Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis and Antichlamydial Activity of Novel Phenazines

Author(s): Xiaofeng Bao, Xiaowei Yu, Chao Xia, Ningjing Yang, Shengju Yang* and Yu Zhao*

Volume 16, Issue 2, 2019

Page: [174 - 181] Pages: 8

DOI: 10.2174/1570180815666180518112952

Price: $65

Abstract

Abstract: Background: Chlamydiae are widespread Gram-negative bacteria that cause a number of human diseases. Chlamydia trachomatis is the most prevalent sexually transmitted bacterial pathogen.

Methods: Fourteen novel phenazine derivatives were efficiently synthesized via Buchwald-Hartwig cross coupling reaction and Suzuki reaction from 4-bromo-1-methoxyphenazine. All the derivatives displayed antichlamydial activity with IC50 values from 1.01-19.77 µM against Chlamydia trachomatis D and L2 for inhibiting progeny formation.

Results: C-4 morpholinyl 8a and C-4 phenyl phenazine 9c exhibited stronger antichlamydial activity with no apparent cytotoxicity. Both phenazine derivatives inhibited chlamydial inclusions formation and growth in a dose-dependent manner. They inhibited Chlamydia infection by reducing elementary body infectivity and disturbing Chlamydia growth at the mid-stage of the chlamydial developmental cycle.

Conclusion: Our findings suggest C-4 aryl and C-4 amino phenazine derivatives as promising lead molecules for antichlamydials development.

Keywords: Phenazine, synthesis, antichlamydial activity, Buchwald-Hartwig, chlamydia, elementary body.

Graphical Abstract
[1]
Stephens, R.S.; Myers, G.; Eppinger, M.; Bavoil, P.M. Divergence without difference: Phylogenetics and taxonomy of Chlamydia resolved. FEMS Immunol. Med. Microbiol., 2009, 55, 115-119.
[2]
Harryman, L.; Blee, K.; Horner, P. Chlamydia trachomatis and non-gonococcal urethritis. Medicine , 2014, 42, 327-332.
[3]
Bao, X.F.; Gylfe, A.; Sturdevant, G.L.; Gong, Z.; Xu, S.; Caldwell, H.D.; Elofsson, M.; Fan, H.Z. J. Bacteriol., 2014, 196, 2989-3001.
[4]
Burton, M.J.; Mabey, D.C.W. The global burden of trachoma: A review. PLoS Negl. Trop. Dis., 2009, 3, e460.
[5]
Fan, H. Blindness-causing trachomatous trichiasis biomarkers sighted. Investigative ophthalmology & visual science. Invest. Ophthalmol. Vis. Sci., 2012, 53, 2560-2560.
[6]
Muschiol, S.; Bailey, L.; Gylfe, A.; Sundin, C.; Hultenby, K.; Bergstrom, S.; Elofsson, M.; Wolf-Watz, H.; Normark, S.; Henriques-Normark, B. A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc. Natl. Acad. Sci. , 2006, 103, 14566-14571.
[7]
Ji, H.; Wu, C.; Ni, M.; Feng, N.; Wang, C.; Zhao, Y.; Liu, L.Y.; Yang, S.; Bao, X.F. In vitro antichlamydial activity of 1, 2, 3, 5-tetrasubstituted pyrrole derivatives. Chemotherapy, 2018, 63, 96-100.
[8]
Bao, X.F.; Xue, Y.; Xia, C.; Lu, Y.; Yang, N.J.; Zhao, Y. Synthesis and assessment of novel anti-chlamydial benzylidene acylhydrazides derivatives. Lett. Drug Des. Discov., 2018, 15, 31-36.
[9]
Li, J.L.; Chen, D.D.; Huang, L.; Ni, M.; Zhao, Y.; Fan, H.Z.; Bao, X.F. Antichlamydial dimeric indole derivatives from marine actinomycete Rubrobacter radiotolerans. Planta Med., 2017, 83, 805-811.
[10]
Ling, Y.; Wang, X.Y.; Yu, J.H.; Tang, J.M.; Wang, D.G.; Chen, G.T.; Huang, J.H.; Li, Y.Q.; Zheng, H. Design, synthesis, and antibacterial activity of novel pleuromutilin derivatives bearing an amino thiazolyl ring. Arch. Pharm. , 2012, 345, 638-646.
[11]
Li, J.L.; Huang, L.; Liu, J.; Song, Y.; Gao, J.; Jung, J.H.; Liu, Y.H.; Chen, G.T. Acetylcholinesterase inhibitory dimeric indole derivatives from the marine actinomycetes Rubrobacter radiotolerans. Fitoterapia, 2015, 102, 203-207.
[12]
Cornelis, G.R. The type III secretion injectisome. Nat. Rev. Microbiol., 2006, 4, 811-825.
[13]
Conda-Sheridan, M.; Marler, L.; Park, E.J.; Kondratyuk, T.P.; Jermihov, K.; Mesecar, A.D.; Pezzuto, J.M.; Asolkar, R.N.; Fenical, W.; Cushman, M. J. Med. Chem., 2010, 53, 8688-8699.
[14]
Garrison, A.T.; Abouelhassan, Y.; Norwood, V.M.; Kallifidas, D.; Bai, F.; Nguyen, M.T.; Rolfe, M.; Burch, G.M.; Jin, S.; Luesch, H.; Huigens, III R.W. Structure–activity relationships of a diverse class of halogenated phenazines that targets persistent, antibiotic-tolerant bacterial biofilms and Mycobacterium tuberculosis. J. Med. Chem., 2016, 59, 3808-3825.
[15]
Yosioka, I. Arafune. S. Studies on phenazines. XXI. Bromination of phenazine derivatives. Chem. Pharm. Bull. , 1959, 7, 581-584.
[16]
Ueda, K.; Yosioka, I. Studies on phenazines. XXX. Bromination of phenazine derivatives by N-bromosuccinimide. Chem. Pharm. Bull. , 1968, 16, 1521-1526.
[17]
Li, X.H.; Wang, X.M.; Xu, C.J.; Huang, J.K.; Wang, C.N.; Wang, X.Y.; He, L.Q.; Ling, Y. Synthesis and biological evaluation of nitric oxide-releasing hybrids from gemcitabine and phenylsulfonyl furoxans as anti-tumor agents. MedChemComm, 2015, 6, 1130-1136.
[18]
Ling, Y.; Wang, X.M.; Zhu, H.Y.; Wang, Z.Q.; Xu, C.J.; Wang, X.Y.; Zhang, W. Synthesis and biological evaluation of novel farnesylthiosalicylic acid derivatives for cancer treatment. Arch. Pharm. , 2014, 347, 327-333.
[19]
Abdelmohsen, U.R.; Cheng, C.; Reimer, A.; Kozjak-Pavlovic, V.; Ibrahim, A.K.; Rudel, T.; Hentschel, U.; Edrada-Ebel, R.; Ahmed, S.A. Antichlamydial sterol from the red sea sponge Callyspongia aff. implexa. Planta Med., 2015, 81, 382-387.
[20]
Ling, Y.; Wang, X.M.; Wang, C.N.; Xu, C.J.; Zhang, W.; Zhang, Y.H.; Zhang, Y.A. Hybrids from farnesylthiosalicylic acid and hydroxamic acid as dual ras‐related signaling and histone deacetylase (HDAC) inhibitors: Design, synthesis and biological evaluation. ChemMedChem, 2015, 10, 971-976.
[21]
Ngamwongsatit, P.; Banada, P.P.; Panbangred, W.; Bhunia, A.K. WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J. Microbiol. Meth, 2008, 73, 211-215.
[22]
Chen, G.T.; Ge, H.J.; Li, J.; Li, J.L.; Zhai, X.G.; Wu, J.J.; Song, Y. Microbial transformation of 20 (R)-panaxadiol by Absidia corymbifera AS 3.3387. J. Mol. Catal., B Enzym., 2016, 123, 154-159.
[23]
Xu, L.Q.; Qin, Y.; Huang, J.F.; Qin, J.; Gu, J.; Zhu, H.J.; Liu, H.; Cai, Y.F.; Wu, X.H.; Feng, J. Effect of rapamycin-induced tumor vessel thrombosis combined with docetaxel in non-small-cell lung cancer. Anticancer Drugs, 2013, 24, 406-414.
[24]
Yao, M.; Wang, L.; Qiu, L.W.; Qian, Q.; Yao, D.F. Encouraging microRNA-based therapeutic strategies for hepatocellular carcinoma. Anticancer. Agents Med. Chem., 2015, 15, 453-460.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy