Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Biological Effects of Licochalcones

Author(s): Gatta Daniela Maria Pia, Franceschelli Sara, Felaco Mario and Speranza Lorenza*

Volume 19, Issue 8, 2019

Page: [647 - 656] Pages: 10

DOI: 10.2174/1389557518666180601095420

Price: $65

Abstract

Medicinal plants and their natural bioactive molecules, are evaluated as the foundation for health preservation and care of humanity. The licorice root, known as “Radix Glycyrrhizae”, is a perennial plant that comes from Mediterranean countries, central to southern Russia, Asia, Turkey, Iraq and Iran. The licorice root has been used in traditional Chinese medicines for centuries and has been defined as "the progenitor of herbs". The name 'Licorice' is derived from the ancient Greek word Glukurrhiza, meaning 'sweet root'. It consists of approximately 30 species, however, the most common ones consist of Glycyrrhiza glabra L., Glycyrrhiza uralensis Fisch and Glycyrrhiza Inflata. In addition, the licorice root contains chalcones, which are a part of an important class of natural products and are precursors of flavonoids. Chemically, chalcones are composed of two aromatic rings associated with α, β-unsaturated α-carbon ketone, representing the prima nucleus of the structure. They have been classified, according to chemical structures, in Licochalcone A, B, C, D, E, F and G. This review aims to highlight all the in vitro and in vivo studies that have been conducted on the licochalcones, extracted from Glycyrrhiza species. The main effects are as follows: anti-inflammatory, antioxidant, anticancer, antimicrobial, antiviral, antiallergic, antidiabetic, hepatotoxic and osteogenic. It is important to implement the introduction of biologically active natural molecules from the bench (research) to the bedside (clinical practice). However, in the future, it is required to conduct additional studies to validate these biological effects.

Keywords: Licochalcones, Glycyrrhiza species, biological effects, anti-inflammatory, antioxidant, natural compounds.

Graphical Abstract
[1]
Zhou, B.; Xing, C. Diverse molecular targets for chalcones with varied bioactivities. Med. Chem. (Los Angeles), 2015, 5(8), 388-404.
[2]
Koeberle, A.; Werz, O. Multi-target approach for natural products in inflammation. Drug Discov. Today, 2014, 19(12), 1871-1882.
[3]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 6(85), 758-777.
[4]
Dastagir, G.; Rizvi, M.A. Review - Glycyrrhiza glabra L. (Liquorice). Pak. J. Pharm. Sci., 2016, 29(5), 1727-1733.
[5]
Hosseinzadeh, H.; Nassiri-Asl, M. Pharmacological effects of Glycyrrhiza spp. and its bioactive constituents: Update and review. Phytother. Res., 2015, 29(12), 1868-1886.
[6]
Yang, R.; Yuan, B.C.; Ma, Y.S.; Zhou, S.; Liu, Y. The anti-inflammatory activity of licorice, a widely used chinese herb. Pharm. Biol., 2017, 55(1), 5-18.
[7]
Lee, J.J.; Lee, J.H.; Cho, W.K.; Han, J.H.; Ma, J.Y. Herbal composition of Cinnamomum cassia, Pinus densiflora, Curcuma longa and Glycyrrhiza glabra prevents atherosclerosis by upregulating p27 (Kip1) expression. BMC Complement. Altern. Med., 2016, 16, 253.
[8]
Xie, R.; Gao, C.C.; Yang, X.Z.; Wu, S.N.; Wang, H.G.; Zhang, J.L.; Yan, W.; Ma, T.H. Combining TRAIL and liquiritin exerts synergistic effects against human gastric cancer cells and xenograft in nude mice through potentiating apoptosis and ROS generation. Biomed. Pharmacother., 2017, 93, 948-960.
[9]
Shah, A.; Rather, M.A.; Hassan, Q.P.; Aga, M.A.; Mushtaq, S.; Shah, A.M.; Hussain, A.; Baba, S.A.; Ahmad, Z. Discovery of anti-microbial and anti-tubercular molecules from Fusarium solani: An endophyte of Glycyrrhiza glabra. J. Appl. Microbiol., 2017, 122(5), 1168-1176.
[10]
Yang, Y.; Wang, S.; Bao, Y.R.; Li, T.J.; Yang, G.L.; Chang, X.; Meng, X.S. Anti-ulcer effect and potential mechanism of licoflavone by regulating inflammation mediators and amino acid metabolism. J. Ethnopharmacol., 2017, 199, 175-182.
[11]
Momeni, A.; Rahimian, G.; Kiasi, A.; Amiri, M.; Kheiri, S. Effect of licorice versus bismuth on eradication of Helicobacter pylori in patients with peptic ulcer disease. Pharmacol. Res., 2014, 6(4), 341-344.
[12]
Asl, M.N.; Hosseinzadeh, H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res., 2008, 22(6), 709-724.
[13]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[14]
Katsori, A.M.; Hadjipavlou-Litina, D. Recent progress in therapeutic applications of chalcones. Expert Opin. Ther. Pat., 2011, 21(10), 1575-1596.
[15]
Huang, S.H.; Frydas, S.; Kempuraj, D.; Barbacane, R.C.; Grilli, A.; Boucher, W.; Letourneau, R.; Madhappan, B.; Papadopoulou, N.; Verna, N.; De Lutiis, M.A.; Iezzi, T.; Riccioni, G.; Theoharides, T.C.; Conti, P. Interleukin-17 and the interleukin-17 family member network. Allergy Asthma Proc., 2004, 25(1), 17-21.
[16]
Pesce, M.; Speranza, L.; Franceschelli, S.; Ialenti, V.; Patruno, A.; Febo, M.A.; De Lutiis, M.A.; Felaco, M.; Grilli, A. Biological role of interleukin-1beta in defensive-aggressive behaviour. J. Biol. Regul. Homeost. Agents, 2011, 25(3), 323-329.
[17]
Conti, P.; Reale, M.; Barbacane, R.C.; Felaco, M.; Grilli, A.; Theoharides, T.C. Mast cell recruitment after subcutaneous injection of RANTES in the sole of the rat paw. Br. J. Haematol., 1998, 103(3), 798-803.
[18]
Patruno, A.; Fornasari, E.; Di Stefano, A.; Cerasa, L.S.; Marinelli, L.; Baldassarre, L.; Sozio, P.; Turkez, H.; Franceschelli, S.; Ferrone, A.; Di Giacomo, V.; Speranza, L.; Felaco, M.; Cacciatore, I. Synthesis of a novel cyclic prodrug of S-allyl-glutathione able to attenuate LPS-induced ROS production through the inhibition of MAPK pathways in U937 cells. Mol. Pharm., 2015, 12(1), 66-74.
[19]
Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev., 2011, 75(1), 50-83.
[20]
Pesce, M.; Ferrone, A.; Rizzuto, A.; Tatangelo, R.; Iezzi, I.; Ladu, S.; Franceschelli, S.; Speranza, L.; Patruno, A.; Felaco, M.; Grilli, A. The SHP-1 expression is associated with cytokines and psychopathological status in unmedicated first episode schizophrenia patients. Brain Behav. Immun., 2014, 41, 251-260.
[21]
Patruno, A.; Franceschelli, S.; Pesce, M.; Maccallini, C.; Fantacuzzi, M.; Speranza, L.; Ferrone, A.; De Lutiis, M.A.; Ricciotti, E.; Amoroso, R.; Felaco, M. Novel aminobenzyl-acetamidine derivative modulate the differential regulation of NOSs in LPS induced inflammatory response: Role of PI3K/Akt pathway. Biochim. Biophys. Acta, 2012, 820(12), 2095-2104.
[22]
Pesce, M.; Franceschelli, S.; Ferrone, A.; De Lutiis, M.A.; Patruno, A.; Grilli, A.; Felaco, M.; Speranza, L. Verbascoside down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in the U937 cell line. J. Cell. Mol. Med., 2015, 19(7), 1548-1556.
[23]
Lien, L.M.; Lin, K.H.; Huang, L.T.; Tseng, M.F.; Chiu, H.C.; Chen, R.J.; Lu, W.J. Licochalcone a prevents platelet activation and thrombus formation through the inhibition of PLCγ2-PKC, Akt, and MAPK pathways. Intl. J. Mol. Sci., 2017, 18(7), pii: E1500.
[24]
Franceschelli, S.; Pesce, M.; Ferrone, A.; Patruno, A.; Pasqualone, L.; Carlucci, G.; Ferrone, V.; Carlucci, M.; de Lutiis, M.A.; Grilli, A.; Felaco, M.; Speranza, L. A novel biological role of α-mangostin in modulating inflammatory response through the activation of SIRT-1 signaling pathway. J. Cell. Physiol., 2016, 231(11), 2439-2451.
[25]
Chu, X.; Ci, X.; Wei, M.; Yang, X.; Cao, Q.; Guan, M.; Li, H.; Deng, Y.; Feng, H.; Deng, X. Licochalcone A inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo. J. Agric. Food Chem., 2012, 60(15), 3947-3954.
[26]
Hu, J.; Liu, J.; Licochalcone, A. Attenuates lipopolysaccharide-induced acute kidney injury by inhibiting NF-κB activation. Inflammation, 2016, 39(2), 569-574.
[27]
Okuda-Tanino, A.; Sugawara, D.; Tashiro, T.; Iwashita, M.; Obara, Y.; Moriya, T.; Tsushima, C.; Saigusa, D.; Tomioka, Y.; Ishii, K.; Nakahata, N. Licochalcones extracted from Glycyrrhiza inflata inhibit platelet aggregation accompanied by inhibition of COX-1 activity. PLoS One, 2017, 12(3), e0173628.
[28]
Furusawa, J.; Funakoshi-Tago, M.; Mashino, T.; Tago, K.; Inoue, H.; Sonoda, Y.; Kasahara, T. Glycyrrhiza inflata-derived chalcones, Licochalcone A, Licochalcone B and Licochalcone D, inhibit phosphorylation of NF-kappaB p65 in LPS signaling pathway. Int. Immunopharmacol., 2009, 9(4), 499-507.
[29]
Park, J.H.; Jun, J.G.; Kim, J.K. (E)-3-(3,4-dihydroxy-2-methoxyphenyl)-1-(2,4 dihydroxyphenyl)prop-2-en-1-one, a novel licochalcone B derivative compound, suppresseslipopolysaccharide-stimulated inflammatory reactions in RAW264.7 cells and endotoxin shock in mice. Chem. Biol. Interact., 2014, 224, 142-148.
[30]
Franceschelli, S.; Pesce, M.; Vinciguerra, I.; Ferrone, A.; Riccioni, G.; Patruno, A.; Grilli, A.; Felaco, M.; Speranza, L. Licocalchone-C extracted from Glycyrrhiza glabra inhibits lipopolysaccharide-interferon-γ inflammation by improving antioxidant conditions and regulating inducible nitric oxide synthase expression. Molecules, 2011, 16(7), 5720-5734.
[31]
Speranza, L.; Franceschelli, S.; Pesce, M.; Reale, M.; Menghini, L.; Vinciguerra, I.; De Lutiis, M.A.; Felaco, M.; Grilli, A. Antiinflammatory effects in THP-1 cells treated with verbascoside. Phytother. Res., 2010, 24(9), 1398-1404.
[32]
Maccallini, C.; Patruno, A.; Lannutti, F.; Ammazzalorso, A.; De Filippis, B.; Fantacuzzi, M.; Franceschelli, S.; Giampietro, L.; Masella, S.; Felaco, M.; Re, N.; Amoroso, R. N-Substituted acetamidines and 2-methylimidazole derivatives as selective inhibitors of neuronal nitric oxide synthase. Bioorg. Med. Chem. Lett., 2010, 20(22), 6495-6499.
[33]
Maccallini, C.; Patruno, A.; Besker, N.; Alì, J.I.; Ammazzalorso, A.; De Filippis, B.; Franceschelli, S.; Giampietro, L.; Pesce, M.; Reale, M.; Tricca, M.L.; Re, N.; Felaco, M.; Amoroso, R. Synthesis, biological evaluation, and docking studies of N-substituted acetamidines as selective inhibitors of inducible nitric oxide synthase. J. Med. Chem., 2009, 52(5), 1481-1485.
[34]
Speranza, L.; Franceschelli, S.; Riccioni, G. The biological effects of ivabradine in cardiovascular disease. Molecules, 2012, 17(5), 4924-4935.
[35]
Felaco, M.; Di Maio, F.D.; De Fazio, P.; D’Arcangelo, C.; De Lutiis, M.A.; Varvara, G.; Grilli, A.; Barbacane, R.C.; Reale, M.; Conti, P. Localization of the e-NOS enzyme in endothelial cells and odontoblasts of healthy human dental pulp. Life Sci., 2000, 68(3), 297-306.
[36]
Belia, S.; Pietrangelo, T.; Fulle, S.; Menchetti, G.; Cecchini, E.; Felaco, M.; Vecchiet, J.; Fanò, G. Sodium nitroprusside, a NO donor, modifies Ca2+ transport and mechanical properties in frog skeletal muscle. J. Muscle Res. Cell Motil., 1998, 19(8), 865-876.
[37]
Franceschelli, S.; Pesce, M.; Ferrone, A.; Gatta, D.M.; Patruno, A.; Lutiis, M.A.; Quiles, J.L.; Grilli, A.; Felaco, M.; Speranza, L. Biological effect of licochalcone C on the regulation of PI3K/Akt/eNOS and NF-κB/iNOS/NO signaling pathways in H9c2 Cells in response to LPS stimulation. Intl. J. Mol. Sci., 2017, 18(4)
[38]
Bonomini, M.; Pandolfi, A.; Di Pietro, N.; Sirolli, V.; Giardinelli, A.; Consoli, A.; Amoroso, L.; Gizzi, F.; De Lutiis, M.A.; Felaco, M. Adherence of uremic erythrocytes to vascular endothelium decreases endothelial nitric oxide synthase expression. Kidney Intl., 2005, 67(5), 1899-1906.
[39]
Tanifuji, S.; Aizu-Yokota, E.; Funakoshi-Tago, M.; Sonoda, Y.; Inoue, H.; Kasahara, T. Licochalcones suppress degranulation by decreasing the intracellular Ca2+ level and tyrosine phosphorylation of ERK in RBL-2H3 cells. Intl. Immunopharmacol., 2010, 10(7), 769-776.
[40]
Lee, H.N.; Cho, H.J.; Lim, D.Y.; Kang, Y.H.; Lee, K.W.; Park, J.H. Mechanisms by which licochalcone e exhibits potent anti-inflammatory properties: Studies with phorbol ester-treated mouse skin and lipopolysaccharide-stimulated murine macrophages. Intl. J. Mol. Sci., 2013, 14(6), 10926-11043.
[41]
Takahashi, A.; Masuda, A.; Sun, M.; Centonze, V.E.; Herman, B. Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res. Bull., 2004, 62(6), 497-504.
[42]
Speranza, L.; Franceschelli, S.; Pesce, M.; Vinciguerra, I.; De Lutiis, M.A.; Grilli, A.; Felaco, M.; Patruno, A. Phosphodiesterase type-5 inhibitor and oxidative stress. Intl. J. Immunopathol. Pharmacol., 2008, 21(4), 879-889.
[43]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[44]
Kühnl, J.; Roggenkamp, D.; Gehrke, S.A.; Stäb, F.; Wenck, H.; Kolbe, L.; Neufang, G. Licochalcone A activates Nrf2 in vitro and contributes to licorice extract-induced lowered cutaneous oxidative stress in vivo. Exp. Dermatol., 2015, 24(1), 42-47.
[45]
Misra, M.K.; Sarwat, M.; Bhakuni, P.; Tuteja, R.; Tuteja, N. Oxidative stress and ischemic myocardial syndromes. Med. Sci. Monit., 2009, 15(10), RA209-RA219.
[46]
Boscolo, P.; Carmignani, M.; Volpe, A.R.; Felaco, M.; Del Rosso, G.; Porcelli, G.; Giuliano, G. Renal toxicity and arterial hypertension in rats chronically exposed to vanadate. Occup. Environ. Med., 1994, 51(7), 500-503.
[47]
Liu, C.N.; Yang, C.; Liu, X.Y.; Li, S. In vivo protective effects of urocortin on ischemia-reperfusion injury in rat heart via free radical mechanisms. Can. J. Physiol. Pharmacol., 2005, 83(6), 459-465.
[48]
Garciarena, C.D.; Fantinelli, J.C.; Caldiz, C.I.; Chiappe de Cingolani, G.; Ennis, I.L.; Pérez, N.G.; Cingolani, H.E.; Mosca, S.M. Myocardial reperfusion injury: Reactive oxygen species vs. NHE-1 reactivation. Cell. Physiol. Biochem., 2011, 27(1), 13-22.
[49]
Grilli, A.; De Lutiis, M.A.; Patruno, A.; Speranza, L.; Cataldi, A.; Centurione, L.; Taccardi, A.A.; Di Napoli, P.; De Caterina, R.; Barbacane, R.; Conti, P.; Felaco, M. Effect of chronic hypoxia on inducible nitric oxide synthase expression in rat myocardial tissue. Exp. Biol. Med. (Maywood), 2003, 228(8), 935-942.
[50]
Riccioni, G.; D’Orazio, N.; Speranza, L.; Di Ilio, E.; Glade, M.; Bucciarelli, V.; Scotti, L.; Martini, F.; Pennelli, A.; Bucciarelli, T. Carotenoids and asymptomatic carotid atherosclerosis. J. Biol. Regul. Homeost. Agents, 2010, 24(4), 447-452.
[51]
Zhou, M.; Liu, L.; Wang, W.; Han, J.; Ren, H.; Zheng, Q.; Wang, D. Role of licochalcone C in cardioprotection against ischemia/reperfusion injury of isolated rat heart via antioxidant, anti-inflammatory, and anti-apoptotic activities. Life Sci., 2015, 132, 27-33.
[52]
Speranza, L.; Grilli, A.; Patruno, A.; Franceschelli, S.; Felzani, G.; Pesce, M.; Vinciguerra, I.; De Lutiis, M.A.; Felaco, M. Plasmatic markers of muscular stress in isokinetic exercise. J. Biol. Regul. Homeost. Agents, 2007, 21(1-2), 21-29.
[53]
Han, J.; Wang, D.; Yu, B.; Wang, Y.; Ren, H.; Zhang, B.; Wang, Y.; Zheng, Q. Cardioprotection against ischemia/reperfusion by licochalcone B in isolated rat hearts. Oxid. Med. Cell. Longev., 2014, 2014, 134862.
[54]
Yuan, X.; Niu, H.T.; Wang, P.L.; Lu, J.; Zhao, H.; Liu, S.H.; Zheng, Q.S.; Li, C.G. Cardioprotective effect of Licochalcone D against myocardial ischemia/reperfusion injury in langendorff-perfused rat hearts. PLoS One, 2015, 10(6), e0128375.
[55]
Kim, S.S.; Lim, J.; Bang, Y.; Gal, J.; Lee, S.U.; Cho, Y.C.; Yoon, G.; Kang, B.Y.; Cheon, S.H.; Choi, H.J. Licochalcone E activates Nrf2/antioxidant response element signaling pathway in both neuronal and microglial cells: Therapeutic relevance to neurodegenerative disease. J. Nutr. Biochem., 2012, 23(10), 1314-1323.
[56]
Lin, S.R.; Fu, Y.S.; Tsai, M.J.; Cheng, H.; Weng, C.F. Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. Intl. J. Mol. Sci., 2017, 18(7), 1412.
[57]
Fulle, S.; Centurione, L.; Mancinelli, R.; Sancilio, S.; Manzoli, F.A.; Di Pietro, R. Stem cell ageing and apoptosis. Curr. Pharm. Des., 2012, 18(13), 1694-1717.
[58]
Speranza, L.; Franceschelli, S.; Pesce, M.; Menghini, L.; Patruno, A.; Vinciguerra, I.; De Lutiis, M.A.; Felaco, M.; Felaco, P.; Grilli, A. Anti-inflammatory properties of the plant Verbascum mallophorum. J. Biol. Regul. Homeost. Agents, 2009, 23(3), 189-195.
[59]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Intl., 2014, 2014, 150845.
[60]
Martin, G.S. Cell signaling and cancer. Cancer Cell, 2003, 4(3), 167-174.
[61]
Verrucci, M.; Pancrazzi, A.; Aracil, M.; Martelli, F.; Guglielmelli, P.; Zingariello, M.; Ghinassi, B.; D’Amore, E.; Jimeno, J.; Vannucchi, A.M.; Migliaccio, A.R. CXCR4-independent rescue of the myeloproliferative defect of the Gata1low myelofibrosis mouse model by Aplidin. J. Cell. Physiol., 2010, 225(2), 490-499.
[62]
Funakoshi-Tago, M.; Tago, K.; Nishizawa, C.; Takahashi, K.; Mashino, T.; Iwata, S.; Inoue, H.; Sonoda, Y.; Kasahara, T. Licochalcone A is a potent inhibitor of TEL-Jak2-mediated transformation through the specific inhibition of Stat3 activation. Biochem. Pharmacol., 2008, 76(12), 1681-1693.
[63]
Mirzazadeh, A.; Kheirollahi, M.; Farashahi, E.; Sadeghian-Nodoushan, F.; Sheikhha, M.H.; Aflatoonian, B. Assessment effects of resveratrol on human telomerase reverse transcriptase messenger ribonucleic acid transcript in human glioblastoma. Adv. Biomed. Res., 2017, 6, 73.
[64]
Kuramoto, K.; Suzuki, S.; Sakaki, H.; Takeda, H.; Sanomachi, T.; Seino, S.; Narita, Y.; Kayama, T.; Kitanaka, C.; Okada, M. Licochalcone A specifically induces cell death in glioma stem cells via mitochondrial dysfunction. FEBS Open Bio, 2017, 7(6), 835-844.
[65]
Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary natural products for prevention and treatment of breast cancer. Nutrients, 2017, 9(7), pii: E728.
[66]
Kang, T.H.; Seo, J.H.; Oh, H.; Yoon, G.; Chae, J.I.; Shim, J.H. Licochalcone a suppresses specificity protein 1 as a novel target in human breast cancer cells. J. Cell. Biochem., 2017, 118(12), 4652-4663.
[67]
Zappacosta, R.; Lattanzio, G.; Viola, P.; Ianieri, M.M.; Gatta, D.M.; Rosini, S. A very rare case of HPV-53-related cervical cancer, in a 79-year-old woman with a previous history of negative Pap cytology. Clin. Interv. Aging, 2014, 9, 683-688.
[68]
Tsai, J.P.; Lee, C.H.; Ying, T.H.; Lin, C.L.; Hsueh, J.T.; Hsieh, Y.H. Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells. Oncotarget, 2015, 6(30), 28851-2866.
[69]
Lim, E.; Kuo, C.C.; Tu, H.F.; Yang, C.C. The prognosis outcome of oral squamous cell carcinoma using HIF-2α. J. Chin. Med. Assoc, 2017. pii: S1726-4901(17), 30161-30162.
[70]
Oh, H.; Yoon, G.; Shin, J.C.; Park, S.M.; Cho, S.S.; Cho, J.H.; Lee, M.H.; Liu, K.; Cho, Y.S.; Chae, J.I.; Shim, J.H. Licochalcone B induces apoptosis of human oral squamous cell carcinoma through the extrinsic- and intrinsic-signaling pathways. Int. J. Oncol., 2016, 48(4), 1749-1757.
[71]
Yu, S.J.; Cho, I.A.; Kang, K.R.; Jung, Y.R.; Cho, S.S.; Yoon, G.; Oh, J.S.; You, J.S.; Seo, Y.S.; Lee, G.J.; Lee, S.Y.; Kim, D.K.; Kim, C.S.; Kim, S.G.; Jeong, M.A.; Kim, J.S. Licochalcone-E induces caspase-dependent death of human pharyngeal squamous carcinoma cells through the extrinsic and intrinsic apoptotic signaling pathways. Oncol. Lett., 2017, 13(5), 3662-3668.
[72]
Jacobs, B.L.; Lee, C.T.; Montie, J.E. Bladder cancer in 2010: how far have we come? CA Cancer J. Clin., 2010, 60(4), 244-272.
[73]
Tian, B.; Wang, Z.; Zhao, Y.; Wang, D.; Li, Y.; Ma, L.; Li, X.; Li, J.; Xiao, N.; Tian, J.; Rodriguez, R. Effects of curcumin on bladder cancer cells and development of urothelial tumors in a rat bladder carcinogenesis model. Cancer Lett., 2008, 264(2), 299-308.
[74]
Yuan, X.; Li, T.; Xiao, E.; Zhao, H.; Li, Y.; Fu, S.; Gan, L.; Wang, Z.; Zheng, Q.; Wang, Z. Licochalcone B inhibits growth of bladder cancer cells by arresting cell cycle progression and inducing apoptosis. Food Chem. Toxicol., 2014, 65, 242-251.
[75]
Wang, P.; Yuan, X.; Wang, Y.; Zhao, H.; Sun, X.; Zheng, Q. Licochalcone C induces apoptosis via B cell lymphoma 2 family proteins in T24 cells. Mol. Med. Rep., 2015, 12(5), 7623-7638.
[76]
Safarzadeh, E.; Sandoghchian Shotorbani, S.; Baradaran, B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv. Pharm. Bull., 2014, 4(Suppl. 1), 421-427.
[77]
Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; Joseph, M.K.; Kitada, S.; Korsmeyer, S.J.; Kunzer, A.R.; Letai, A.; Li, C.; Mitten, M.J.; Nettesheim, D.G.; Ng, S.; Nimmer, P.M.; O’Connor, J.M.; Oleksijew, A.; Petros, A.M.; Reed, J.C.; Shen, W.; Tahir, S.K.; Thompson, C.B.; Tomaselli, K.J.; Wang, B.; Wendt, M.D.; Zhang, H.; Fesik, S.W.; Rosenberg, S.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005, 435(7042), 677-681.
[78]
Raff, A.B.; Kroshinsky, D. Cellulitis: A review. JAMA, 2016, 316(3), 325-337.
[79]
Li, Z.; Peres, A.G.; Damian, A.C.; Madrenas, J. Immunomodulation and disease tolerance to Staphylococcus aureus. Pathogens, 2015, 4(4), 793-815.
[80]
Whyte, N.S.; Bielski, R.J. Acute hematogenous osteomyelitis in children. Pediatr. Ann., 2016, 45(6), e204-e208.
[81]
Berbari, E.F.; Kanj, S.S.; Kowalski, T.J.; Darouiche, R.O.; Widmer, A.F.; Schmitt, S.K.; Hendershot, E.F.; Holtom, P.D.; Huddleston, P.M., III; Petermann, G.W.; Osmon, D.R. Executive summary: 2015 Infectious Diseases Society of America (IDSA) Clinical practice guidelines for the diagnosis and treatment of native vertebral osteomyelitis in adults. Clin. Infect. Dis., 2015, 61(6), 859-863.
[82]
Abbas, M.; Paul, M.; Huttner, A. New and improved? A review of novel antibiotics for Gram-positive bacteria. Clin. Microbiol. Infect, 2017. pii: S1198-743X(17), 30329-30334.
[83]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, 25-64.
[84]
Qiu, J.; Feng, H.; Xiang, H.; Wang, D.; Xia, L.; Jiang, Y.; Song, K.; Lu, J.; Yu, L.; Deng, X. Influence of subinhibitory concentrations of licochalcone A on the secretion of enterotoxins A and B by Staphylococcus aureus. FEMS Microbiol. Lett., 2010, 307(2), 135-341.
[85]
Zhou, T.; Deng, X.; Qiu, J. Antimicrobial activity of licochalcone E against Staphylococcus aureus and its impact on the production of staphylococcal alpha-toxin. J. Microbiol. Biotechnol., 2012, 22(6), 800-805.
[86]
Bassetti, M.; Peghin, M.; Timsit, J.F. The current treatment landscape: Candidiasis. J. Antimicrob. Chemother., 2016, 71(Suppl. 2), ii13-ii22.
[87]
Millsop, J.W.; Fazel, N. Oral candidiasis. Clin. Dermatol., 2016, 34(4), 487-494.
[88]
Messier, C.; Grenier, D. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses, 2011, 54(6), e801-e806.
[89]
Lewis, N.S.; Russell, C.A.; Langat, P.; Anderson, T.K.; Berger, K.; Bielejec, F.; Burke, D.F.; Dudas, G.; Fonville, J.M.; Fouchier, R.A.; Kellam, P.; Koel, B.F.; Lemey, P.; Nguyen, T.; Nuansrichy, B.; Peiris, J.M.; Saito, T.; Simon, G.; Skepner, E.; Takemae, N. ESNIP3 consortium Webby, R.J.; Van Reeth, K.; Brookes, S.M.; Larsen, L.; Watson, S.J.; Brown, I.H.; Vincent, A.L. The global antigenic diversity of swine influenza A viruses. eLife, 2016, 5, e12217.
[90]
Dao, T.T.; Nguyen, P.H.; Lee, H.S.; Kim, E.; Park, J.; Lim, S.I.; Oh, W.K. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg. Med. Chem. Lett., 2011, 21(1), 294-298.
[91]
Sinha, S.; Sarma, P.; Sehgal, R.; Medhi, B. Development in assay methods for in vitro antimalarial drug efficacy testing: A systematic review. Front. Pharmacol., 2017, 8, 754.
[92]
Yadav, N.; Dixit, S.K.; Bhattacharya, A.; Mishra, L.C.; Sharma, M.; Awasthi, S.K.; Bhasin, V.K. Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem. Biol. Drug Des., 2012, 80(2), 340-347.
[93]
Mi-Ichi, F.; Miyadera, H.; Kobayashi, T.; Takamiya, S.; Waki, S.; Iwata, S.; Shibata, S.; Kita, K. Parasite mitochondria as a target of chemotherapy: Inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Ann. N. Y. Acad. Sci., 2005, 1056, 46-54.
[94]
Kumar, D.; Kumar, M.; Kumar, A.; Singh, S.K. Chalcone and curcumin derivatives: A way ahead for malarial treatment. Mini Rev. Med. Chem., 2013, 13(14), 2116-2133.
[95]
Mishra, L.C.; Bhattacharya, A.; Bhasin, V.K. Phytochemical licochalcone A enhances antimalarial activity of artemisinin in vitro. Acta Trop., 2009, 109(3), 194-198.
[96]
Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast differentiation and activation. Nature, 2003, 423(6937), 337-342.
[97]
Kim, S.N.; Bae, S.J.; Kwak, H.B.; Min, Y.K.; Jung, S.H.; Kim, C.H.; Kim, S.H. In vitro and in vivo osteogenic activity of licochalcone A. Amino Acids, 2012, 42(4), 1455-1465.
[98]
Moghadam, A.R.; Tutunchi, S.; Namvaran-Abbas-Abad, A.; Yazdi, M.; Bonyadi, F.; Mohajeri, D.; Mazani, M.; Marzban, H.; Łos, M.J.; Ghavami, S. Pre-administration of turmeric prevents methotrexate-induced liver toxicity and oxidative stress. BMC Complement. Altern. Med., 2015, 15, 246.
[99]
Teng, H.; Chen, M.; Zou, A.; Jiang, H.; Han, J.; Sun, L.; Feng, C.; Liu, J. Hepatoprotective effects of licochalcone B on carbon tetrachloride-induced liver toxicity in mice. Iran. J. Basic Med. Sci., 2016, 9(8), 910-915.
[100]
Gao, X.P.; Qian, D.W.; Xie, Z.; Hui, H. Protective role of licochalcone B against ethanol-induced hepatotoxicity through regulation of Erk signaling. Iran. J. Basic Med. Sci., 2017, 20(2), 131-137.
[101]
Quevedo, M.D.P.; Palermo, M.; Serra, E.; Ackermann, M.A. Metabolic surgery: Gastric bypass for the treatment of type 2 diabetes mellitus. Transl. Gastroenterol. Hepatol., 2017, 2, 58.
[102]
Park, H.G.; Bak, E.J.; Woo, G.H.; Kim, J.M.; Quan, Z.; Kim, J.M.; Yoon, H.K.; Cheon, S.H.; Yoon, G.; Yoo, Y.J.; Na, Y.; Cha, J.H. Licochalcone E has an antidiabetic effect. J. Nutr. Biochem., 2012, 23(7), 759-767.
[103]
Bak, E.J.; Choi, K.C.; Jang, S.; Woo, G.H.; Yoon, H.G.; Na, Y.; Yoo, Y.J.; Lee, Y.; Jeong, Y.; Cha, J.H. Licochalcone F alleviates glucose tolerance and chronic inflammation in diet-induced obese mice through Akt and p38 MAPK. Clin. Nutr., 2016, 35(2), 414-421.
[104]
Hubler, W.R., Jr; Hubler, W.R., Sr Dermatitis from a chromium dental plate. Contact Dermat., 1983, 9(5), 377-383.
[105]
Sharma, A.D. Relationship between nickel allergy and diet. Indian J. Dermatol. Venereol. Leprol., 2007, 73(5), 307-312.
[106]
Barker, J.N. Psoriasis as a T cell-mediated autoimmune disease. Hosp. Med., 1998, 59(7), 530-533.
[107]
Cho, Y.C.; Lee, S.H.; Yoon, G.; Kim, H.S.; Na, J.Y.; Choi, H.J.; Cho, C.W.; Cheon, S.H.; Kang, B.Y. Licochalcone E reduces chronic allergic contact dermatitis and inhibits IL-12p40 production through down-regulation of NF-kappa B. Int. Immunopharmacol., 2010, 10(9), 1119-1126.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy