Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Genetic Diversity and Genetic Differentiation of Rheum palmatum by Chloroplast matK Sequences

Author(s): Xiaoqin Zhang, Na Lin, Liping Chen, Zunjing Zhang, Houxing Lei, Shengli Wei* and Chunsheng Liu*

Volume 10, Issue 2, 2020

Page: [96 - 103] Pages: 8

DOI: 10.2174/2210315508666180516100203

Price: $65

Abstract

Background: Rheum palmatum is a medically important plant in the Polygonaceae family. Its wild resources have been declining due to over-exploitation. It is important and urgent to investigate the genetic diversity for the conservation of R. palmatum.

Methods: The Chloroplast DNA matK sequences were used to assess genetic diversity among and within populations in this species. The genetic diversity index was calculated by Dnasp, PERMUT and Arlequin 3.0 software, and a Neighbor-Joining (NJ)-tree was constructed by MEGA 5.0 software.

Results: Nine haplotypes were obtained based on the matK sequence analysis in fifteen populations. We found a relatively high genetic diversity in species level (Hd = 0.7414), and the genetic diversity among populations (FST = 0.81582) was higher than that within populations (FSC = 0.69526) according to the AMOVA analysis. The genetic distance between populations ranged from 0 to 0.0044, which within populations ranged from 0 to 0.001761. There was a significant correlation between genetic distance and geographic distance (r = 0.601, P < 0.001) according to the SPSS analysis.

Conclusion: The genetic diversity among populations was higher than that within populations due to geographic isolation and decline in gene flow among populations. This study is significant for further studies concerned with efficient collection and preservation of wild resource of R. palmatum.

Keywords: Rheum palmatum, genetic diversity, matK sequences, population differentiation, AMOVA analysis, preservation of germplasm resources.

Graphical Abstract
[1]
Wang, A.L.; Yang, M.H.; Liu, J.Q. Molecular phylogeny, recent radiation and evolution of gross morphology of the rhubarb genus Rheum (Polygonaceae) inferred from chloroplast DNA trnL-F sequences. Ann. Botan., 2005, 96, 489-498.
[2]
China Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China; Beijing, 2010.
[3]
Wang, X.M.; Hou, X.Q.; Zhang, Y.Q.; Yang, R.; Feng, S.F. Genetic diversity of the endemic and medicinally important plant Rheum officinale as revealed by inter-simple sequence repeat (ISSR) markers. Int. J. Mol. Sci., 2012, 13, 3900-3915.
[4]
Hu, Y.P.; Wang, L.; Xie, X.L.; Yang, J.; Li, Y.; Zhang, H.G. Genetic diversity of wild populations of Rheum tanguticum endemic to China as revealed by ISSR analysis. Biochem. Syst. Ecol., 2010, 38, 264-274.
[5]
Wang, X.M.; Yang, R.; Feng, S.F.; Hou, X.Q.; Zhang, Y.Q.; Li, Y.; Ren, Y. Genetic variation in Rheum palmatum and Rheum tanguticum (polygonaceae), two medicinally and endemic species in China using ISSR markers. PLoS One, 2012, 12e51667
[6]
Barrett, S.C.H.; Kohn, J.R. Genetic and evolutionary consequences of small population size in plants, implications for conservation. Genetics and conservation of rare plants New York; , 1991.
[7]
Jin, W.; Tu, P.F. Preparative isolation and purification of trans-3,5,40-trihydroxystilbene 40-O-beta-D-glucopyranoside and catechin from Rheum tanguticum Maxim. ex Balf. using high-speed counter-current chromatography by stepwise elution and stepwise increasing the flow-rate of the mobile phase. J. Chromatogr., 2005, 1092, 241-245.
[8]
Jin, W.; Ge, R.L.; Wei, Q.J.; Bao, T.Y.; Shi, H.M.; Tu, P.F. Development of high-performance liquid chromatographic fingerprint for the quality control of Rheum tanguticum Maxim. ex Balf. J. Chromatog. A, 2006, 1132, 320-324.
[9]
Komatsu, K.; Nagayama, Y.; Tanaka, K.; Ling, Y.; Basnet, P.; Meselhy, M.R. Development of a high performance liquid chromatographic method for systematic quantitative analysis of chemical constituents in rhubarb. Chem. Pharm. Bull., 2006a, 54, 941-947.
[10]
Wang, X.; Hattori, M.; Toriizuka, K.; Terasawa, K.; Lou, Z.C.; Namba, T. Pharmacognostical studies on Chinese crude drug da-huang rhubarb V, Effect of aqueous extracts of Rheum-spp on human platelet aggregation. Shoyakugaku Zasshi, 1991, 45, 57-61.
[11]
Zhang, H.X.; Liu, M.C. Separation procedures for the pharmacologically active components of rhubarb. Chromatogr. B-Ana. Technol. Biomed. Life Sci., 2004, 81, 175-181.
[12]
Liu, W.S.; Dong, M.; Song, Z.P.; Wei, W. Genetic diversity pattern of Stipa purpurea populations in the hinterland of Qinghai-Tibet Plateau. Ann. Appl. Biol., 2009, 154, 57-65.
[13]
Zhao, Y.L.; Wang, J.B.; Zhou, G.D.; Shan, L.M.; Xiao, X.H. Investigations of free anthraquinones from rhubarb against alpha-naphthylisothiocyanate induced cholestatic liver injury in rats. Basic Clin. Pharmacol. Toxicol., 2009, 104, 463-469.
[14]
Joseph, C.; Kuhl, L.; Veronica, L. Genetic diversity of rhubarb cultivars. J. Am. Soc. Hortic. Sci., 2008, 4, 587-592.
[15]
Chen, F.J.; Wang, A.L.; Chen, K.M.; Wan, D.S.; Liu, J.Q. Genetic diversity and population structure of the endangered and medically important Rheum tanguticum (Polygonaceae) revealed by SSR markers. Biochem. Syst. Ecol., 2009, 37, 613-621.
[16]
Hilu, K.; Liang, H. The matK gene, sequence variation and application in plant systematics. Am. J. Bot., 1997, 6, 830-839.
[17]
Cao, H.; Sasaki, Y.; Fushimi, H.; Komatsu, K. Molecular analysis of medicinally-used Chinese and Japanese curcuma based on 18 s rRNA gene and trnK gene sequences. Biol. Pharm. Bull., 2001, 24, 1389-1394.
[18]
Zhu, S.; Fushimi, H.; Cai, S.Q.; Komatsu, K. Phylogenetic relationship in the genus panax, inferred from chloroplast trnK gene and nuclear 18S rRNA gene sequences. Planta Med., 2003, 69, 647-653.
[19]
Yang, D.Y.; Hirotoshi, F.; Cai, S.Q.; Katsuko, K. Molecular analysis of Rheum species used as Rhei Rhizoma based on the chloroplast matK gene sequence and its application for identification. Biol. Pharm. Bull., 2004, 3, 375-383.
[20]
Koch, M.; Haubold, B.; Mitchell-Olds, T. Molecular systematics of the Brassicaceae, evidence from coding plastidic matK and nuclear Chs sequences. Am. J. Bot., 2001, 3, 534-544.
[21]
Rofers, S.O.; Bebdich, A.J. Extraction of DNA from Plant Tissues. Plant Mol. Biol., 1998, A6, 1-10.
[22]
Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface, flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 1997, 25, 4876-4882.
[23]
Hall, T.A. BioEdit, a user-friendly biological sequence alignment editorand analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 1999, 41, 95-98.
[24]
Rozas, J.; Sanchez-DelBarrio, J.C.; Messeguer, X. DNASP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19, 2496-2497.
[25]
Pons, O.; Petit, R.J. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics, 1996, 144, 1237-1245.
[26]
Nei, M. Molecular population genetics and evolution Amsterdam; North-Holland Publishing Company: Oxford, 1975.
[27]
Excoffier, L.; Laval, G.; Schneider, S. Arlequin version 3.1, an integrated software package for population genetics data analysis. Evol. Bioinform. Online, 2005, 1, 47-50.
[28]
Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5, Molecular evolutionary denetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 2011, 10, 2731-2739.
[29]
Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 1980, 16, 111-120.
[30]
Amos, W.; Harwood, J. Factors affecting levels of genetic diversity in natural populations. Philos. T. Roy. Soc. B, 1998, 1366, 177-186.
[31]
Joshi, S.P.; Gupta, V.S.; Aggarwal, R.K.; Ranjekar, P.K.; Brar, D.S. Genetic diversity and phylogenetic relationship as revealed by Inter Simple Sequence Repeat (ISSR) polymorphism in the genus Oryza. Theor. Appl. Genet., 2000, 100, 1311-1320.
[32]
Hamrick, J.L.; Godt, M.J.W. Effects of life history traits on genetic diversity in plant species. Philos. Transac. Roy. Soc. Lond. Ser. B: Biol. Sci., 1996, 351, 1291-1298.
[33]
Zheng, H.J.; Wang, H.; Yang, H.; Wu, J.H.; Shi, B.; Cai, R.; Xu, Y.B.; Wu, A.Z.; Luo, L.J. Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PLoS One, 2013, 8e66606
[34]
Wang, X.M.; Hou, X.Q.; Zhang, Y.Q.; Li, Y. Distribution pattern of genuine species of rhubarb as traditional Chinese medicine. J. Med. Plants Res., 2010, 4, 1865-1876.
[35]
Komatsu, K.; Nagayama, Y.; Tanaka, K.; Ling, Y.; Cai, S.Q.; Omote, T.; Meselhy, M.R. Comparative study of chemical constituents of rhubarb from different origins. Chem. Pharm. Bull., 2006b, 54, 1491-1499.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy