Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Soy Isoflavones and their Effects on Xenobiotic Metabolism

Author(s): Tianjiao Zhou, Chengzhen Meng and Pingli He*

Volume 20, Issue 1, 2019

Page: [46 - 53] Pages: 8

DOI: 10.2174/1389200219666180427170213

Price: $65

Abstract

Background: Soy isoflavones, such as genistein and daidzein, are bioflavonoids found in soy products that are able to interact with various hormones such as estrogen. Epidemiological studies reveal a proper level of isoflavones in diet can prevent many diseases like cancers or diabetes. Therefore, it is important to study the biotransformation and xenobiotic metabolism of soy isoflavones.

Methods: A systematic review of published studies was carried out to investigate the characterization of isoflavones and their metabolites, sample pretreatment and quantitative analysis of isoflavones, and the influence of soy isoflavones on drug and xenobiotic metabolism.

Results: Aglycones with weak estrogen-like activities are the biologically active forms of the soy isoflavones in mammals. The most recent advances including extraction, purification and detection of isoflavones in soybean and soy products are discussed. The effects of soy isoflavones on drug and xenobiotic metabolism involve in regulation of phase I cytochrome P450 (CYPs) enzyme and phase I detoxifying enzymes expression and activity. At the molecular level, soy isoflavones have proved capable of estrogenic/antiestrogenic with tissue-selective, anti-cancer, antiobesity, anti-oxidation, and tyrosine kinase inhibition activities.

Conclusion: This review summarized different aspects of soy isoflavones and their molecular mechanisms of pharmacological action on xenobiotic, which demonstrated that soy isoflavones can decrease the incidence of many diseases and benefit for human health. However, since the lack of clinical research for evaluation of the proper dosage of intake of soy isoflavones in diet or adjunctive therapy, there is a need for further studies on the selection of doses, biomedical applications and adverse effects of isoflavones for human health.

Keywords: Soybean, soy isoflavones, analysis, xenobiotic metabolism, biological effects, biomedical applications.

Graphical Abstract
[1]
Ma, X.; Sun, P.; He, P.; Han, P.; Wang, J.; Qiao, S.; Li, D. Development of monoclonal antibodies and a competitive ELISA detection met-hod for glycinin.; an allergen in soybean. Food Chem., 2010, 121, 546-551.
[2]
Ma, X.; He, P.; Sun, P.; Han, P. Lipoic acid: an immunomodulator that attenuates glycinin-induced anaphylactic reactions in a rat model. J. Agric. Food Chem., 2010, 58(8), 5086-5092.
[3]
Han, P.; Ma, X.; Yin, J. The effects of lipoic acid on soybean beta-conglycinin-induced anaphylactic reactions in a rat model. Arch. Anim. Nutr., 2010, 64(3), 254-264.
[4]
Shim, Y.S.; Yoon, W.J.; Hwang, J.B.; Park, H.J.; Seo, D.; Ha, J. Rapid method for the determination of 14 isoflavones in food using UHPLC coupled to photo diode array detection. Food Chem., 2015, 187, 391-397.
[5]
Lee, S.J.; Yan, W.; Ahn, J.K.; Chung, I.M. Effects of year, site, genotype and their interactions on various soybean isoflavones. Field Crops Res., 2003, 81, 181-192.
[6]
Hoeck, J.A.; Fehr, W.R.; Murphy, P.A.; Welke, G.A. Influence of genotype and environment on isoflavone contents of soybean. Crop Sci., 2000, 40, 48-51.
[7]
Magiera, S.; Niescior, A.; Baranowska, I. Quick supramolecular solvent-based microextraction combined with ultra-high performance liquid chromatography for the analysis of isoflavones in soy foods. Food Anal. Methods, 2016, 9, 1770-1780.
[8]
Zhong, X.S.; Ge, J.; Chen, S.W.; Xiong, Y.Q.; Ma, S.J.; Chen, Q. A novel isoflavone profiling method based on UPLC-PDA-ESI-MS. Food Chem., 2017, 219, 40-47.
[9]
Zhang, S.; Zheng, Z.P.; Zeng, M.M.; He, Z.Y.; Tao, G.J.; Qin, F.; Chen, J. A novel isoflavone profiling method based on UPLC-PDA-ESI-MS. Food Chem., 2017, 219, 40-47.
[10]
He, L.; Han, M.; Qiao, S.; He, P.; Li, D.; Li, N.; Ma, X. Soybean antigen proteins and their intestinal sensitization sctivities. Curr. Protein Pept. Sci., 2015, 16(7), 613-621.
[11]
Rostagno, M.A.; Villares, A.; Guillamón, E.; García-Lafuente, A.; Martínez, J.A. Sample preparation for the analysis of isoflavones from soybeans and soy foods. J. Chromatogr. A, 2009, 1216(1), 2-29.
[12]
Rostagno, M.A.; Palma, M.; Barroso, C.G. Solid-phase extraction of soy isoflavones. J. Chromatogr. A, 2005, 1076(1-2), 110-117.
[13]
Lang, Q.; Wai, C.M. Supercritical fluid extraction in herbal and natural product studies - a practical review. Talanta, 2001, 53(4), 771-782.
[14]
Murphy, P.A.; Barua, K.; Hauck, C.C. Solvent extraction selection in the determination of isoflavones in soy foods. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 777(1-2), 129-138.
[15]
Luthria, D.L.; Biswas, R.S. Natarajan, Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean. Food Chem., 2007, 105, 325-333.
[16]
Rostagno, M.A.; Palma, M.; Barroso, C.G. Microwave assisted extraction of soy isoflavones. Anal. Chim. Acta, 2007, 588(2), 274-282.
[17]
Rostagno, M.A.; Palma, M.; Barroso, C.G. Ultrasound-assisted extraction of soy isoflavones. J. Chromatogr. A, 2007, 597, 265-272.
[18]
Cordisco, E.; Haidar, C.N.; Coscueta, E.R.; Nerli, B.B.; Malpiedi, L.P. Integrated extraction and purification of soy isoflavones by using aqueous micellar systems. Food Chem., 2016, 213, 514-520.
[19]
Bajkacza, S.; Adamekb, J. Evaluation of new natural deep eutectic solvents for the Sylwia Bajkacza. Talanta, 2017, 168, 329-335.
[20]
Magiera, S.; Sobik, A. Ionic liquid-based ultrasound-assisted extraction coupled with liquid chromatography to determine isoflavones in soy foods. J. Food Compos. Anal., 2017, 57, 94-101.
[21]
Hsu, B.Y.; Inbaraj, B.S.; Chen, B.H. Analysis of sy isoflavones in foods and biological fluids: An overview. Yao Wu Shi Pin Fen Xi, 2010, 18, 141-154.
[22]
Grace, P.B.; Taylor, J.I.; Botting, N.P.; Fryatt, T.; Oldfield, M.F.; Bingham, S.A. Quantification of isoflavones and lignans in urine using gas chromatography/mass spectrometry. Anal. Biochem., 2003, 315(1), 114-121.
[23]
Dentith, S.; Lockwood, B. Development of techniques for the analysis of isoflavones in soy foods and nutraceuticals. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(3), 242-247.
[24]
Rostagno, M.A.; Palma, M.; Barroso, C.G. Fast analysis of soy isoflavones by high-performance liquid chromatography with monolithic columns. Anal. Chim. Acta, 2007, 582(2), 243-249.
[25]
Wren, S.A.C.; Tchelitcheff, P. Use of ultra-performance liquid chromatography in pharmaceutical development. J. Chromatogr. A, 2006, 1119(1-2), 140-146.
[26]
Shim, Y.S.; Yoon, W.J.; Hwang, J.B.; Park, H.J.; Seo, D.; Ha, J. Rapid method for the determination of 14 isoflavones in food using UHPLC coupled to photo diode array detection. Food Chem., 2015, 187, 391-397.
[27]
Aresta1, A.; Di Grumo1, F.; Zambonin, C. Determination of major isoflavones in soy drinks by solid-phase micro extraction coupled to liquid chromatography. Food Anal. Methods, 2016, 9, 925-933.
[28]
Dalluge, J.J.; Eliason, E.; Frazer, S. Simultaneous identification of soyasaponins and isoflavones and quantification of soyasaponin Bb in soy products, using liquid chromatography/electrospray ionization-mass spectrometry. J. Agric. Food Chem., 2003, 51(12), 3520-3524.
[29]
Grace, P.B.; Taylor, J.I.; Botting, N.P.; Fryatt, T.; Oldfield, M.F.; Al-Maharik, N.; Bingham, S.A. Quantification of isoflavones and lignans in serum using isotope dilution liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2003, 17(12), 1350-1357.
[30]
Zhang, S.; Zheng, Z.P.; Zeng, M.M.; He, Z.Y.; Tao, G.J.; Qin, F.; Chen, J. A novel isoflavone profiling method based on UPLC-PDA-ESI-MS. Food Chem., 2017, 219, 40-47.
[31]
Phillips, M.M.; Bedner, M.; Reitz, M.; Burdette, C.Q.; Nelson, M.A.; Yen, J.H.; Sander, L.C.; Rimmer, C.A. Liquid chromatography with absorbance detection and with isotope-dilution mass spectrometry for determination of isoflavones in soy standard reference materials. Anal. Bioanal. Chem., 2017, 409(4), 949-960.
[32]
Park, H.J.; Jung, M.Y. One step salting-out assisted liquid-liquid extraction followed by UHPLC-ESI-MS/MS for the analysis of isoflavones in soy milk. Food Chem., 2017, 229, 797-804.
[33]
Vacek, J.; Klejdus, B.; Lojková, L.; Kubán, V. Current trends in isolation, separation, determination and identification of isoflavones: a review. J. Sep. Sci., 2008, 31(11), 2054-2067.
[34]
Starkey, J.A.; Mechref, Y.; Byun, C.K.; Steinmetz, R.; Fuqua, J.S.; Pescovitz, O.H.; Novotny, M.V. Determination of trace isoflavone phytoestrogens in biological materials by capillary electrochromatography. Anal. Chem., 2002, 74(23), 5998-6005.
[35]
Bennetau-Pelissero, C.; Arnal-Schnebelen, B.; Lamothe, V. ELISA as a new method to measure genistein and daidzein in food and human fluids. Food Chem., 2003, 82, 645-658.
[36]
Vacek, J.; Klejdus, B.; Lojková, L.; Kubán, V. Current trends in isolation, separation, determination and identification of isoflavones: a review. J. Sep. Sci., 2008, 31(11), 2054-2067.
[37]
Sakamoto, S. Development of open-sandwich fluorescence-linked immunoassay and high throughput analysis of isoflavones. Soy Protein Research, 2017, 19, 153-159.
[38]
Wang, P.; Zhang, H.; Yang, H.; Nie, L.; Zang, H. Rapid determination of major bioactive isoflavonoid compounds during the extraction process of kudzu (Pueraria lobata) by near-infrared transmission spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 1403-1408.
[39]
Jamilian, M.; Asemi, Z. The Effects of Soy Isoflavones on Metabolic Status of Patients With Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab., 2016, 101(9), 3386-3394.
[40]
Moon, Y.J.; Wang, X.; Morris, M.E. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro, 2006, 20(2), 187-210.
[41]
Chan, H.Y.; Leung, L.K. A potential protective mechanism of soya isoflavones against 7,12-dimethylbenz[a]anthracene tumour initiation. Br. J. Nutr., 2003, 90(2), 457-465.
[42]
Roberts, D.W.; Doerge, D.R.; Churchwell, M.I.; Gamboa da Costa, G.; Marques, M.M.; Tolleson, W.H. Inhibition of extrahepatic human cytochromes P450 1A1 and 1B1 by metabolism of isoflavones found in Trifolium pratense (red clover). J. Agric. Food Chem., 2004, 52(21), 6623-6632.
[43]
Umemoto, A.; Komaki, K.; Monden, Y.; Suwa, M.; Kanno, Y.; Kitagawa, M.; Suzuki, M.; Lin, C.X.; Ueyama, Y.; Momen, M.A.; Ravindernath, A.; Shibutani, S. Identification and quantification of tamoxifen-DNA adducts in the liver of rats and mice. Chem. Res. Toxicol., 2001, 14(8), 1006-1013.
[44]
Peng, W.X.; Li, H.D.; Zhou, H.H. Effect of daidzein on CYP1A2 activity and pharmacokinetics of theophylline in healthy volunteers. Eur. J. Clin. Pharmacol., 2003, 59(3), 237-241.
[45]
Chen, C.; Kong, A.N. Dietary chemopreventive compounds and ARE/EpRE signaling. Free Radic. Biol. Med., 2004, 36(12), 1505-1516.
[46]
Helsby, N.A.; Williams, J.; Kerr, D.; Gescher, A.; Chipman, J.K. The isoflavones equol and genistein do not induce xenobiotic-metabolizing enzymes in mouse and in human cells. Xenobiotica, 1997, 27(6), 587-596.
[47]
Li, Y.; Mezei, O.; Shay, N.F. Human and murine hepatic sterol-12-alpha-hydroxylase and other xenobiotic metabolism mRNA are upregulated by soy isoflavones. J. Nutr., 2007, 137(7), 1705-1712.
[48]
Li, Y.; Ross-Viola, J.S.; Shay, N.F.; Moore, D.D.; Ricketts, M.L. Human CYP3A4 and murine Cyp3A11 are regulated by equol and genistein via the pregnane X receptor in a species-specific manner. J. Nutr., 2009, 139(5), 898-904.
[49]
Ansell, P.J.; Espinosa-Nicholas, C.; Curran, E.M.; Judy, B.M.; Philips, B.J.; Hannink, M.; Lubahn, D.B. In vitro and in vivo regulation of antioxidant response element-dependent gene expression by estrogens. Endocrinology, 2004, 145(1), 311-317.
[50]
Wang, W.; Liu, L.Q.; Higuchi, C.M.; Chen, H. Induction of NADPH:quinone reductase by dietary phytoestrogens in colonic Colo205 cells. Biochem. Pharmacol., 1998, 56(2), 189-195.
[51]
Sharma, S.; Sultana, S. Modulatory effect of soy isoflavones on biochemical alterations mediated by TPA in mouse skin model. Food Chem. Toxicol., 2004, 42(10), 1669-1675.
[52]
Wiegand, H.; Wagner, A.E.; Boesch-Saadatmandi, C.; Kruse, H.P.; Kulling, S.; Rimbach, G. Effect of dietary genistein on Phase II and antioxidant enzymes in rat liver. Cancer Genomics Proteomics, 2009, 6(2), 85-92.
[53]
Gong, P.; Madak-Erdogan, Z.; Flaws, J.A.; Shapiro, D.J.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Estrogen receptor-α and aryl hydrocarbon receptor involvement in the actions of botanical estrogens in target cells. Mol. Cell. Endocrinol., 2016, 437, 190-200.
[54]
van Die, M.D.; Bone, K.M.; Williams, S.G.; Pirotta, M.V. Soy and soy isoflavones in prostate cancer: a systematic review and meta-analysis of randomized controlled trials. BJU Int., 2014, 113(5b), E119-E130.
[55]
Uifălean, A.; Schneider, S.; Gierok, P.; Ionescu, C.; Iuga, C.A.; Lalk, M. The impact of soy isoflavones on MCF-7 and MDA-MB-231 breast cancer cells using a global metabolomic approach. Int. J. Mol. Sci., 2016, 17(9), E1443.
[56]
Wada, K.; Nakamura, K.; Tamai, Y.; Tsuji, M.; Kawachi, T.; Hori, A.; Takeyama, N.; Tanabashi, S.; Matsushita, S.; Tokimitsu, N.; Nagata, C. Soy isoflavone intake and breast cancer risk in Japan: from the Takayama study. Int. J. Cancer, 2013, 133(4), 952-960.
[57]
Zhong, X.; Ge, J.; Chen, S.; Xiong, Y.; Ma, S.; Chen, Q. Association between dietary isoflavones in soy and legumes and endometrial cancer: a systematic review and meta-analysis. J. Acad. Nutr. Diet., 2018, 118(4), 637-651.
[58]
Dong, J.Y.; Qin, L.Q. Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res. Treat., 2011, 125(2), 315-323.
[59]
Zhang, G.Q.; Chen, J.L.; Liu, Q.; Zhang, Y.; Zeng, H.; Zhao, Y. Soy intake is associated with lower endometrial cancer risk: a systematic review and meta-analysis of observational studies. Medicine (Baltimore), 2015, 94(50), e2281.
[60]
Mahmoud, A.M.; Yang, W.; Bosland, M.C. Soy isoflavones and prostate cancer: a review of molecular mechanisms. J. Steroid Biochem. Mol. Biol., 2014, 140, 116-132.
[61]
Rietjens, I.M.C.M.; Sotoca, A.M.; Vervoort, J.; Louisse, J. Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks. Mol. Nutr. Food Res., 2013, 57(1), 100-113.
[62]
Amaral, C.; Toloi, M.R.T.; Vasconcelos, L.D.; Fonseca, M.J.V.; Correia-da-Silva, G.; Teixeira, N. The role of soybean extracts and isoflavones in hormone-dependent breast cancer: aromatase activity and biological effects. Food Funct., 2017, 8(9), 3064-3074.
[63]
Wang, S.; Wang, Y.; Pan, M.H.; Ho, C.T. Anti-obesity molecular mechanism of soy isoflavones: Weaving the way to new therapeutic routes. Food Funct., 2017, 8(11), 3831-3846.
[64]
Huang, C.; Pang, D.J.; Luo, Q.H.; Chen, X.L.; Gao, Q.; Shi, L.Q.; Liu, W.T.; Zou, Y.F.; Li, L.X.; Chen, Z.L. Soy isoflavones regulate lipid metabolism through an AKT/mTORC1 pathway in Diet-Induced Obesity (DIO) male rats. Molecules, 2016, 21(5), E586.
[65]
Luo, T.; Snyder, S.M.; Zhao, B.; Sullivan, D.K.; Hamilton-Reeves, J.; Guthrie, G.; Ricketts, M.L.; Shiverick, K.T.; Shay, N. Gene expression patterns are altered in athymic mice and metabolic syndrome factors are reduced in C57BL/6J mice fed high-fat diets supplemented with soy isoflavones. J. Agric. Food Chem., 2016, 64(40), 7492-7501.
[66]
Pusparini; Dharma, R.; Suyatna, F.D.; Mansyur, M.; Hidajat, A. Effect of soy isoflavone supplementation on vascular endothelial function and oxidative stress in postmenopausal women: a community randomized controlled trial. Asia Pac. J. Clin. Nutr., 2013, 22(3), 357-364.
[67]
Wang, B.; Wu, C. Dietary soy isoflavones alleviate dextran sulfate sodium-induced inflammation and oxidative stress in mice. Exp. Ther. Med., 2017, 14(1), 276-282.
[68]
Akiyama, T.; Ishida, J.; Nakagawa, S.; Ogawara, H.; Watanabe, S.; Itoh, N.; Shibuya, M.; Fukami, Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem., 1987, 262(12), 5592-5595.
[69]
Lee, K.Y.; Kim, J.R.; Choi, H.C. Genistein-induced LKB1–AMPK activation inhibits senescence of VSMC through autophagy induction. Vascul. Pharmacol., 2016, 81, 75-82.
[70]
Wang, Q.; Liu, L.; Li, H.; Tao, P.; Qi, Y.; Li, J. Effects of high-order interactions among IGFBP-3 genetic polymorphisms, body mass index and soy isoflavone intake on breast cancer susceptibility. PLoS One, 2016, 11(9), e0162970.
[71]
Rostagno, M.A.; Villares, A.; Guillamón, E.; García-Lafuente, A.; Martínez, J.A. Sample preparation for the analysis of isoflavones from soybeans and soy foods. J. Chromatogr. A, 2009, 1216(1), 2-29.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy