Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Insights on Melatonin as an Active Pharmacological Molecule in Cancer Prevention: What’s New?

Author(s): Geir Bjørklund*, Samiul Alam Rajib , Nadia Saffoon, Joeri J. Pen and Salvatore Chirumbolo

Volume 26, Issue 34, 2019

Page: [6304 - 6320] Pages: 17

DOI: 10.2174/0929867325666180501094850

Price: $65

Abstract

Along with playing an important role in circadian rhythm, melatonin is thought to play a significant role in preventing cells from damage, as well as in the inhibition of growth and in triggering apoptosis in malignant cells. Its relationship with circadian rhythms, energetic homeostasis, diet, and metabolism, is fundamental to achieve a better comprehension of how melatonin has been considered a chemopreventive molecule, though very few papers dealing with this issue. In this article, we tried to review the most recent evidence regarding the protective as well as the antitumoral mechanisms of melatonin, as related to diet and metabolic balance. From different studies, it was evident that an intracellular antioxidant defense mechanism is activated by upregulating an antioxidant gene battery in the presence of high-dose melatonin in malignant cells. Like other broad-spectrum antioxidant molecules, melatonin plays a vital role in killing tumor cells, preventing metastasis, and simultaneously keeping normal cells protected from oxidative stress and other types of tissue damage.

Keywords: Melatonin, antioxidant, apoptosis, breast cancer, metastasis, oxidative stress.

[1]
Macchi, M.M.; Bruce, J.N. Human pineal physiology and functional significance of melatonin. Front. Neuroendocrinol., 2004, 25(3-4), 177-195.
[http://dx.doi.org/10.1016/j.yfrne.2004.08.001] [PMID: 15589268]
[2]
Korf, H.W.; Schomerus, C.; Stehle, J.H. The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv. Anat. Embryol. Cell Biol., 1998, 146, 1-100.
[http://dx.doi.org/10.1007/978-3-642-58932-4_1] [PMID: 9670565]
[3]
Erren, T.C.; Reiter, R.J. Melatonin: a universal time messenger. Neuroendocrinol. Lett., 2015, 36(3), 187-192.
[PMID: 26313381]
[4]
Pevet, P.; Challet, E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. J. Physiol. Paris, 2011, 105(4-6), 170-182.
[http://dx.doi.org/10.1016/j.jphysparis.2011.07.001] [PMID: 21914478]
[5]
Killgore, W.D.S.; Kent, H.C.; Knight, S.A.; Alkozei, A. Changes in morning salivary melatonin correlate with prefrontal responses during working memory performance. Neuroreport, 2018, 29(6), 488-494.
[http://dx.doi.org/10.1097/WNR.0000000000001002] [PMID: 29528974]
[6]
Pavlova, M. Circadian rhythm sleep-wake disorders. Continuum (Minneap Minn),, 2017, 23(4, Sleep Neurology), 1051-1063.
[http://dx.doi.org/10.1212/CON.0000000000000499]
[7]
Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol., 2018, 175(16), 3190-3199.
[http://dx.doi.org/10.1111/bph.14116] [PMID: 29318587]
[8]
Baker, J.; Kimpinski, K. Role of melatonin in blood pressure regulation: An adjunct anti-hypertensive agent. Clin. Exp. Pharmacol. Physiol., 2018, 45(8), 755-766.
[http://dx.doi.org/10.1111/1440-1681.12942] [PMID: 29603319]
[9]
Altun, A.; Ugur-Altun, B. Melatonin: therapeutic and clinical utilization. Int. J. Clin. Pract., 2007, 61(5), 835-845.
[http://dx.doi.org/10.1111/j.1742-1241.2006.01191.x] [PMID: 17298593]
[10]
Favero, G.; Franceschetti, L.; Bonomini, F.; Rodella, L.F.; Rezzani, R. Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int. J. Endocrinol., 2017, 20171835195
[http://dx.doi.org/10.1155/2017/1835195] [PMID: 29104591]
[11]
Hu, Z.P.; Fang, X.L.; Fang, N.; Wang, X.B.; Qian, H.Y.; Cao, Z.; Cheng, Y.; Wang, B.N.; Wang, Y. Melatonin ameliorates vascular endothelial dysfunction, inflammation, and atherosclerosis by suppressing the TLR4/NF-κB system in high-fat-fed rabbits. J. Pineal Res., 2013, 55(4), 388-398.
[http://dx.doi.org/10.1111/jpi.12085] [PMID: 24006943]
[12]
Akbarzadeh, M.; Rahbarghazi, R.; Nabat, E.; Movassaghpour, A.A.; Shanehbandi, D.; Faramarzian Azimi Maragheh, B.; Matluobi, D.; Barazvan, B.; Kazemi, M.; Samadi, N.; Nouri, M. The impact of different extracellular matrices on melatonin effect in proliferation and stemness properties of ovarian cancer cells. Biomed. Pharmacother., 2017, 87, 288-295.
[http://dx.doi.org/10.1016/j.biopha.2016.12.119] [PMID: 28063410]
[13]
Gonçalves,Ndo.N.; Colombo, J.; Lopes, J.R.; Gelaleti, G.B.; Moschetta, M.G.; Sonehara, N.M.; Hellmén, E.; Zanon, Cde.F.; Oliani, S.M.; Zuccari, D.A. Effect of melatonin in epithelial mesenchymal transition markers and invasive properties of breast cancer stem cells of canine and human cell lines. PLoS One, 2016, 11(3)e0150407
[http://dx.doi.org/10.1371/journal.pone.0150407] [PMID: 26934679]
[14]
Lopes, J.R.; da Silva Kavagutti, M.; Medeiros, F.A.; De Campos Zuccari, D.A. Evaluation of melatonin effect on human breast cancer stem cells using a three-dimensional growth method of mammospheres. Anticancer. Agents Med. Chem., 2017, 17(7), 961-965.
[http://dx.doi.org/10.2174/1871520616666160923093229] [PMID: 27671309]
[15]
Jou, M.J.; Peng, T.I.; Hsu, L.F.; Jou, S.B.; Reiter, R.J.; Yang, C.M.; Chiao, C.C.; Lin, Y.F.; Chen, C.C. Visualization of melatonin’s multiple mitochondrial levels of protection against mitochondrial Ca(2+)-mediated permeability transition and beyond in rat brain astrocytes. J. Pineal Res., 2010, 48(1), 20-38.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00721.x] [PMID: 19925580]
[16]
Espino, J.; Bejarano, I.; Redondo, P.C.; Rosado, J.A.; Barriga, C.; Reiter, R.J.; Pariente, J.A.; Rodríguez, A.B. Melatonin reduces apoptosis induced by calcium signaling in human leukocytes: Evidence for the involvement of mitochondria and Bax activation. J. Membr. Biol., 2010, 233(1-3), 105-118.
[http://dx.doi.org/10.1007/s00232-010-9230-0] [PMID: 20130848]
[17]
Espino, J.; Bejarano, I.; Paredes, S.D.; Barriga, C.; Rodríguez, A.B.; Pariente, J.A. Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J. Pineal Res., 2011, 51(2), 195-206.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00876.x] [PMID: 21470303]
[18]
Konakchieva, R.; Todorov, P. Melatonin protects human spermatozoa from apoptosis via melatonin receptor- and extracellular signal-regulated kinase-mediated pathways. Fertil. Steril., 2011, 96(4)e159
[http://dx.doi.org/10.1016/j.fertnstert.2011.08.013] [PMID: 21890129]
[19]
Liu, Y.; Zhang, L.; Zhang, H.; Liu, B.; Wu, Z.; Zhao, W.; Wang, Z. Exogenous melatonin modulates apoptosis in the mouse brain induced by high-LET carbon ion irradiation. J. Pineal Res., 2012, 52(1), 47-56.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00917.x] [PMID: 21812816]
[20]
Mohseni, M.; Mihandoost, E.; Shirazi, A.; Sepehrizadeh, Z.; Bazzaz, J.T.; Ghazi-khansari, M. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis. Mutat. Res., 2012, 738-739, 19-27.
[http://dx.doi.org/10.1016/j.mrfmmm.2012.08.006] [PMID: 22982225]
[21]
Mukherjee, D.; Ghosh, A.K.; Bandyopadhyay, A.; Basu, A.; Datta, S.; Pattari, S.K.; Reiter, R.J.; Bandyopadhyay, D. Melatonin protects against isoproterenol-induced alterations in cardiac mitochondrial energy-metabolizing enzymes, apoptotic proteins, and assists in complete recovery from myocardial injury in rats. J. Pineal Res., 2012, 53(2), 166-179.
[http://dx.doi.org/10.1111/j.1600-079X.2012.00984.x] [PMID: 23050266]
[22]
Canonico, B.; Luchetti, F.; Ambrogini, P.; Arcangeletti, M.; Betti, M.; Cesarini, E.; Lattanzi, D.; Ciuffoli, S.; Palma, F.; Cuppini, R.; Papa, S. Pharmacological doses of melatonin induce alterations in mitochondrial mass and potential, bcl-2 levels and K+ currents in UVB-exposed U937 cells. Cell Biol. Int., 2013, 37(3), 213-226.
[http://dx.doi.org/10.1002/cbin.10030] [PMID: 23364875]
[23]
Pandi-Perumal, S.R. BaHammam, A.S.; Brown, G.M.; Spence, D.W.; Bharti, V.K.; Kaur, C.; Hardeland, R.; Cardinali, D.P. Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox. Res., 2013, 23(3), 267-300.
[http://dx.doi.org/10.1007/s12640-012-9337-4] [PMID: 22739839]
[24]
Wang, F.W.; Wang, Z.; Zhang, Y.M.; Du, Z.X.; Zhang, X.L.; Liu, Q.; Guo, Y.J.; Li, X.G.; Hao, A.J. Protective effect of melatonin on bone marrow mesenchymal stem cells against hydrogen peroxide-induced apoptosis in vitro. J. Cell. Biochem., 2013, 114(10), 2346-2355.
[http://dx.doi.org/10.1002/jcb.24582] [PMID: 23824714]
[25]
Yang, Y.; Duan, W.; Jin, Z.; Yi, W.; Yan, J.; Zhang, S.; Wang, N.; Liang, Z.; Li, Y.; Chen, W.; Yi, D.; Yu, S. JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J. Pineal Res., 2013, 55(3), 275-286.
[http://dx.doi.org/10.1111/jpi.12070] [PMID: 23796350]
[26]
Roohbakhsh, A.; Shamsizadeh, A.; Hayes, A.W.; Reiter, R.J.; Karimi, G. Melatonin as an endogenous regulator of diseases: The role of autophagy. Pharmacol. Res., 2018, 133, 265-276.
[http://dx.doi.org/10.1016/j.phrs.2018.01.022] [PMID: 29408249]
[27]
Jeelani, R.; Maitra, D.; Chatzicharalampous, C.; Najeemuddin, S.; Morris, R.T.; Abu-Soud, H.M. Melatonin prevents hypochlorous acid-mediated cyanocobalamin destruction and cyanogen chloride generation. J. Pineal Res., 2018, 64(3)e12463
[http://dx.doi.org/10.1111/jpi.12463] [PMID: 29247550]
[28]
Christophersen, O.A. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. Microb. Ecol. Health Dis., 2012, 23.
[http://dx.doi.org/10.3402/mehd.v23i0.14787] [PMID: 23990836]
[29]
Sanchez-Barcelo, E.J.; Mediavilla, M.D.; Alonso-Gonzalez, C.; Reiter, R.J. Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin. Investig. Drugs, 2012, 21(6), 819-831.
[http://dx.doi.org/10.1517/13543784.2012.681045] [PMID: 22500582]
[30]
Sanchez-Barcelo, E.J.; Mediavilla, M.D.; Alonso-Gonzalez, C.; Rueda, N. Breast cancer therapy based on melatonin. Recent Pat. Endocr. Metab. Immune Drug Discov., 2012, 6(2), 108-116.
[http://dx.doi.org/10.2174/187221412800604581] [PMID: 22369716]
[31]
Alvarez-García, V.; González, A.; Alonso-González, C.; Martínez-Campa, C.; Cos, S. Regulation of vascular endothelial growth factor by melatonin in human breast cancer cells. J. Pineal Res., 2013, 54(4), 373-380.
[http://dx.doi.org/10.1111/jpi.12007] [PMID: 23013414]
[32]
Cid, M.A.; Ubeda, A.; Hernández-Bule, M.L.; Martínez, M.A.; Trillo, M.Á. Antagonistic effects of a 50 Hz magnetic field and melatonin in the proliferation and differentiation of hepatocarcinoma cells. Cell. Physiol. Biochem., 2012, 30(6), 1502-1516.
[http://dx.doi.org/10.1159/000343338] [PMID: 23235525]
[33]
Cutando, A.; López-Valverde, A.; Arias-Santiago, S; DE.; Vicente, J; DE.; Diego, R.G. Role of melatonin in cancer treatment. Anticancer Res., 2012, 32(7), 2747-2753.
[PMID: 22753734]
[34]
Kim, H.C.; Cho, H.Y.; Hah, Y.S. Role of IL-15 in sepsis-induced skeletal muscle atrophy and proteolysis. Tuberc. Respir. Dis. (Seoul), 2012, 73(6), 312-319.
[http://dx.doi.org/10.4046/trd.2012.73.6.312] [PMID: 23319993]
[35]
Knower, K.C.; To, S.Q.; Takagi, K.; Miki, Y.; Sasano, H.; Simpson, E.R.; Clyne, C.D. Melatonin suppresses aromatase expression and activity in breast cancer associated fibroblasts. Breast Cancer Res. Treat., 2012, 132(2), 765-771.
[http://dx.doi.org/10.1007/s10549-012-1953-4] [PMID: 22237979]
[36]
Lanoix, D.; Lacasse, A.A.; Reiter, R.J.; Vaillancourt, C. Melatonin: the smart killer: the human trophoblast as a model. Mol. Cell. Endocrinol., 2012, 348(1), 1-11.
[http://dx.doi.org/10.1016/j.mce.2011.08.025] [PMID: 21889572]
[37]
León, J.; Casado, J.; Carazo, A.; Sanjuán, L.; Maté, A.; Muñoz de Rueda, P.; de la Cueva, P.; Quiles, R.; Ruíz, S.; Ruíz-Extremera, A.; Salmerón, J. Gender-related invasion differences associated with mRNA expression levels of melatonin membrane receptors in colorectal cancer. Mol. Carcinog., 2012, 51(8), 608-618.
[http://dx.doi.org/10.1002/mc.20832] [PMID: 21809392]
[38]
Min, K.J.; Kim, H.S.; Park, E.J.; Kwon, T.K. Melatonin enhances thapsigargin-induced apoptosis through reactive oxygen species-mediated upregulation of CCAAT-enhancer-binding protein homologous protein in human renal cancer cells. J. Pineal Res., 2012, 53(1), 99-106.
[http://dx.doi.org/10.1111/j.1600-079X.2012.00975.x] [PMID: 22289049]
[39]
Sánchez-Hidalgo, M.; Guerrero, J.M.; Villegas, I.; Packham, G.; de la Lastra, C.A. Melatonin, a natural programmed cell death inducer in cancer. Curr. Med. Chem., 2012, 19(22), 3805-3821.
[http://dx.doi.org/10.2174/092986712801661013] [PMID: 22612707]
[40]
Uguz, A.C.; Cig, B.; Espino, J.; Bejarano, I.; Naziroglu, M.; Rodríguez, A.B.; Pariente, J.A. Melatonin potentiates chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J. Pineal Res., 2012, 53(1), 91-98.
[http://dx.doi.org/10.1111/j.1600-079X.2012.00974.x] [PMID: 22288984]
[41]
Wang, J.; Guo, W.; Chen, W.; Yu, W.; Tian, Y.; Fu, L.; Shi, D.; Tong, B.; Xiao, X.; Huang, W.; Deng, W. Melatonin potentiates the antiproliferative and pro-apoptotic effects of ursolic acid in colon cancer cells by modulating multiple signaling pathways. J. Pineal Res., 2013, 54(4), 406-416.
[http://dx.doi.org/10.1111/jpi.12035] [PMID: 23330808]
[42]
Wang, J.; Xiao, X.; Zhang, Y.; Shi, D.; Chen, W.; Fu, L.; Liu, L.; Xie, F.; Kang, T.; Huang, W.; Deng, W. Simultaneous modulation of COX-2, p300, Akt, and Apaf-1 signaling by melatonin to inhibit proliferation and induce apoptosis in breast cancer cells. J. Pineal Res., 2012, 53(1), 77-90.
[http://dx.doi.org/10.1111/j.1600-079X.2012.00973.x] [PMID: 22335196]
[43]
Zha, L.; Fan, L.; Sun, G.; Wang, H.; Ma, T.; Zhong, F.; Wei, W. Melatonin sensitizes human hepatoma cells to endoplasmic reticulum stress-induced apoptosis. J. Pineal Res., 2012, 52(3), 322-331.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00946.x] [PMID: 22225575]
[44]
Bonmati-Carrion, M.A.; Alvarez-Sánchez, N.; Hardeland, R.; Madrid, J.A.; Rol, M.A. A Comparison of B16 melanoma cells and 3T3 fibroblasts concerning cell viability and ROS production in the presence of melatonin, tested over a wide range of concentrations. Int. J. Mol. Sci., 2013, 14(2), 3901-3920.
[http://dx.doi.org/10.3390/ijms14023901] [PMID: 23434670]
[45]
Jablonska, K.; Pula, B.; Zemla, A.; Owczarek, T.; Wojnar, A.; Rys, J.; Ambicka, A.; Podhorska-Okolow, M.; Ugorski, M.; Dziegiel, P. Expression of melatonin receptor MT1 in cells of human invasive ductal breast carcinoma. J. Pineal Res., 2013, 54(3), 334-345.
[http://dx.doi.org/10.1111/jpi.12032] [PMID: 23330677]
[46]
Kapoor, S. Melatonin and its contribution to tumor attenuation in systemic malignancies. Breast Cancer Res. Treat., 2013, 138(3), 969-970.
[http://dx.doi.org/10.1007/s10549-013-2487-0] [PMID: 23539297]
[47]
Fernández, A.; Ordóñez, R.; Reiter, R.J.; González-Gallego, J.; Mauriz, J.L. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J. Pineal Res., 2015, 59(3), 292-307.
[http://dx.doi.org/10.1111/jpi.12264] [PMID: 26201382]
[48]
Proietti, S.; Cucina, A.; Reiter, R.J.; Bizzarri, M. Molecular mechanisms of melatonin’s inhibitory actions on breast cancers. Cell. Mol. Life Sci., 2013, 70(12), 2139-2157.
[http://dx.doi.org/10.1007/s00018-012-1161-8] [PMID: 23007844]
[49]
Rodriguez, C.; Martín, V.; Herrera, F.; García-Santos, G.; Rodriguez-Blanco, J.; Casado-Zapico, S.; Sánchez-Sánchez, A.M.; Suárez, S.; Puente-Moncada, N.; Anítua, M.J.; Antolín, I. Mechanisms involved in the pro-apoptotic effect of melatonin in cancer cells. Int. J. Mol. Sci., 2013, 14(4), 6597-6613.
[http://dx.doi.org/10.3390/ijms14046597] [PMID: 23528889]
[50]
Xu, C.; Wu, A.; Zhu, H.; Fang, H.; Xu, L.; Ye, J.; Shen, J. Melatonin is involved in the apoptosis and necrosis of pancreatic cancer cell line SW-1990 via modulating of Bcl-2/Bax balance. Biomed. Pharmacother., 2013, 67(2), 133-139.
[http://dx.doi.org/10.1016/j.biopha.2012.10.005] [PMID: 23245210]
[51]
Xu, L.; Liu, H.; Zhang, H.; Wang, R.X.; Song, J.; Zhou, R.X. Growth-inhibitory activity of melatonin on murine foregastric carcinoma cells in vitro and the underlying molecular mechanism. Anat. Rec. (Hoboken), 2013, 296(6), 914-920.
[http://dx.doi.org/10.1002/ar.22689] [PMID: 23564716]
[52]
Zhang, S.; Qi, Y.; Zhang, H.; He, W.; Zhou, Q.; Gui, S.; Wang, Y. Melatonin inhibits cell growth and migration, but promotes apoptosis in gastric cancer cell line, SGC7901. Biotech. Histochem., 2013, 88(6), 281-289.
[http://dx.doi.org/10.3109/10520295.2013.769633] [PMID: 23477595]
[53]
Talib, W.H. Melatonin and cancer hallmarks. Molecules, 2018, 23(3)E518
[http://dx.doi.org/10.3390/molecules23030518] [PMID: 29495398]
[54]
Limón-Pacheco, J.H.; Gonsebatt, M.E. The glutathione system and its regulation by neurohormone melatonin in the central nervous system. Cent. Nerv. Syst. Agents Med. Chem., 2010, 10(4), 287-297.
[http://dx.doi.org/10.2174/187152410793429683] [PMID: 20868358]
[55]
Venkataraman, P.; Selvakumar, K.; Krishnamoorthy, G.; Muthusami, S.; Rameshkumar, R.; Prakash, S.; Arunakaran, J. Effect of melatonin on PCB (Aroclor 1254) induced neuronal damage and changes in Cu/Zn superoxide dismutase and glutathione peroxidase-4 mRNA expression in cerebral cortex, cerebellum and hippocampus of adult rats. Neurosci. Res., 2010, 66(2), 189-197.
[http://dx.doi.org/10.1016/j.neures.2009.10.015] [PMID: 19914309]
[56]
Fischer, T.W.; Kleszczyński, K.; Hardkop, L.H.; Kruse, N.; Zillikens, D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2′-deoxyguanosine) in ex vivo human skin. J. Pineal Res., 2013, 54(3), 303-312.
[http://dx.doi.org/10.1111/jpi.12018] [PMID: 23110400]
[57]
Chen, X.; Hao, A.; Li, X.; Du, Z.; Li, H.; Wang, H.; Yang, H.; Fang, Z. Melatonin inhibits tumorigenicity of glioblastoma stem-like cells via the AKT-EZH2-STAT3 signaling axis. J. Pineal Res., 2016, 61(2), 208-217.
[http://dx.doi.org/10.1111/jpi.12341] [PMID: 27121240]
[58]
Tamtaji, O.R.; Mirhosseini, N.; Reiter, R.J.; Behnamfar, M.; Asemi, Z. Melatonin and pancreatic cancer: current knowledge and future perspectives. J. Cell. Physiol., 2019, 234(5), 5372-5378.
[http://dx.doi.org/10.1002/jcp.27372] [PMID: 30229898]
[59]
Reiter, R.J.; Rosales-Corral, S.A.; Tan, D.X.; Acuna-Castroviejo, D.; Qin, L.; Yang, S.F.; Xu, K. Melatonin, a full-service anti-cancer agent: inhibition of initiation, progression and metastasis. Int. J. Mol. Sci., 2017, 18(4), 843.
[http://dx.doi.org/10.3390/ijms18040843] [PMID: 28420185]
[60]
Nazarewicz, R.R.; Dikalova, A.; Bikineyeva, A.; Ivanov, S.; Kirilyuk, I.A.; Grigor’ev, I.A.; Dikalov, S.I. Does scavenging of mitochondrial superoxide attenuate cancer prosurvival signaling pathways? Antioxid. Redox Signal., 2013, 19(4), 344-349.
[http://dx.doi.org/10.1089/ars.2013.5185] [PMID: 23373855]
[61]
Borin, T.F.; Arbab, A.S.; Gelaleti, G.B.; Ferreira, L.C.; Moschetta, M.G.; Jardim-Perassi, B.V.; Iskander, A.S.; Varma, N.R.; Shankar, A.; Coimbra, V.B.; Fabri, V.A.; de Oliveira, J.G.; Zuccari, D.A. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J. Pineal Res., 2016, 60(1), 3-15.
[http://dx.doi.org/10.1111/jpi.12270] [PMID: 26292662]
[62]
Lu, H.; Wu, B.; Ma, G.; Zheng, D.; Song, R.; Huang, E.; Mao, M.; Lu, B. Melatonin represses oral squamous cell carcinoma metastasis by inhibiting tumor-associated neutrophils. Am. J. Transl. Res., 2017, 9(12), 5361-5374.
[PMID: 29312489]
[63]
Akbarzadeh, M.; Movassaghpour, A.A.; Ghanbari, H.; Kheirandish, M.; Fathi Maroufi, N.; Rahbarghazi, R.; Nouri, M.; Samadi, N. The potential therapeutic effect of melatonin on human ovarian cancer by inhibition of invasion and migration of cancer stem cells. Sci. Rep., 2017, 7(1), 17062.
[http://dx.doi.org/10.1038/s41598-017-16940-y] [PMID: 29213108]
[64]
Barreto, F.S.; Chaves Filho, A.J.M.; de Araújo, M.C.C.R.; de Moraes, M.O.; de Moraes, M.E.A.; Maes, M.; de Lucena, D.F.; Macedo, D.S. Tryptophan catabolites along the indoleamine 2,3-dioxygenase pathway as a biological link between depression and cancer. Behav Pharmacol.,, 2018, 29(2 and 3 - Special Issue), 165-180.
[http://dx.doi.org/10.1097/FBP.0000000000000384] [PMID: 29543650]
[65]
Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.Y.; Xu, D.P.; Li, H.B. Dietary sources and bioactivities of melatonin. Nutrients, 2017, 9(4)E367
[http://dx.doi.org/10.3390/nu9040367] [PMID: 28387721]
[66]
Zhang, J.J.; Meng, X.; Li, Y.; Zhou, Y.; Xu, D.P.; Li, S.; Li, H.B. Effects of melatonin on liver injuries and diseases. Int. J. Mol. Sci., 2017, 18(4)E673
[http://dx.doi.org/10.3390/ijms18040673] [PMID: 28333073]
[67]
Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.J.; Xu, D.P.; Li, H.B. Melatonin for the prevention and treatment of cancer. Oncotarget, 2017, 8(24), 39896-39921.
[http://dx.doi.org/10.18632/oncotarget.16379] [PMID: 28415828]
[68]
Ma, H.; Wang, Z.; Hu, L.; Zhang, S.; Zhao, C.; Yang, H.; Wang, H.; Fang, Z.; Wu, L.; Chen, X. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas. Biochem. Biophys. Res. Commun., 2018, 496(4), 1322-1330.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.010] [PMID: 29408377]
[69]
Dubocovich, M.L.; Markowska, M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine, 2005, 27(2), 101-110.
[http://dx.doi.org/10.1385/ENDO:27:2:101] [PMID: 16217123]
[70]
Liu, J.; Clough, S.J.; Hutchinson, A.J.; Adamah-Biassi, E.B.; Popovska-Gorevski, M.; Dubocovich, M.L. MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu. Rev. Pharmacol. Toxicol., 2016, 56, 361-383.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124742] [PMID: 26514204]
[71]
Kim, H.J.; Kim, H.J.; Bae, M.K.; Kim, Y.D. Suppression of osteoclastogenesis by melatonin: a melatonin receptor-independent action. Int. J. Mol. Sci., 2017, 18(6)E1142
[http://dx.doi.org/10.3390/ijms18061142] [PMID: 28587149]
[72]
Witt-Enderby, P.A.; MacKenzie, R.S.; McKeon, R.M.; Carroll, E.A.; Bordt, S.L.; Melan, M.A. Melatonin induction of filamentous structures in non-neuronal cells that is dependent on expression of the human mt1 melatonin receptor. Cell Motil. Cytoskeleton, 2000, 46(1), 28-42.
[http://dx.doi.org/10.1002/(SICI)1097-0169(200005)46:1<28:AID-CM4>3.0.CO;2-5] [PMID: 10842331]
[73]
Azedi, F.; Mehrpour, M.; Talebi, S.; Zendedel, A.; Ka-zemnejad, S.; Mousavizadeh, K.; Beyer, C.; Zarnani, A.H.
Joghataei, M.T. Melatonin regulates neuroinflammation ischemic stroke damage through interactions with microglia in reperfusion phase. Brain Res., 2019, 1723146401
[http://dx.doi.org/10.1016/j.brainres.2019.146401] [PMID: 31445031]
[74]
Proietti, S.; Catizone, A.; Masiello, M.G.; Dinicola, S.; Fabrizi, G.; Minini, M.; Ricci, G.; Verna, R.; Reiter, R.J.; Cucina, A.; Bizzarri, M. Increase in motility and invasiveness of MCF7 cancer cells induced by nicotine is abolished by melatonin through inhibition of ERK phosphorylation. J. Pineal Res., 2018, 64(4)e12467
[http://dx.doi.org/10.1111/jpi.12467] [PMID: 29338098]
[75]
Mayo, J.C.; Hevia, D.; Quiros-Gonzalez, I.; Rodriguez-Garcia, A.; Gonzalez-Menendez, P.; Cepas, V.; Gonzalez-Pola, I.; Sainz, R.M. IGFBP3 and MAPK/ERK signaling mediates melatonin-induced antitumor activity in prostate cancer. J. Pineal Res., 2017, 62(1)
[http://dx.doi.org/10.1111/jpi.12373] [PMID: 27736013]
[76]
Jung-Hynes, B.; Schmit, T.L.; Reagan-Shaw, S.R.; Siddiqui, I.A.; Mukhtar, H.; Ahmad, N. Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in TRAMP model. J. Pineal Res., 2011, 50(2), 140-149.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00823.x] [PMID: 21062352]
[77]
Jung-Hynes, B.; Ahmad, N. SIRT1 controls circadian clock circuitry and promotes cell survival: a connection with age-related neoplasms. FASEB J., 2009, 23(9), 2803-2809.
[http://dx.doi.org/10.1096/fj.09-129148] [PMID: 19439501]
[78]
Jung-Hynes, B.; Reiter, R.J.; Ahmad, N. Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. J. Pineal Res., 2010, 48(1), 9-19.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00729.x] [PMID: 20025641]
[79]
Jung-Hynes, B.; Nihal, M.; Zhong, W.; Ahmad, N. Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition? J. Biol. Chem., 2009, 284(6), 3823-3832.
[http://dx.doi.org/10.1074/jbc.M807869200] [PMID: 19075016]
[80]
Costes, S.; Boss, M.; Thomas, A.P.; Matveyenko, A.V. Activation of melatonin signaling promotes β-cell survival and function. Mol. Endocrinol., 2015, 29(5), 682-692.
[http://dx.doi.org/10.1210/me.2014-1293] [PMID: 25695910]
[81]
Franco, D.G.; Markus, R.P. The cellular state determines the effect of melatonin on the survival of mixed cerebellar cell culture. PLoS One, 2014, 9(9)e106332
[http://dx.doi.org/10.1371/journal.pone.0106332] [PMID: 25184316]
[82]
Luchetti, F.; Canonico, B.; Bartolini, D.; Arcangeletti, M.; Ciffolilli, S.; Murdolo, G.; Piroddi, M.; Papa, S.; Reiter, R.J.; Galli, F. Melatonin regulates mesenchymal stem cell differentiation: a review. J. Pineal Res., 2014, 56(4), 382-397.
[http://dx.doi.org/10.1111/jpi.12133] [PMID: 24650016]
[83]
Kim, T.K.; Kleszczynski, K.; Janjetovic, Z.; Sweatman, T.; Lin, Z.; Li, W.; Reiter, R.J.; Fischer, T.W.; Slominski, A.T. Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. FASEB J., 2013, 27(7), 2742-2755.
[http://dx.doi.org/10.1096/fj.12-224691] [PMID: 23620527]
[84]
Tan, D.X.; Manchester, L.C.; Terron, M.P.; Flores, L.J.; Reiter, R.J. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res., 2007, 42(1), 28-42.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00407.x] [PMID: 17198536]
[85]
Raghavendra, V.; Singh, V.; Kulkarni, S.K.; Agrewala, J.N. Melatonin enhances Th2 cell mediated immune responses: lack of sensitivity to reversal by naltrexone or benzodiazepine receptor antagonists. Mol. Cell. Biochem., 2001, 221(1-2), 57-62.
[http://dx.doi.org/10.1023/A:1010968611716] [PMID: 11506187]
[86]
González-González, A.; Mediavilla, M.D.; Sánchez-Barceló, E.J. Melatonin: A molecule for reducing breast cancer risk. Molecules, 2018, 23(2)E336
[http://dx.doi.org/10.3390/molecules23020336] [PMID: 29415446]
[87]
Chen, X.; Wang, Z.; Ma, H.; Zhang, S.; Yang, H.; Wang, H.; Fang, Z. Melatonin attenuates hypoxia-induced epithelial-mesenchymal transition and cell aggressive via Smad7/CCL20 in glioma. Oncotarget, 2017, 8(55), 93580-93592.
[http://dx.doi.org/10.18632/oncotarget.20525] [PMID: 29212174]
[88]
Lin, P.H.; Tung, Y.T.; Chen, H.Y.; Chiang, Y.F.; Hong, H.C.; Huang, K.C.; Hsu, S.P.; Huang, T.C.; Hsia, S.M. Melatonin activates cell death programs for the suppression of uterine leiomyoma cell proliferation. J. Pineal Res., 2019.e12620
[http://dx.doi.org/10.1111/jpi.12620] [PMID: 31710386]
[89]
Kubatka, P.; Zubor, P.; Busselberg, D.; Kwon, T.K.; Adamek, M.; Petrovic, D.; Opatrilova, R.; Gazdikova, K.; Caprnda, M.; Rodrigo, L.; Danko, J.; Kruzliak, P. Melatonin and breast cancer: Evidences from preclinical and human studies. Crit. Rev. Oncol. Hematol., 2018, 122, 133-143.
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.018] [PMID: 29458781]
[90]
Ozben, T.; Hanikoglu, A.; Kucuksayan, E.; Akduman, R.C. A review on melatonin’s effects in cancer: potential mechanisms. Anticancer. Agents Med. Chem., 2018, 18(7), 985-992.
[http://dx.doi.org/10.2174/1871520617666171121120223] [PMID: 29173185]
[91]
Carrillo-Vico, A.; Lardone, P.J.; Alvarez-Sánchez, N.; Rodríguez-Rodríguez, A.; Guerrero, J.M. Melatonin: buffering the immune system. Int. J. Mol. Sci., 2013, 14(4), 8638-8683.
[http://dx.doi.org/10.3390/ijms14048638] [PMID: 23609496]
[92]
Carrillo-Vico, A.; Reiter, R.J.; Lardone, P.J.; Herrera, J.L.; Fernández-Montesinos, R.; Guerrero, J.M.; Pozo, D. The modulatory role of melatonin on immune responsiveness. Curr. Opin. Investig. Drugs, 2006, 7(5), 423-431.
[PMID: 16729718]
[93]
Álvarez-Sánchez, N.; Cruz-Chamorro, I.; Díaz-Sánchez, M.; Sarmiento-Soto, H.; Medrano-Campillo, P.; Martínez-López, A.; Lardone, P.J.; Guerrero, J.M.; Carrillo-Vico, A. Melatonin reduces inflammatory response in peripheral T helper lymphocytes from relapsing-remitting multiple sclerosis patients. J. Pineal Res., 2017, 63(4)
[http://dx.doi.org/10.1111/jpi.12442] [PMID: 28793364]
[94]
Vinther, A.G.; Claësson, M.H. [The influence of melatonin on the immune system and cancer Ugeskr. Laeger, 2015, 177(21)V10140568
[http://dx.doi.org/10.23937/2378-3419/2/4/1024] [PMID: 26027592]
[95]
Liu, H.; Xu, L.; Wei, J.E.; Xie, M.R.; Wang, S.E.; Zhou, R.X. Role of CD4+ CD25+ regulatory T cells in melatonin-mediated inhibition of murine gastric cancer cell growth in vivo and in vitro. Anat. Rec. (Hoboken), 2011, 294(5), 781-788.
[http://dx.doi.org/10.1002/ar.21361] [PMID: 21416626]
[96]
Bjørklund, G.; Dadar, M.; Chirumbolo, S.; Lysiuk, R. Flavonoids as detoxifying and pro-survival agents: What’s new? Food Chem. Toxicol., 2017, 110, 240-250.
[http://dx.doi.org/10.1016/j.fct.2017.10.039] [PMID: 29079495]
[97]
Chirumbolo, S.; Bjørklund, G.; Sboarina, A.; Vella, A. The role of Vitamin D in the immune system as a pro-survival molecule. Clin. Ther., 2017, 39(5), 894-916.
[http://dx.doi.org/10.1016/j.clinthera.2017.03.021] [PMID: 28438353]
[98]
Yun, S.P.; Han, Y.S.; Lee, J.H.; Kim, S.M.; Lee, S.H. Melatonin rescues mesenchymal stem cells from senescence induced by the uremic toxin p-cresol via inhibiting mtor-dependent autophagy. Biomol. Ther. (Seoul), 2018, 26(4), 389-398.
[http://dx.doi.org/10.4062/biomolther.2017.071] [PMID: 28655071]
[99]
Jin, Y.; Hong, Y.; Park, C.Y.; Hong, Y. Molecular interactions of autophagy with the immune system and cancer. Int. J. Mol. Sci., 2017, 18(8)E1694
[http://dx.doi.org/10.3390/ijms18081694] [PMID: 28771183]
[100]
Areti, A.; Komirishetty, P.; Akuthota, M.; Malik, R.A.; Kumar, A. Melatonin prevents mitochondrial dysfunction and promotes neuroprotection by inducing autophagy during oxaliplatin-evoked peripheral neuropathy. J. Pineal Res., 2017, 62(3)
[http://dx.doi.org/10.1111/jpi.12393] [PMID: 28118492]
[101]
Kim, H.S.; Han, T.Y.; Yoo, Y.M. Melatonin-mediated intracellular insulin during 2-deoxy-d-glucose treatment is reduced through autophagy and edc3 protein in Insulinoma INS-1E Cells. Oxid. Med. Cell. Longev., 2016, 20162594703
[http://dx.doi.org/10.1155/2016/2594703] [PMID: 27493704]
[102]
Ataei, N.; Aghaei, M.; Panjehpour, M. The protective role of melatonin in cadmium-induced proliferation of ovarian cancer cells. Res. Pharm. Sci., 2018, 13(2), 159-167.
[http://dx.doi.org/10.4103/1735-5362.223801] [PMID: 29606970]
[103]
Martínez-Campa, C.; Alonso-González, C.; Mediavilla, M.D.; Cos, S.; González, A.; Ramos, S.; Sánchez-Barceló, E.J. Melatonin inhibits both ER alpha activation and breast cancer cell proliferation induced by a metalloestrogen, cadmium. J. Pineal Res., 2006, 40(4), 291-296.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00315.x] [PMID: 16635015]
[104]
del Río, B.; García Pedrero, J.M.; Martínez-Campa, C.; Zuazua, P.; Lazo, P.S.; Ramos, S. Melatonin, an endogenous-specific inhibitor of estrogen receptor alpha via calmodulin. J. Biol. Chem., 2004, 279(37), 38294-38302.
[http://dx.doi.org/10.1074/jbc.M403140200] [PMID: 15229223]
[105]
Lee, J.H.; Yoon, Y.M.; Han, Y.S.; Yun, C.W.; Lee, S.H. Melatonin promotes apoptosis of oxaliplatin-resistant colorectal cancer cells through inhibition of cellular prion protein. Anticancer Res., 2018, 38(4), 1993-2000.
[http://dx.doi.org/10.21873/anticanres.12437] [PMID: 29599315]
[106]
Chirumbolo, S.; Bjørklund, G. PERM hypothesis: the fundamental machinery able to elucidate the role of xenobiotics and hormesis in cell survival and homeostasis. Int. J. Mol. Sci., 2017, 18(1)E165
[http://dx.doi.org/10.3390/ijms18010165] [PMID: 28098843]
[107]
Zou, Z.W.; Liu, T.; Li, Y.; Chen, P.; Peng, X.; Ma, C.; Zhang, W.J.; Li, P.D. Melatonin suppresses thyroid cancer growth and overcomes radioresistance via inhibition of p65 phosphorylation and induction of ROS. Redox Biol., 2018, 16, 226-236.
[http://dx.doi.org/10.1016/j.redox.2018.02.025] [PMID: 29525603]
[108]
González, A.; González-González, A.; Alonso-González, C.; Menéndez-Menéndez, J.; Martínez-Campa, C.; Cos, S. Melatonin inhibits angiogenesis in SH-SY5Y human neuroblastoma cells by downregulation of VEGF. Oncol. Rep., 2017, 37(4), 2433-2440.
[http://dx.doi.org/10.3892/or.2017.5446] [PMID: 28259965]
[109]
Chirumbolo, S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm. Allergy Drug Targets, 2010, 9(4), 263-285.
[http://dx.doi.org/10.2174/187152810793358741] [PMID: 20887269]
[110]
Gao, Y.; Xiao, X.; Zhang, C.; Yu, W.; Guo, W.; Zhang, Z.; Li, Z.; Feng, X.; Hao, J.; Zhang, K.; Xiao, B.; Chen, M.; Huang, W.; Xiong, S.; Wu, X.; Deng, W. Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling pathways. J. Pineal Res., 2017, 62(2)
[http://dx.doi.org/10.1111/jpi.12380] [PMID: 27865009]
[111]
Lu, J.J.; Fu, L.; Tang, Z.; Zhang, C.; Qin, L.; Wang, J.; Yu, Z.; Shi, D.; Xiao, X.; Xie, F.; Huang, W.; Deng, W. Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget, 2016, 7(3), 2985-3001.
[http://dx.doi.org/10.18632/oncotarget.6407] [PMID: 26672764]
[112]
Lu, Y.X.; Chen, D.L.; Wang, D.S.; Chen, L.Z.; Mo, H.Y.; Sheng, H.; Bai, L.; Wu, Q.N.; Yu, H.E.; Xie, D.; Yun, J.P.; Zeng, Z.L.; Wang, F.; Ju, H.Q.; Xu, R.H. Melatonin enhances sensitivity to fluorouracil in oesophageal squamous cell carcinoma through inhibition of Erk and Akt pathway. Cell Death Dis., 2016, 7(10)e2432
[http://dx.doi.org/10.1038/cddis.2016.330] [PMID: 27787516]
[113]
Ho, H.Y.; Lin, C.W.; Chien, M.H.; Reiter, R.J.; Su, S.C.; Hsieh, Y.H.; Yang, S.F. Melatonin suppresses TPA-induced metastasis by downregulating matrix metalloproteinase-9 expression through JNK/SP-1 signaling in nasopharyngeal carcinoma. J. Pineal Res., 2016, 61(4), 479-492.
[http://dx.doi.org/10.1111/jpi.12365] [PMID: 27600920]
[114]
Yeh, C.M.; Lin, C.W.; Yang, J.S.; Yang, W.E.; Su, S.C.; Yang, S.F. Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation. Oncotarget, 2016, 7(16), 21952-21967.
[http://dx.doi.org/10.18632/oncotarget.8009] [PMID: 26980735]
[115]
Lin, Y.W.; Lee, L.M.; Lee, W.J.; Chu, C.Y.; Tan, P.; Yang, Y.C.; Chen, W.Y.; Yang, S.F.; Hsiao, M.; Chien, M.H. Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-κB DNA-binding activity. J. Pineal Res., 2016, 60(3), 277-290.
[http://dx.doi.org/10.1111/jpi.12308] [PMID: 26732239]
[116]
Zou, D.B.; Wei, X.; Hu, R.L.; Yang, X.P.; Zuo, L.; Zhang, S.M.; Zhu, H.Q.; Zhou, Q.; Gui, S.Y.; Wang, Y. Melatonin inhibits the migration of colon cancer rko cells by down-regulating myosin light chain kinase expression through cross-talk with p38 MAPK. Asian Pac. J. Cancer Prev., 2015, 16(14), 5835-5842.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.5835] [PMID: 26320459]
[117]
Lockwood, K.; Moesgaard, S.; Yamamoto, T.; Folkers, K. Progress on therapy of breast cancer with vitamin Q10 and the regression of metastases. Biochem. Biophys. Res. Commun., 1995, 212(1), 172-177.
[http://dx.doi.org/10.1006/bbrc.1995.1952] [PMID: 7612003]
[118]
Bjørklund, G. The adjuvant nutritional intervention in cancer (ANICA) Trial. Nutr. Cancer, 2015, 67(8), 1355-1358.
[http://dx.doi.org/10.1080/01635581.2015.1085582] [PMID: 26473998]
[119]
del Bello, B.; Paolicchi, A.; Comporti, M.; Pompella, A.; Maellaro, E. Hydrogen peroxide produced during gamma-glutamyl transpeptidase activity is involved in prevention of apoptosis and maintainance of proliferation in U937 cells. FASEB J., 1999, 13(1), 69-79.
[http://dx.doi.org/10.1096/fasebj.13.1.69] [PMID: 9872931]
[120]
Bojková, B.; Orendáš, P.; Kajo, K.; Kubatka, P.; Výbohová, D.; Bálentová, S.; Kružliak, P.; Zulli, A.; Demečková, V.; Péč, M.; Adamkov, M. Role of high-fat diet on the effect of pioglitazone and melatonin in a rat model of breast cancer. Eur. J. Cancer Prev., 2016, 25(5), 395-403.
[http://dx.doi.org/10.1097/CEJ.0000000000000195] [PMID: 26340057]
[121]
Carpentieri, A.; Díaz de Barboza, G.; Areco, V.; Peralta López, M.; Tolosa de Talamoni, N. New perspectives in melatonin uses. Pharmacol. Res., 2012, 65(4), 437-444.
[http://dx.doi.org/10.1016/j.phrs.2012.01.003] [PMID: 22311380]
[122]
Grant, S.G.; Melan, M.A.; Latimer, J.J.; Witt-Enderby, P.A. Melatonin and breast cancer: cellular mechanisms, clinical studies and future perspectives. Expert Rev. Mol. Med.,, 2009, 11e5 .
[http://dx.doi.org/10.1017/S1462399409000982] [PMID: 19193248]
[123]
Hong, Y.; Won, J.; Lee, Y.; Lee, S.; Park, K.; Chang, K.T.; Hong, Y. Melatonin treatment induces interplay of apoptosis, autophagy, and senescence in human colorectal cancer cells. J. Pineal Res., 2014, 56(3), 264-274.
[http://dx.doi.org/10.1111/jpi.12119] [PMID: 24484372]
[124]
Sainz, R.M.; Mayo, J.C.; Tan, D.X.; León, J.; Manchester, L.; Reiter, R.J. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate, 2005, 63(1), 29-43.
[http://dx.doi.org/10.1002/pros.20155] [PMID: 15378522]
[125]
Capote-Moreno, A.; Ramos, E.; Egea, J.; López-Muñoz, F.; Gil-Martín, E.; Romero, A. Potential of melatonin as adjuvant therapy of oral cancer in the era of epigenomics. Cancers (Basel), 2019, 11(11)pii: E1712.
[http://dx.doi.org/10.3390/cancers11111712] [PMID: 31684096]
[126]
Paulose, J.K.; Wright, J.M.; Patel, A.G.; Cassone, V.M. Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS One, 2016, 11(1)e0146643
[http://dx.doi.org/10.1371/journal.pone.0146643] [PMID: 26751389]
[127]
Yi, C.; Zhang, Y.; Yu, Z.; Xiao, Y.; Wang, J.; Qiu, H.; Yu, W.; Tang, R.; Yuan, Y.; Guo, W.; Deng, W. Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways. PLoS One, 2014, 9(7)e99943
[http://dx.doi.org/10.1371/journal.pone.0099943] [PMID: 25000190]
[128]
Markus, R.P.; Cecon, E.; Pires-Lapa, M.A. Immune-pineal axis: nuclear factor κB (NF-kB) mediates the shift in the melatonin source from pinealocytes to immune competent cells. Int. J. Mol. Sci., 2013, 14(6), 10979-10997.
[http://dx.doi.org/10.3390/ijms140610979] [PMID: 23708099]
[129]
Lucius, K.; Trukova, K. Integrative therapies and cardiovascular disease in the breast cancer population: a review, part 1. Integr. Med. (Encinitas), 2015, 14(4), 22-29.
[PMID: 26770154]
[130]
Lockwood, K.; Moesgaard, S.; Folkers, K. Partial and complete regression of breast cancer in patients in relation to dosage of coenzyme Q10. Biochem. Biophys. Res. Commun., 1994, 199(3), 1504-1508.
[http://dx.doi.org/10.1006/bbrc.1994.1401] [PMID: 7908519]
[131]
Lockwood, K.; Moesgaard, S.; Hanioka, T.; Folkers, K. Apparent partial remission of breast cancer in ‘high risk’ patients supplemented with nutritional antioxidants, essential fatty acids and coenzyme Q10. Mol. Aspects Med., 1994, 15(Suppl.), s231-s240.
[http://dx.doi.org/10.1016/0098-2997(94)90033-7] [PMID: 7752835]
[132]
Maellaro, E.; Dominici, S.; Del Bello, B.; Valentini, M.A.; Pieri, L.; Perego, P.; Supino, R.; Zunino, F.; Lorenzini, E.; Paolicchi, A.; Comporti, M.; Pompella, A. Membrane gamma-glutamyl transpeptidase activity of melanoma cells: effects on cellular H(2)O(2) production, cell surface protein thiol oxidation and NF-kappa B activation status. J. Cell Sci., 2000, 113(Pt 15), 2671-2678.
[PMID: 10893182]
[133]
Dominici, S.; Valentini, M.; Maellaro, E.; Del Bello, B.; Paolicchi, A.; Lorenzini, E.; Tongiani, R.; Comporti, M.; Pompella, A. Redox modulation of cell surface protein thiols in U937 lymphoma cells: the role of gamma-glutamyl transpeptidase-dependent H2O2 production and S-thiolation. Free Radic. Biol. Med., 1999, 27(5-6), 623-635.
[http://dx.doi.org/10.1016/S0891-5849(99)00111-2] [PMID: 10490284]
[134]
Dominici, S.; Visvikis, A.; Pieri, L.; Paolicchi, A.; Valentini, M.A.; Comporti, M.; Pompella, A. Redox modulation of NF-kappaB nuclear translocation and DNA binding in metastatic melanoma. The role of endogenous and gamma-glutamyl transferase-dependent oxidative stress. Tumori, 2003, 89(4), 426-433.
[http://dx.doi.org/10.1177/030089160308900416] [PMID: 14606649]
[135]
Pieri, L.; Dominici, S.; Del Bello, B.; Maellaro, E.; Comporti, M.; Paolicchi, A.; Pompella, A. Redox modulation of protein kinase/phosphatase balance in melanoma cells: the role of endogenous and gamma-glutamyltransferase-dependent H2O2 production. Biochim. Biophys. Acta, 2003, 1621(1), 76-83.
[http://dx.doi.org/10.1016/S0304-4165(03)00048-5] [PMID: 12667613]
[136]
Teoh, M.L.; Sun, W.; Smith, B.J.; Oberley, L.W.; Cullen, J.J. Modulation of reactive oxygen species in pancreatic cancer. Clin. Cancer Res., 2007, 13(24), 7441-7450.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0851] [PMID: 18094428]
[137]
Christoffersen, T.; Guren, T.K.; Spindler, K.L.; Dahl, O.; Lønning, P.E.; Gjertsen, B.T. Cancer therapy targeted at cellular signal transduction mechanisms: strategies, clinical results, and unresolved issues. Eur. J. Pharmacol., 2009, 625(1-3), 6-22.
[http://dx.doi.org/10.1016/j.ejphar.2009.10.009] [PMID: 19836383]
[138]
Christophersen, O.A.; Haug, A. More about hypervirulent avian influenza: Is the world now better prepared? Microb. Ecol. Health Dis., 2007, 19, 78-121.
[http://dx.doi.org/10.1080/08910600701343286]
[139]
Christophersen, O.A. Radiation biochemistry. Radiation at Home, Outdoors and in the Workplace; Brune, D.; Hellborg, R.; Persson, B.R.R; Pääkkönen, R., Ed.; Scandinavian Science Publishers: Oslo, 2001, pp. 52-61.
[140]
Idelchik, M.D.P.S.; Begley, U.; Begley, T.J.; Melendez, J.A. Mitochondrial ROS control of cancer. Semin. Cancer Biol., 2017, 47, 57-66.
[http://dx.doi.org/10.1016/j.semcancer.2017.04.005] [PMID: 28445781]
[141]
Maity, P.; Bindu, S.; Dey, S.; Goyal, M.; Alam, A.; Pal, C.; Reiter, R.; Bandyopadhyay, U. Melatonin reduces indomethacin-induced gastric mucosal cell apoptosis by preventing mitochondrial oxidative stress and the activation of mitochondrial pathway of apoptosis. J. Pineal Res., 2009, 46(3), 314-323.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00663.x] [PMID: 19220725]
[142]
Guven, C.; Taskin, E.; Akcakaya, H. Melatonin prevents mitochondrial damage induced by doxorubicin in mouse fibroblasts through AMPK-PPAR gamma-dependent mechanisms. Med. Sci. Monit., 2016, 22, 438-446.
[http://dx.doi.org/10.12659/MSM.897114] [PMID: 26861593]
[143]
Govender, J.; Loos, B.; Marais, E.; Engelbrecht, A.M. Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin. J. Pineal Res., 2014, 57(4), 367-380.
[http://dx.doi.org/10.1111/jpi.12176] [PMID: 25230823]
[144]
Conklin, K.A. Coenzyme q10 for prevention of anthracycline-induced cardiotoxicity. Integr. Cancer Ther., 2005, 4(2), 110-130.
[http://dx.doi.org/10.1177/1534735405276191] [PMID: 15911925]
[145]
Erdemli, H.K.; Akyol, S.; Armutcu, F.; Gulec, M.A.; Canbal, M.; Akyol, O. Melatonin and caffeic acid phenethyl ester in the regulation of mitochondrial function and apoptosis: The basis for future medical approaches. Life Sci., 2016, 148, 305-312.
[http://dx.doi.org/10.1016/j.lfs.2016.01.026] [PMID: 26784848]
[146]
Xu, S.; Pi, H.; Zhang, L.; Zhang, N.; Li, Y.; Zhang, H.; Tang, J.; Li, H.; Feng, M.; Deng, P.; Guo, P.; Tian, L.; Xie, J.; He, M.; Lu, Y.; Zhong, M.; Zhang, Y.; Wang, W.; Reiter, R.J.; Yu, Z.; Zhou, Z. Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria. J. Pineal Res., 2016, 60(3), 291-302.
[http://dx.doi.org/10.1111/jpi.12310] [PMID: 26732476]
[147]
de Oliveira, M.R.; Nabavi, S.M.; Braidy, N.; Setzer, W.N.; Ahmed, T.; Nabavi, S.F. Quercetin and the mitochondria: A mechanistic view. Biotechnol. Adv., 2016, 34(5), 532-549.
[http://dx.doi.org/10.1016/j.biotechadv.2015.12.014] [PMID: 26740171]
[148]
Oliveira, M.R.; Nabavi, S.F.; Daglia, M.; Rastrelli, L.; Nabavi, S.M. Epigallocatechin gallate and mitochondria-A story of life and death. Pharmacol. Res., 2016, 104, 70-85.
[http://dx.doi.org/10.1016/j.phrs.2015.12.027] [PMID: 26731017]
[149]
Kim, H.S.; Quon, M.J.; Kim, J.A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol., 2014, 2, 187-195.
[http://dx.doi.org/10.1016/j.redox.2013.12.022] [PMID: 24494192]
[150]
Ramis, M.R.; Esteban, S.; Miralles, A.; Tan, D.X.; Reiter, R.J. Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress: a review. Curr. Med. Chem., 2015, 22(22), 2690-2711.
[http://dx.doi.org/10.2174/0929867322666150619104143] [PMID: 26087763]
[151]
Lecumberri, E.; Dupertuis, Y.M.; Miralbell, R.; Pichard, C. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clin. Nutr., 2013, 32(6), 894-903.
[http://dx.doi.org/10.1016/j.clnu.2013.03.008] [PMID: 23582951]
[152]
Acuña-Castroviejo, D.; Escames, G.; León, J.; Carazo, A.; Khaldy, H. Mitochondrial regulation by melatonin and its metabolites. Adv. Exp. Med. Biol., 2003, 527, 549-557.
[http://dx.doi.org/10.1007/978-1-4615-0135-0_63] [PMID: 15206773]
[153]
Li, H.; He, J.; Yang, X.; Li, X.; Luo, D.; Wei, C.; Ma, J.; Zhang, Y.; Yang, J.; Zhang, X. Glutathione-dependent induction of local and systemic defense against oxidative stress by exogenous melatonin in cucumber (Cucumis sativus L.). J. Pineal Res., 2016, 60(2), 206-216.
[http://dx.doi.org/10.1111/jpi.12304] [PMID: 26681257]
[154]
Elbe, H.; Esrefoglu, M.; Vardi, N.; Taslidere, E.; Ozerol, E.; Tanbek, K. Melatonin, quercetin and resveratrol attenuates oxidative hepatocellular injury in streptozotocin-induced diabetic rats. Hum. Exp. Toxicol., 2015, 34(9), 859-868.
[http://dx.doi.org/10.1177/0960327114559993] [PMID: 26286521]
[155]
Kambe, D.; Kotani, M.; Yoshimoto, M.; Kaku, S.; Chaki, S.; Honda, K. Effects of quercetin on the sleep-wake cycle in rats: involvement of gamma-aminobutyric acid receptor type A in regulation of rapid eye movement sleep. Brain Res., 2010, 1330, 83-88.
[http://dx.doi.org/10.1016/j.brainres.2010.03.033] [PMID: 20303338]
[156]
Ozdal, T.; Sela, D.A.; Xiao, J.; Boyacioglu, D.; Chen, F.; Capanoglu, E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients, 2016, 8(2), 78.
[http://dx.doi.org/10.3390/nu8020078] [PMID: 26861391]
[157]
Hill, S.M.; Belancio, V.P.; Dauchy, R.T.; Xiang, S.; Brimer, S.; Mao, L.; Hauch, A.; Lundberg, P.W.; Summers, W.; Yuan, L.; Frasch, T.; Blask, D.E. Melatonin: an inhibitor of breast cancer. Endocr. Relat. Cancer, 2015, 22(3), R183-R204.
[http://dx.doi.org/10.1530/ERC-15-0030] [PMID: 25876649]
[158]
Baldwin, W.S.; Barrett, J.C. Melatonin attenuates hydrogen peroxide toxicity in MCF7 cells only at pharmacological concentrations. Biochem. Biophys. Res. Commun., 1998, 250(3), 602-605.
[http://dx.doi.org/10.1006/bbrc.1998.9370] [PMID: 9784392]
[159]
Xu, C.S.; Wang, Z.F.; Huang, X.D.; Dai, L.M.; Cao, C.J.; Li, Z.Q. Involvement of ROS-alpha v beta 3 integrin-FAK/Pyk2 in the inhibitory effect of melatonin on U251 glioma cell migration and invasion under hypoxia. J. Transl. Med., 2015, 13, 95.
[http://dx.doi.org/10.1186/s12967-015-0454-8] [PMID: 25889845]
[160]
Chetsawang, B.; Chetsawang, J.; Govitrapong, P. Protection against cell death and sustained tyrosine hydroxylase phosphorylation in hydrogen peroxide- and MPP-treated human neuroblastoma cells with melatonin. J. Pineal Res., 2009, 46(1), 36-42.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00605.x] [PMID: 18507712]
[161]
Perdomo, J.; Cabrera, J.; Estévez, F.; Loro, J.; Reiter, R.J.; Quintana, J. Melatonin induces apoptosis through a caspase-dependent but reactive oxygen species-independent mechanism in human leukemia Molt-3 cells. J. Pineal Res., 2013, 55(2), 195-206.
[http://dx.doi.org/10.1111/jpi.12062] [PMID: 23725013]
[162]
Sánchez-Sánchez, A.M.; Martín, V.; García-Santos, G.; Rodríguez-Blanco, J.; Casado-Zapico, S.; Suarez-Garnacho, S.; Antolín, I.; Rodriguez, C. Intracellular redox state as determinant for melatonin antiproliferative vs cytotoxic effects in cancer cells. Free Radic. Res., 2011, 45(11-12), 1333-1341.
[http://dx.doi.org/10.3109/10715762.2011.623700] [PMID: 21923620]
[163]
Bejarano, I.; Espino, J.; Barriga, C.; Reiter, R.J.; Pariente, J.A.; Rodríguez, A.B. Pro-oxidant effect of melatonin in tumour leucocytes: relation with its cytotoxic and pro-apoptotic effects. Basic Clin. Pharmacol. Toxicol., 2011, 108(1), 14-20.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00619.x] [PMID: 20649556]
[164]
Prieto-Domínguez, N.; Ordóñez, R.; Fernández, A.; Méndez-Blanco, C.; Baulies, A.; Garcia-Ruiz, C.; Fernández-Checa, J.C.; Mauriz, J.L.; González-Gallego, J. Melatonin-induced increase in sensitivity of human hepatocellular carcinoma cells to sorafenib is associated with reactive oxygen species production and mitophagy. J. Pineal Res., 2016, 61(3), 396-407.
[http://dx.doi.org/10.1111/jpi.12358] [PMID: 27484637]
[165]
Laothong, U.; Hiraku, Y.; Oikawa, S.; Intuyod, K.; Murata, M.; Pinlaor, S. Melatonin induces apoptosis in cholangiocarcinoma cell lines by activating the reactive oxygen species-mediated mitochondrial pathway. Oncol. Rep., 2015, 33(3), 1443-1449.
[http://dx.doi.org/10.3892/or.2015.3738] [PMID: 25606968]
[166]
Naziroğlu, M.; Tokat, S.; Demirci, S. Role of melatonin on electromagnetic radiation-induced oxidative stress and Ca2+ signaling molecular pathways in breast cancer. J. Recept. Signal Transduct. Res., 2012, 32(6), 290-297.
[http://dx.doi.org/10.3109/10799893.2012.737002] [PMID: 23194197]
[167]
Yang, W.S.; Deng, Q.; Fan, W.Y.; Wang, W.Y.; Wang, X. Light exposure at night, sleep duration, melatonin, and breast cancer: a dose-response analysis of observational studies. Eur. J. Cancer Prev., 2014, 23(4), 269-276.
[http://dx.doi.org/10.1097/CEJ.0000000000000030] [PMID: 24858716]
[168]
Wang, X.S.; Tipper, S.; Appleby, P.N.; Allen, N.E.; Key, T.J.; Travis, R.C. First-morning urinary melatonin and breast cancer risk in the Guernsey Study. Am. J. Epidemiol., 2014, 179(5), 584-593.
[http://dx.doi.org/10.1093/aje/kwt302] [PMID: 24418683]
[169]
Girschik, J.; Glass, D.; Ambrosini, G.L.; Fritschi, L. Could mining be protective against prostate cancer? A study and literature review. Occup. Environ. Med., 2010, 67(6), 365-374.
[http://dx.doi.org/10.1136/oem.2009.047092] [PMID: 19819854]
[170]
Shiu, S.Y. Towards rational and evidence-based use of melatonin in prostate cancer prevention and treatment. J. Pineal Res., 2007, 43(1), 1-9.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00451.x] [PMID: 17614829]
[171]
Gao, L.; Xu, J.P.; Shan, H.M.; Zhang, R.; Xu, R.K. [Inhibitory effects of melatonin on the development of 17-beta-estradiol induced prolactinoma in relation to plasma prolactin and peroxidative lipid contents Sheng Li Xue Bao, 2001, 53(3), 165-169.
[PMID: 12589398]
[172]
Zoico, E.; Darra, E.; Rizzatti, V.; Budui, S.; Franceschetti, G.; Mazzali, G.; Rossi, A.P.; Fantin, F.; Menegazzi, M.; Cinti, S.; Zamboni, M. Adipocytes WNT5a mediated dedifferentiation: a possible target in pancreatic cancer microenvironment. Oncotarget, 2016, 7(15), 20223-20235.
[http://dx.doi.org/10.18632/oncotarget.7936] [PMID: 26958939]
[173]
Chirumbolo, S.; Bjørklund, G. Can Wnt5a and Wnt non-canonical pathways really mediate adipocyte de-differentiation in a tumour microenvironment? Eur. J. Cancer, 2016, 64, 96-100.
[http://dx.doi.org/10.1016/j.ejca.2016.05.026] [PMID: 27391920]
[174]
Zoico, E.; Darra, E.; Rizzatti, V.; Tebon, M.; Franceschetti, G.; Mazzali, G.; Rossi, A.P.; Fantin, F.; Zamboni, M. Role of adipose tissue in melanoma cancer microenvironment and progression. Int. J. Obes., 2018, 42(3), 344-352.
[http://dx.doi.org/10.1038/ijo.2017.218] [PMID: 28883539]
[175]
Carbone, C.; Piro, G.; Gaianigo, N.; Ligorio, F.; Santoro, R.; Merz, V.; Simionato, F.; Zecchetto, C.; Falco, G.; Conti, G.; Kamga, P.T.; Krampera, M.; Di Nicolantonio, F.; De Franceschi, L.; Scarpa, A.; Tortora, G.; Melisi, D. Adipocytes sustain pancreatic cancer progression through a non-canonical WNT paracrine network inducing ROR2 nuclear shuttling. Int. J. Obes., 2018, 42(3), 334-343.
[http://dx.doi.org/10.1038/ijo.2017.285] [PMID: 29151594]
[176]
Zare, H.; Shafabakhsh, R.; Reiter, R.J.; Asemi, Z. Melatonin is a potential inhibitor of ovarian cancer: molecular aspects. J. Ovarian Res., 2019, 12(1), 26.
[http://dx.doi.org/10.1186/s13048-019-0502-8] [PMID: 30914056]
[177]
Zhang, R.; Zhang, P.; Wang, H.; Hou, D.; Li, W.; Xiao, G.; Li, C. Inhibitory effects of metformin at low concentration on epithelial-mesenchymal transition of CD44(+)CD117(+) ovarian cancer stem cells. Stem Cell Res. Ther., 2015, 6, 262.
[http://dx.doi.org/10.1186/s13287-015-0249-0] [PMID: 26718286]
[178]
Chao, C.C.; Chen, P.C.; Chiou, P.C.; Hsu, C.J.; Liu, P.I.; Yang, Y.C.; Reiter, R.J.; Yang, S.F.; Tang, C.H. Melatonin suppresses lung cancer metastasis by inhibition of epithelial-mesenchymal transition through targeting to Twist. Clin. Sci. (Lond.), 2019, 133(5), 709-722.
[http://dx.doi.org/10.1042/CS20180945] [PMID: 30808718]
[179]
Park, K.H.; Kang, J.W.; Lee, E.M.; Kim, J.S.; Rhee, Y.H.; Kim, M.; Jeong, S.J.; Park, Y.G.; Kim, S.H. Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J. Pineal Res., 2011, 51(2), 187-194.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00875.x] [PMID: 21470302]
[180]
Markus, R.P.; Ferreira, Z.S.; Fernandes, P.A.; Cecon, E. The immune-pineal axis: a shuttle between endocrine and paracrine melatonin sources. Neuroimmunomodulation, 2007, 14(3-4), 126-133.
[http://dx.doi.org/10.1159/000110635] [PMID: 18073503]
[181]
Wang, Z.H.; Gao, Q.Y.; Fang, J.Y. Loss of PTEN expression as a predictor of resistance to anti-EGFR monoclonal therapy in metastatic colorectal cancer: evidence from retrospective studies. Cancer Chemother. Pharmacol., 2012, 69(6), 1647-1655.
[http://dx.doi.org/10.1007/s00280-012-1886-y] [PMID: 22610356]
[182]
Seely, D.; Wu, P.; Fritz, H.; Kennedy, D.A.; Tsui, T.; Seely, A.J.; Mills, E. Melatonin as adjuvant cancer care with and without chemotherapy: a systematic review and meta-analysis of randomized trials. Integr. Cancer Ther., 2012, 11(4), 293-303.
[http://dx.doi.org/10.1177/1534735411425484] [PMID: 22019490]
[183]
Mills, E.; Wu, P.; Seely, D.; Guyatt, G. Melatonin in the treatment of cancer: a systematic review of randomized controlled trials and meta-analysis. J. Pineal Res., 2005, 39(4), 360-366.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00258.x] [PMID: 16207291]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy