrazolo[4,3-c]pyridines-sequential versus multicomponent reaction approach. Beilstein J. Org. Chem., 2014, 10, 1759-1764.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy