Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Preparation and Biochemical Evaluation of Functionalized Multi-Walled Carbon Nanotubes with Punica granatum Extract

Author(s): Ahmed A. Haroun*, Abdel-Tawab H. Mossa and Samia M.M. Mohafrash

Volume 15, Issue 1, 2019

Page: [138 - 144] Pages: 7

DOI: 10.2174/1573407214666180530095912

Price: $65

Abstract

Background: Funcionalized multi-walled carbon nanotubes (ox-MWCNTs) were used for the preparation of therapeutic nanoparticles for delivery of some bioactive compounds. Consequently, this work deals with the preparation of grafted MWCNTs with n-vinyl caprolactam in the presence of pomegranate peel extract (P. granatum), titanium dioxide (TiO2) and/or silver nanoparticeles and their toxic effects on male mice using in vivo biological examination (liver and kidney dysfunction biomarkers) and the histopathological analysis.

Methods: P. granatum extract was immobilized onto functionalized MWCNTs using simple adsorption technique. Moreover, The prepared materials were analyzed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM). In vivo examination using liver and kidney dysfunction biomarkers was investigated. In addition, the histopathological study was carried out.

Results: The ox-MWCNTs induced significant elevation in the liver enzymes including AST, ALT and ALP relative to the control group. While, the treatment with P. granatum extract only did not induce any change in the liver and kidney biomarkers. In other words, P. granatum extract loaded onto functionalized MWCNTs showed low effects on liver enzymes and kidney function biomarkers in the treated mice in comparison with ox-MWCNTs and extract separately. Moreover, histopathological analysis revealed that the P. granatum extract functionalized MWCNTs exhibited normal renal tissue with no histopathological alteration.

Conclusion: The grafted MWCNTs with n-vinyl caprolactam in the presence of pomegranate peel extract (P. granatum), titanium dioxide (TiO2) and/or silver nanoparticeles were successfully prepared. SEM-micrographs showed complete coating of MWCNTs fiber with the extract. The prepared materials resulted in no toxic effects and the histopathological findings were confirmed by inflammation of the liver and kidney tissues.

Keywords: Multi-walled carbon nanotubes, biochemical analysis, n-vinyl caprolactam, P. granatum extract, cytotoxicity, dietary natural compounds.

Graphical Abstract
[1]
Ajayan, P.M.; Colliex, C.; Trauth, D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science-AAAS-Weekly Paper Edition, 1994, 26, 1212-1214.
[2]
Homenick, C.M.; Lawson, G. Polymer grafting of carbon nanotubes using living free radical polymerization. Adronov Polymer Rev., 2007, 47, 37-290.
[3]
Liu, P. Modifications of carbon nanotubes with polymers. Eur. Polym. J., 2005, 41, 2693-2703.
[4]
Matsumura, Y.; Kataoka, K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci., 2009, 100(4), 572-579.
[5]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[6]
Chen, Z.G. Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol. Med., 2010, 16(12), 594-602.
[7]
Haroun, A.A.; Abo-Zeid, M.A.; Youssef, A.M.; Gamal-Eldeen, A. In vitro biological study of gelatin/PLG nanocomposite using MCF-7 breast cancer cells. J. Biomed. Mater. Res. A, 2013, 101(5), 1388-1396.
[8]
Haroun, A.A.; ElNahrawy, A.M.; Maincent, P. Enoxaparin-immobilized poly (ε-caprolactone)-based nanogels for sustained drug delivery systems. Pure Appl. Chem., 2014, 86, 691-700.
[9]
Haroun, A.A.; Taie, H.A. Cytotoxicity and Antioxidant Activity of Beta vulgaris Extract Released from Grafted Carbon Nanotubes Based Nanocomposites. Macromol. Symp., 2014, 337, 25-33.
[10]
Bonham, M.; Arnold, H.; Montgomery, B.; Nelson, P.S. Molecular effects of the herbal compound PC-SPES: identification of activity pathways in prostate carcinoma. Cancer Res., 2002, 62(14), 3920-3924.
[11]
Lee, S.M.Y.; Li, M.L.Y.; Tse, Y.C.; Leung, S.C.L.; Lee, M.M.S.; Tsui, S.K.W.; Fung, K.P.; Lee, C.Y.; Waye, M.M. Paeoniae Radix, a Chinese herbal extract, inhibit hepatoma cells growth by inducing apoptosis in a p53 independent pathway. Life Sci., 2002, 71(19), 2267-2277.
[12]
Maeda, Y.; Nakamura, T.; Ikeda, I. Hydration and phase behavior of poly (n-vinylcaprolactam) and poly (N-vinylpyrrolidone) in water. Macromolecules, 2002, 35, 217-222.
[13]
Laukkanen, A.; Valtola, L.; Winnik, F.M.; Tenhu, H. Formation of colloidally stable phase separated poly (N-vinylcaprolactam) in water: a study by dynamic light scattering, microcalorimetry, and pressure perturbation calorimetry. Macromolecules, 2004, 37, 2268-2274.
[14]
Singh, R.P.; Chidambara Murthy, K.N.; Jayaprakasha, G.K. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J. Agric. Food Chem., 2002, 50(1), 81-86.
[15]
Prashanth, D.; Asha, M.K.; Amit, A. Antibacterial activity of Punica granatum. Fitoterapia, 2001, 72(2), 171-173.
[16]
Jafri, M.A.; Aslam, M.; Javed, K.; Singh, S. Effect of Punica granatum Linn. (flowers) on blood glucose level in normal and alloxan-induced diabetic rats. J. Ethnopharmacol., 2000, 70(3), 309-314.
[17]
Das, A.K.; Mandal, S.C.; Banerjee, S.K.; Sinha, S.; Saha, B.P.; Pal, M. Studies on the hypoglycaemic activity of Punica granatum seed in streptozotocin induced diabetic rats. Phytother. Res., 2001, 15(7), 628-629.
[18]
Hussein, S.A.; Barakat, H.H.; Merfort, I.; Nawwar, M.A. Tannins from the leaves of Punica granatum. Phytochemistry, 1997, 45, 819-823.
[19]
Cheng, S.C.; Feng, W.; Pashikin, I.I.; Yuan, L.H.; Deng, H.C.; Zhou, Y. Radiation polymerization of thermo-sensitive poly (N-vinylcaprolactam). Radiat. Phys. Chem., 2002, 63, 517-519.
[20]
Mossa, A.T.H.; Refaie, A.A.; Ramadan, A.; Bouajila, J. Amelioration of prallethrin-induced oxidative stress and hepatotoxicity in rat by the administration of Origanum majorana essential oil. BioMed Res. Int., 2013.
[21]
Mossa, A.T.H.; Heikal, T.M.; Omara, E.A.A. Liver damage associated with exposure to aspirin and diazinon in male rats and the ameliorative effect of selenium. BioMed Aging Path, 2014, 4, 137-145.
[22]
Swelam, E.S.; Abdallah, S.I.; Mossa, A.T.H. Ameliorating effect of zinc against oxidative stress and lipid peroxidation induced by fipronil in male rats. J. Pharma Toxicol., 2017, 121, 24-32.
[23]
Mossa, A.H.; Swelam, E.S.; Mohafrash, S.M.M. Sub-chronic exposure to fipronil induced oxidative stress, biochemical and histopathological changes in the liver and kidney of male albino rats. Toxicol. Rep., 2015, 2, 775-784.
[24]
Marzouk, M.A.; Mossa, A.H.; Sabra, F.S. Cytogenetic effects of technical and formulated tribenuron-methyl on rat bone-marrow cells. J. Pharmacol. Toxicol., 2012, 7, 330-337.
[25]
El-gengaihi, S.E.; Hamed, M.A.; Aboubaker, D.H.; Mossa, A.H. Flavonoids from sugar beet leaves as hepatoprotective agent. Int. J. Pharm. Sci., 2016, 8, 281-286.
[26]
Cox, A.; Venkatachalam, P.; Sahi, S.; Sharma, N. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol. Biochem., 2016, 107, 147-163.
[27]
Dobrzyńska, M.M.; Gajowik, A.; Radzikowska, J.; Lankoff, A.; Dušinská, M.; Kruszewski, M. Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology, 2014, 315, 86-91.
[28]
Sambale, F.; Wagner, S.; Stahl, F.; Khaydarov, R.R.; Scheper, T.; Bahnemann, D. Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J. Nanomater., 2015, 16, 6.
[29]
Kim, J.S.; Yoon, T.J.; Yu, K.N.; Kim, B.G.; Park, S.J.; Kim, H.W.; Lee, K.H.; Park, S.B.; Lee, J.K.; Cho, M.H. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol. Sci., 2006, 89(1), 338-347.
[30]
Saman, S.; Moradhaseli, S.; Shokouhian, A.; Ghorbani, M. Histopathological effects of ZnO nanoparticles on liver and heart tissues in wistar rats. Adv. Biomed. Res., 2013, 4, 83-88.
[31]
Shakeel, M.; Jabeen, F.; Qureshi, N.A.; Fakhr-E-Alam, M. Toxic effects of titanium dioxide nanoparticles and titanium dioxide bulk salt in the liver and blood of male Sprague-Dawley rats assessed by different assays. Biol. Trace Elem. Res., 2016, 173(2), 405-426.
[32]
Grassian, V.H.; O’shaughnessy, P.T.; Adamcakova-Dodd, A.; Pettibone, J.M.; Thorne, P.S. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ. Health Perspect., 2007, 115(3), 397-402.
[33]
Tiwari, D.K.; Jin, T.; Behari, J. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol. Mech. Methods, 2011, 21(1), 13-24.
[34]
Barathikannan, K.; Venkatadri, B.; Khusro, A.; Al-Dhabi, N.A.; Agastian, P.; Arasu, M.V.; Choi, H.S.; Kim, Y.O. Chemical analysis of Punica granatum fruit peel and its in vitro and in vivo biological properties. BMC Complement. Altern. Med., 2016, 16, 264.
[35]
Vasantharaja, D.; Ramalingam, V.; Aadinaath, R.G. Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical changes in adult male wistar rats oral toxic exposure of titanium dioxide nanoparticles on serum biochemical changes in adult male wistar rats oral toxicity of TIO 2 nanoparticles. Nanomed. J., 2015, 2(1), 46-53.
[36]
Grassian, V.H.; O’Shaughnessy, P.T.; Adamcakova-Dodd, A.; Pettibone, J.M.; Thorne, P.S. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ. Health Perspect., 2007, 115(3), 397-402.
[37]
Tiwari, D.K.; Jin, T.; Behari, J. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol. Mech. Methods, 2011, 21(1), 13-24.
[38]
Jamshidzadeh, A.; Abbasian, M.; Rezaeian, A. Hepatoprotective effect of pomegranate (Punica Granatum) fruit juice and seed extracts against CCL 4 -induced toxicity. Iran. J. Pharm. Res., 2012, 8(3), 181-187.
[39]
Bardalai, D.; Eshwaraiah, M.C.; Manasa, N.; Kavitha, K.; Bardalai, D. Evaluation of hepato protective activity of ethanolic root extract of of Punica granatum. Int. J. Pharm. Pharm. Sci., 2013, 5(4), 220-223.
[40]
Barathikannan, K.; Venkatadri, B.; Khusro, A.; Al-Dhabi, N.A.; Agastian, P.; Arasu, M.V.; Choi, H.S.; Kim, Y.O. Chemical analysis of Punica granatum fruit peel and its in vitro and in vivo biological properties. BMC Complement. Altern. Med., 2016, 16, 264.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy