Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Optimization of Microwave-Assisted Extraction of Phenolic Compounds from Medicinal and Aromatic Plants: Sideritis raeseri, Sideritis scardica and Origanum vulgare

Author(s): Ioannis Sarakatsianos, Konstantinos Adamopoulos*, Victoria Samanidou, Athanasia Goula and Elissavet Ninou

Volume 16, Issue 2, 2020

Page: [106 - 111] Pages: 6

DOI: 10.2174/1573411014666180423125631

Price: $65

Abstract

Background: Medicinal plants consist a rich source of natural pharmacologically active compounds. The aim of the current work, was the study and optimization of the extraction conditions of phenolic constituents from important medicinal and aromatic plants, id. Sideritis raeseri, Sideritis scardica and Origanum vulgare, implementing microwave assisted extraction technique.

Methods: Optimization was based on various parameters affecting extraction procedure, such as the duration of microwave radiation, the ratio of plant material mass to the solvent, the type and the concentration of the solvent.

Results: The results revealed that 10 min of microwave radiation provided the maximum extraction yield of the phenolic constituents. The ratio of the plant material mass and the solvent had minor effect to the extraction efficiency.

Conclusion: The examined solvents provided an extraction yield of phenolic constituents following the order: EtOH < MeOH < H2O < MeOH:H2O (80:20, v/v) < EtOH:H2O (60:40, v/v), in the case of Sideritis raeseri and Sideritis scardica and the order: H2O < MeOH:H2O (80:20, v/v) < EtOH:H2O (60:40, v/v) < MeOH < EtOH in the case of Origanum vulgare.

Keywords: Microwave assisted extraction, phenolic compounds, natural antioxidants, aromatic plants, medicinal plants, sideritis species.

Next »
Graphical Abstract
[1]
Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408(6809), 239-247.
[http://dx.doi.org/10.1038/35041687] [PMID: 11089981]
[2]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[3]
Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J. Agric. Food Chem., 1998, 46, 4113-4117.
[http://dx.doi.org/10.1021/jf9801973]
[4]
Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem., 2004, 85, 231-237.
[http://dx.doi.org/10.1016/j.foodchem.2003.05.007]
[5]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[6]
Nakiboglu, M.; Urek, R.O.; Kayali, H.; Tarhan, L. Antioxidant capacities of endemic Sideritis sipylea and Origanum sipyleum from Turkey. Food Chem., 2007, 104, 630-635.
[http://dx.doi.org/10.1016/j.foodchem.2006.12.012]
[7]
Ozkan, G. Comparison of antioxidant phenolics of ethanolic extracts and aqueous infusions from Sideritis species. Asian J. Chem., 2009, 21, 1024-1028.
[8]
Yan, F.; Azizi, A.; Janke, S.; Schwarz, M.; Zeller, S.; Honermeier, B. Antioxidant capacity variation in the oregano (Origanum vulgare L.) collection of the German National Genebank. Ind. Crops Prod., 2016, 92, 19-25.
[http://dx.doi.org/10.1016/j.indcrop.2016.07.038]
[9]
Gabrieli, C.N.; Kefalas, P.G.; Kokkalou, E.L. Antioxidant activity of flavonoids from Sideritis raeseri. J. Ethnopharmacol., 2005, 96(3), 423-428.
[http://dx.doi.org/10.1016/j.jep.2004.09.031] [PMID: 15619561]
[10]
Charami, M.T.; Lazari, D.; Karioti, A.; Skaltsa, H.; Hadjipavlou-Litina, D.; Souleles, C. Antioxidant and antiinflammatory activities of Sideritis perfoliata subsp. perfoliata (Lamiaceae). Phytother. Res., 2008, 22(4), 450-454.
[http://dx.doi.org/10.1002/ptr.2333] [PMID: 18386254]
[11]
Janeska, B.; Stefova, M.; Alipieva, K. Assay of flavonoid aglycones from the species of genus Sideritis (Lamiaceae) from Macedonia with HPLC-UV DAD. Acta Pharm., 2007, 57(3), 371-377.
[http://dx.doi.org/10.2478/v10007-007-0030-8] [PMID: 17878116]
[12]
Armata, M.; Gabrieli, C.; Termentzi, A.; Zervou, M.; Kokkalou, E. Constituents of Sideritis syriaca ssp. syriaca (Lamiaceae) and their antioxidant activity. Food Chem., 2008, 111, 179-186.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.061]
[13]
Pljevljakušić, D.; Šavikin, K.; Janković, T.; Zdunić, G.; Ristić, M.; Godjevac, D.; Konić-Ristić, A. Chemical properties of the cultivated Sideritis raeseri Boiss. & Heldr. subsp. raeseri. Food Chem., 2011, 124, 226-233.
[http://dx.doi.org/10.1016/j.foodchem.2010.06.023]
[14]
Tunalier, Z.; Kosar, M.; Ozturk, N.; Baser, K.H.C. Antioxidant properties and phenolic composition of Sideritis species. Chem. Nat. Compd., 2004, 40, 206-210.
[http://dx.doi.org/10.1023/B:CONC.0000039124.83109.ac]
[15]
Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem., 2001, 49(11), 5165-5170.
[http://dx.doi.org/10.1021/jf010697n] [PMID: 11714298]
[16]
Pizzale, I.; Bortolomeazzi, R.; Vichi, S.; Überegger, E.; Conte, L.S. Antioxidant activity of sage (Salvia officinalis and S. fruticose) and oregano Origanum onites and O. indercedens) extracts related to their phenolic compound content. J. Sci. Food Agric., 2002, 82, 1645-1651.
[http://dx.doi.org/10.1002/jsfa.1240]
[17]
Yanishlieya, N.V.; Marinova, E.M.; Gordon, M.H. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem., 1999, 64, 59-66.
[http://dx.doi.org/10.1016/S0308-8146(98)00086-7]
[18]
Routray, W.; Orsat, V. Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol., 2012, 5, 409-424.
[http://dx.doi.org/10.1007/s11947-011-0573-z]
[19]
Zhang, H.F.; Wang, Y.; Zhang, H.Q. Apparatus for ultrasound and microwave assisted extraction with temperature regulator. 2011. Chinese Patent ZL200720086099.7
[20]
Zhang, H.F.; Yang, X.H.; Wang, Y. Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci. Technol., 2011, 22, 672-688.
[http://dx.doi.org/10.1016/j.tifs.2011.07.003]
[21]
Afoakwah, A.N.; Owusu, J.; Adomako, C.; Teye, E. Microwave assisted extraction (MAE) of antioxidant constituents in plant materials, review article. J. Biosci. Biotechnol., 2012, 1, 132-140.
[22]
ISO. 14502-1. Content of total polyphenols in tea - Colorimetric method using Folin - Ciocalteu reagent. 2005.
[23]
ISISO. 7513. Instant tea in solid form - Determination of moisture content (loss in mass at 103 degrees C). 2012.
[24]
Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol., 2006, 17, 300-312.
[http://dx.doi.org/10.1016/j.tifs.2005.12.004]
[25]
van der Mheen, H.; Havkin-Frenkel, D.; van den Berg, W. Selection of Origanum vulgare plants for essential oil, carvacrol, total phenols, and antioxidant potential. Isr. J. Plant Sci., 2010, 58, 221-228.
[http://dx.doi.org/10.1560/IJPS.58.3-4.221]
[26]
Karimi, A.; Min, B.; Brownmilleer, C.; Lee, S.O. Effects of Extraction Techniques on Total Phenolic Content and antioxidant capacities of two oregano leaves. J. Food Res., 2015, 4, 112-123.
[http://dx.doi.org/10.5539/jfr.v4n1p112]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy