Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Viral Induced Oxidative and Inflammatory Response in Alzheimer’s Disease Pathogenesis with Identification of Potential Drug Candidates: A Systematic Review using Systems Biology Approach

Author(s): Puneet Talwar, Renu Gupta, Suman Kushwaha, Rachna Agarwal, Luciano Saso, Shrikant Kukreti and Ritushree Kukreti*

Volume 17, Issue 4, 2019

Page: [352 - 365] Pages: 14

DOI: 10.2174/1570159X16666180419124508

Price: $65

Abstract

Alzheimer’s disease (AD) is genetically complex with multifactorial etiology. Here, we aim to identify the potential viral pathogens leading to aberrant inflammatory and oxidative stress response in AD along with potential drug candidates using systems biology approach. We retrieved protein interactions of amyloid precursor protein (APP) and tau protein (MAPT) from NCBI and genes for oxidative stress from NetAge, for inflammation from NetAge and InnateDB databases. Genes implicated in aging were retrieved from GenAge database and two GEO expression datasets. These genes were individually used to create protein-protein interaction network using STRING database (score≥0.7). The interactions of candidate genes with known viruses were mapped using virhostnet v2.0 database. Drug molecules targeting candidate genes were retrieved using the Drug- Gene Interaction Database (DGIdb). Data mining resulted in 2095 APP, 116 MAPT, 214 oxidative stress, 1269 inflammatory genes. After STRING PPIN analysis, 404 APP, 109 MAPT, 204 oxidative stress and 1014 inflammation related high confidence proteins were identified. The overlap among all datasets yielded eight common markers (AKT1, GSK3B, APP, APOE, EGFR, PIN1, CASP8 and SNCA). These genes showed association with hepatitis C virus (HCV), Epstein– Barr virus (EBV), human herpes virus 8 and Human papillomavirus (HPV). Further, screening of drugs targeting candidate genes, and possessing anti-inflammatory property, antiviral activity along with a suggested role in AD pathophysiology yielded 12 potential drug candidates. Our study demonstrated the role of viral etiology in AD pathogenesis by elucidating interaction of oxidative stress and inflammation causing candidate genes with common viruses along with the identification of potential AD drug candidates.

Keywords: Alzheimer's disease, neurodegenerative disease, virus infection, genes, drug, protein-protein interaction, systematic review.

Graphical Abstract
[1]
Bertram, L.; Tanzi, R.E. The genetic epidemiology of neurodegenerative disease. J. Clin. Invest., 2005, 115(6), 1449-1457.
[http://dx.doi.org/10.1172/JCI24761] [PMID: 15931380]
[2]
Griffin, W.S. Inflammation and neurodegenerative diseases. Am. J. Clin. Nutr., 2006, 83(2), 470S-474S.
[http://dx.doi.org/10.1093/ajcn/83.2.470S] [PMID: 16470015]
[3]
Talwar, P.; Sinha, J.; Grover, S.; Rawat, C.; Kushwaha, S.; Agarwal, R.; Taneja, V.; Kukreti, R. dissecting complex and multifactorial nature of alzheimer’s disease pathogenesis: A clinical, genomic, and systems biology perspective. Mol. Neurobiol., 2015.
[PMID: 26351077]
[4]
Nicolson, G.L.; Nicolson, J.H.G.L.; Haier, J. The role of chronic bacterial and viral infections in neurodegenerative, neurobehavioral, psychiatric, autoimmune and fatiguing illnesses: Part 1: Part. Br. J. Med. Pract., 2009, 2(4)
[5]
Fukumoto, H.; Tennis, M.; Locascio, J.J.; Hyman, B.T.; Growdon, J.H.; Irizarry, M.C. Age but not diagnosis is the main predictor of plasma amyloid beta-protein levels. Arch. Neurol., 2003, 60(7), 958-964.
[http://dx.doi.org/10.1001/archneur.60.7.958] [PMID: 12873852]
[6]
Groh, N.; Bühler, A.; Huang, C.; Li, K.W.; van Nierop, P.; Smit, A.B.; Fändrich, M.; Baumann, F.; David, D.C. Age-dependent protein aggregation initiates amyloid-β aggregation. Front. Aging Neurosci., 2017, 9, 138.
[http://dx.doi.org/10.3389/fnagi.2017.00138] [PMID: 28567012]
[7]
Bretsky, P.; Guralnik, J.M.; Launer, L.; Albert, M.; Seeman, T.E. The role of APOE-epsilon4 in longitudinal cognitive decline: MacArthur studies of successful aging. Neurology, 2003, 60(7), 1077-1081.
[http://dx.doi.org/10.1212/01.WNL.0000055875.26908.24] [PMID: 12682309]
[8]
Adamis, D.; Meagher, D.; Williams, J.; Mulligan, O.; McCarthy, G. A systematic review and meta-analysis of the association between the apolipoprotein E genotype and delirium. Psychiatr. Genet., 2016, 26(2), 53-59.
[http://dx.doi.org/10.1097/YPG.0000000000000122] [PMID: 26901792]
[9]
Bertram, L.; McQueen, M.B.; Mullin, K.; Blacker, D.; Tanzi, R.E. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet., 2007, 39(1), 17-23.
[http://dx.doi.org/10.1038/ng1934] [PMID: 17192785]
[10]
Carter, C.J. Convergence of genes implicated in Alzheimer’s disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem. Int., 2007, 50(1), 12-38.
[http://dx.doi.org/10.1016/j.neuint.2006.07.007] [PMID: 16973241]
[11]
Gatz, M.; Fratiglioni, L.; Johansson, B.; Berg, S.; Mortimer, J.A.; Reynolds, C.A.; Fiske, A.; Pedersen, N.L. Complete ascertainment of dementia in the Swedish Twin Registry: the HARMONY study. Neurobiol. Aging, 2005, 26(4), 439-447.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.04.004] [PMID: 15653172]
[12]
Nicolson, G.L.; Haier, J. Role of chronic bacterial and viral infections in neurodegenerative, neurobehavioural, psychiatric, autoimmune and fatiguing illnesses: Part 2. Br. J. Med. Pract., 2010, 3(1), 301-310.
[13]
Foxman, E.F.; Iwasaki, A. Genome-virome interactions: examining the role of common viral infections in complex disease. Nat. Rev. Microbiol., 2011, 9(4), 254-264.
[http://dx.doi.org/10.1038/nrmicro2541] [PMID: 21407242]
[14]
Lorber, B. Are all diseases infectious? Ann. Intern. Med., 1996, 125(10), 844-851.
[http://dx.doi.org/10.7326/0003-4819-125-10-199611150-00010] [PMID: 8928993]
[15]
Mattson, M.P. Infectious agents and age-related neurodegenerative disorders. Ageing Res. Rev., 2004, 3(1), 105-120.
[http://dx.doi.org/10.1016/j.arr.2003.08.005] [PMID: 15163105]
[16]
Lin, W.R.; Wozniak, M.A.; Cooper, R.J.; Wilcock, G.K.; Itzhaki, R.F. Herpesviruses in brain and Alzheimer’s disease. J. Pathol., 2002, 197(3), 395-402.
[http://dx.doi.org/10.1002/path.1127] [PMID: 12115887]
[17]
Verreault, R.; Laurin, D.; Lindsay, J.; De Serres, G. Past exposure to vaccines and subsequent risk of Alzheimer's disease. CMAJ: Canadian Medical Association journal = journal de l'Association medicale canadienne, 2001, 165(11), 1495-1498.
[18]
Tacutu, R.; Budovsky, A.; Fraifeld, V.E. The NetAge database: a compendium of networks for longevity, age-related diseases and associated processes. Biogerontology, 2010, 11(4), 513-522.
[http://dx.doi.org/10.1007/s10522-010-9265-8] [PMID: 20186480]
[19]
Breuer, K.; Foroushani, A.K.; Laird, M.R.; Chen, C.; Sribnaia, A.; Lo, R.; Winsor, G.L.; Hancock, R.E.; Brinkman, F.S.; Lynn, D.J. InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res., 2013, 41(Database issue), D1228-D1233.
[http://dx.doi.org/10.1093/nar/gks1147] [PMID: 23180781]
[20]
Barrett, T.; Troup, D.B.; Wilhite, S.E.; Ledoux, P.; Rudnev, D.; Evangelista, C.; Kim, I.F.; Soboleva, A.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Muertter, R.N.; Edgar, R. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res., 2009, 37(Database issue), D885-D890.
[http://dx.doi.org/10.1093/nar/gkn764] [PMID: 18940857]
[21]
Gray, K.A.; Yates, B.; Seal, R.L.; Wright, M.W.; Bruford, E.A. Genenames.org: the HGNC resources in 2015. Nucleic Acids Res., 2015, 43(Database issue), D1079-D1085.
[http://dx.doi.org/10.1093/nar/gku1071] [PMID: 25361968]
[22]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[23]
Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics, 2014, 15(1), 293.
[http://dx.doi.org/10.1186/1471-2105-15-293] [PMID: 25176396]
[24]
Guirimand, T.; Delmotte, S.; Navratil, V. VirHostNet 2.0: surfing on the web of virus/host molecular interactions data. Nucleic Acids Res., 2015, 43(Database issue), D583-D587.
[http://dx.doi.org/10.1093/nar/gku1121] [PMID: 25392406]
[25]
Wagner, A.H.; Coffman, A.C.; Ainscough, B.J.; Spies, N.C.; Skidmore, Z.L.; Campbell, K.M.; Krysiak, K.; Pan, D.; McMichael, J.F.; Eldred, J.M.; Walker, J.R.; Wilson, R.K.; Mardis, E.R.; Griffith, M.; Griffith, O.L. DGIdb 2.0: mining clinically relevant drug-gene interactions. Nucleic Acids Res., 2016, 44(D1), D1036-D1044.
[http://dx.doi.org/10.1093/nar/gkv1165] [PMID: 26531824]
[26]
Griffith, M.; Griffith, O.L.; Coffman, A.C.; Weible, J.V.; McMichael, J.F.; Spies, N.C.; Koval, J.; Das, I.; Callaway, M.B.; Eldred, J.M.; Miller, C.A.; Subramanian, J.; Govindan, R.; Kumar, R.D.; Bose, R.; Ding, L.; Walker, J.R.; Larson, D.E.; Dooling, D.J.; Smith, S.M.; Ley, T.J.; Mardis, E.R.; Wilson, R.K. DGIdb: mining the druggable genome. Nat. Methods, 2013, 10(12), 1209-1210.
[http://dx.doi.org/10.1038/nmeth.2689] [PMID: 24122041]
[27]
Van Cauwenberghe, C.; Van Broeckhoven, C.; Sleegers, K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet. Med., 2016, 18(5), 421-430.
[http://dx.doi.org/10.1038/gim.2015.117]
[28]
Deleidi, M.; Isacson, O. Viral and inflammatory triggers of neurodegenerative diseases. Sci. Transl. Med., 2012, 4(121), 121ps3.
[http://dx.doi.org/10.1126/scitranslmed.3003492] [PMID: 22344685]
[29]
Navratil, V.; de Chassey, B.; Combe, C.R.; Lotteau, V. When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases. BMC Syst. Biol., 2011, 5, 13.
[http://dx.doi.org/10.1186/1752-0509-5-13] [PMID: 21255393]
[30]
Liao, F.F.; Xu, H. Insulin signaling in sporadic Alzheimer’s disease. Sci. Signal., 2009, 2(74), pe36.
[http://dx.doi.org/10.1126/scisignal.274pe36] [PMID: 19509405]
[31]
Liu, S.Y.; Zhao, H.D.; Wang, J.L.; Huang, T.; Tian, H.W.; Yao, L.F.; Tao, H.; Chen, Z.W.; Wang, C.Y.; Sheng, S.T.; Li, H.; Zhao, B.; Li, K.S. Association between polymorphisms of the AKT1 gene promoter and risk of the Alzheimer’s disease in a chinese han population with type 2 diabetes. CNS Neurosci. Ther., 2015, 21(8), 619-625.
[http://dx.doi.org/10.1111/cns.12430] [PMID: 26178916]
[32]
Ksiezak-Reding, H.; Pyo, H.K.; Feinstein, B.; Pasinetti, G.M. Akt/PKB kinase phosphorylates separately Thr212 and Ser214 of tau protein in vitro. Biochim. Biophys. Acta, 2003, 1639(3), 159-168.
[http://dx.doi.org/10.1016/j.bbadis.2003.09.001] [PMID: 14636947]
[33]
Rickle, A.; Bogdanovic, N.; Volkman, I.; Winblad, B.; Ravid, R.; Cowburn, R.F. Akt activity in Alzheimer’s disease and other neurodegenerative disorders. Neuroreport, 2004, 15(6), 955-959.
[http://dx.doi.org/10.1097/00001756-200404290-00005] [PMID: 15076714]
[34]
Jo, J.; Whitcomb, D.J.; Olsen, K.M.; Kerrigan, T.L.; Lo, S.C.; Bru-Mercier, G.; Dickinson, B.; Scullion, S.; Sheng, M.; Collingridge, G.; Cho, K. Aβ(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β. Nat. Neurosci., 2011, 14(5), 545-547.
[http://dx.doi.org/10.1038/nn.2785] [PMID: 21441921]
[35]
Ryder, J.; Su, Y.; Ni, B. Akt/GSK3beta serine/threonine kinases: evidence for a signalling pathway mediated by familial Alzheimer’s disease mutations. Cell. Signal., 2004, 16(2), 187-200.
[http://dx.doi.org/10.1016/j.cellsig.2003.07.004] [PMID: 14636889]
[36]
Kettunen, P.; Larsson, S.; Holmgren, S.; Olsson, S.; Minthon, L.; Zetterberg, H.; Blennow, K.; Nilsson, S.; Sjölander, A. Genetic variants of GSK3B are associated with biomarkers for Alzheimer’s disease and cognitive function. J. Alzheimers Dis., 2015, 44(4), 1313-1322.
[PMID: 25420549]
[37]
Lin, Q.; Cao, Y.P.; Gao, J. Common polymorphisms in the GSK3β gene may contribute to the pathogenesis of alzheimer disease: A meta-analysis. J. Geriatr. Psychiatry Neurol., 2015, 28(2), 83-93.
[http://dx.doi.org/10.1177/0891988714554712] [PMID: 25351705]
[38]
Schaffer, B.A.; Bertram, L.; Miller, B.L.; Mullin, K.; Weintraub, S.; Johnson, N.; Bigio, E.H.; Mesulam, M.; Wiedau-Pazos, M.; Jackson, G.R.; Cummings, J.L.; Cantor, R.M.; Levey, A.I.; Tanzi, R.E.; Geschwind, D.H. Association of GSK3B with Alzheimer disease and frontotemporal dementia. Arch. Neurol., 2008, 65(10), 1368-1374.
[http://dx.doi.org/10.1001/archneur.65.10.1368] [PMID: 18852354]
[39]
Hernandez, F.; Lucas, J.J.; Avila, J. GSK3 and tau: two convergence points in Alzheimer’s disease. J. Alzheimers Dis., 2013, 33(Suppl. 1), S141-S144.
[PMID: 22710914]
[40]
Ma, T. GSK3 in Alzheimer’s disease: mind the isoforms. J. Alzheimers Dis., 2014, 39(4), 707-710.
[PMID: 24254703]
[41]
Li, J.; Zhang, Q.; Chen, F.; Meng, X.; Liu, W.; Chen, D.; Yan, J.; Kim, S.; Wang, L.; Feng, W.; Saykin, A.J.; Liang, H.; Shen, L. Genome-wide association and interaction studies of CSF Ttau/ Abeta42 ratio in ADNI cohort Neurobiol Aging., 2017, 57, 247 e241-247 e248.
[42]
Lee, L.C.; Goh, M.Q.L.; Koo, E.H. Transcriptional regulation of APP by apoE: To boldly go where no isoform has gone before: ApoE, APP transcription and AD: Hypothesised mechanisms and existing knowledge gaps. BioEssays, 2017, 39(9)
[http://dx.doi.org/10.1002/bies.201700062] [PMID: 28731260]
[43]
Dorey, E.; Bamji-Mirza, M.; Najem, D.; Li, Y.; Liu, H.; Callaghan, D.; Walker, D.; Lue, L.F.; Stanimirovic, D.; Zhang, W.; Apolipoprotein, E. Apolipoprotein E isoforms differentially regulate alzheimer’s disease and amyloid-β-induced inflammatory response in vivo and in vitro. J. Alzheimers Dis., 2017, 57(4), 1265-1279.
[http://dx.doi.org/10.3233/JAD-160133] [PMID: 28372324]
[44]
Marottoli, F.M.; Katsumata, Y.; Koster, K.P.; Thomas, R.; Fardo, D.W.; Tai, L.M. Peripheral inflammation, apolipoprotein E4, and amyloid-β interact to induce cognitive and cerebrovascular dysfunction. ASN Neuro, 2017, 9(4), 1759091417719201.
[http://dx.doi.org/10.1177/1759091417719201] [PMID: 28707482]
[45]
van Harten, A.C.; Jongbloed, W.; Teunissen, C.E.; Scheltens, P.; Veerhuis, R.; van der Flier, W.M. CSF ApoE predicts clinical progression in nondemented APOEε4 carriers. Neurobiol. Aging, 2017, 57, 186-194.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.04.002] [PMID: 28571653]
[46]
Talwar, P.; Sinha, J.; Grover, S.; Agarwal, R.; Kushwaha, S.; Srivastava, M.V.; Kukreti, R. Meta-analysis of apolipoprotein E levels in the cerebrospinal fluid of patients with Alzheimer’s disease. J. Neurol. Sci., 2016, 360, 179-187.
[http://dx.doi.org/10.1016/j.jns.2015.12.004] [PMID: 26723997]
[47]
Thomas, R.; Morris, A.W.J.; Tai, L.M. Epidermal growth factor prevents APOE4-induced cognitive and cerebrovascular deficits in female mice. Heliyon, 2017, 3(6), e00319.
[http://dx.doi.org/10.1016/j.heliyon.2017.e00319] [PMID: 28626809]
[48]
Blair, L.J.; Baker, J.D.; Sabbagh, J.J.; Dickey, C.A. The emerging role of peptidyl-prolyl isomerase chaperones in tau oligomerization, amyloid processing, and Alzheimer’s disease. J. Neurochem., 2015, 133(1), 1-13.
[http://dx.doi.org/10.1111/jnc.13033] [PMID: 25628064]
[49]
Lloret, A.; Fuchsberger, T.; Giraldo, E.; Viña, J. Molecular mechanisms linking amyloid β toxicity and Tau hyperphosphorylation in Alzheimer׳s disease. Free Radic. Biol. Med., 2015, 83, 186-191.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.02.028] [PMID: 25746773]
[50]
Pastorino, L.; Ma, S.L.; Balastik, M.; Huang, P.; Pandya, D.; Nicholson, L.; Lu, K.P. Alzheimer’s disease-related loss of Pin1 function influences the intracellular localization and the processing of AβPP. J. Alzheimers Dis., 2012, 30(2), 277-297.
[PMID: 22430533]
[51]
Driver, J.A.; Zhou, X.Z.; Lu, K.P. Regulation of protein conformation by Pin1 offers novel disease mechanisms and therapeutic approaches in Alzheimer’s disease. Discov. Med., 2014, 17(92), 93-99.
[PMID: 24534472]
[52]
Lattanzio, F.; Carboni, L.; Carretta, D.; Rimondini, R.; Candeletti, S.; Romualdi, P. Human apolipoprotein E4 modulates the expression of Pin1, Sirtuin 1, and Presenilin 1 in brain regions of targeted replacement apoE mice. Neuroscience, 2014, 256, 360-369.
[http://dx.doi.org/10.1016/j.neuroscience.2013.10.017] [PMID: 24161275]
[53]
Lattanzio, F.; Carboni, L.; Carretta, D.; Candeletti, S.; Romualdi, P. Treatment with the neurotoxic Abeta (25-35) peptide modulates the expression of neuroprotective factors Pin1, Sirtuin 1, and brain derived neurotrophic factor in SH-SY5Y human neuroblastoma cells. Exp. Toxicol. Pathol., 2016, 68(5), 271-276.
[54]
Lonati, E.; Masserini, M.; Bulbarelli, A. Pin1: a new outlook in Alzheimer’s disease. Curr. Alzheimer Res., 2011, 8(6), 615-622.
[http://dx.doi.org/10.2174/156720511796717140] [PMID: 21605045]
[55]
Ma, S.L.; Tang, N.L.; Tam, C.W.; Lui, V.W.; Lam, L.C.; Chiu, H.F.; Driver, J.A.; Pastorino, L.; Lu, K.P.A.A. PIN1 polymorphism that prevents its suppression by AP4 associates with delayed onset of Alzheimer’s disease. Neurobiol. Aging, 2012, 33(4), 804-813.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.018] [PMID: 20580132]
[56]
Tacconi, S.; Perri, R.; Balestrieri, E.; Grelli, S.; Bernardini, S.; Annichiarico, R.; Mastino, A.; Caltagirone, C.; Macchi, B. Increased caspase activation in peripheral blood mononuclear cells of patients with Alzheimer’s disease. Exp. Neurol., 2004, 190(1), 254-262.
[http://dx.doi.org/10.1016/j.expneurol.2004.07.009] [PMID: 15473998]
[57]
Wei, W.; Norton, D.D.; Wang, X.; Kusiak, J.W. Abeta 17-42 in Alzheimer’s disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain, 2002, 125(Pt 9), 2036-2043.
[http://dx.doi.org/10.1093/brain/awf205] [PMID: 12183349]
[58]
Rohn, T.T.; Head, E.; Nesse, W.H.; Cotman, C.W.; Cribbs, D.H. Activation of caspase-8 in the Alzheimer’s disease brain. Neurobiol. Dis., 2001, 8(6), 1006-1016.
[http://dx.doi.org/10.1006/nbdi.2001.0449] [PMID: 11741396]
[59]
Yoshino, Y.; Mori, T.; Yoshida, T.; Yamazaki, K.; Ozaki, Y.; Sao, T.; Funahashi, Y.; Iga, J.I.; Ueno, S.I. Elevated mRNA expression and low methylation of SNCA in japanese alzheimer’s disease subjects. J. Alzheimers Dis., 2016, 54(4), 1349-1357.
[http://dx.doi.org/10.3233/JAD-160430] [PMID: 27567856]
[60]
Wang, Q.; Tian, Q.; Song, X.; Liu, Y.; Li, W. SNCA gene polymorphism may contribute to an increased risk of Alzheimer’s disease. J. Clin. Lab. Anal., 2016, 30(6), 1092-1099.
[http://dx.doi.org/10.1002/jcla.21986] [PMID: 27184464]
[61]
Seo, J.H.; Rah, J.C.; Choi, S.H.; Shin, J.K.; Min, K.; Kim, H.S.; Park, C.H.; Kim, S.; Kim, E.M.; Lee, S.H.; Lee, S.; Suh, S.W.; Suh, Y.H. Alpha-synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J., 2002, 16(13), 1826-1828.
[http://dx.doi.org/10.1096/fj.02-0041fje] [PMID: 12223445]
[62]
Sochocka, M.; Zwolińska, K.; Leszek, J. The infectious etiology of Alzheimer’s Disease. Curr. Neuropharmacol., 2017, 15(7), 996-1009.
[http://dx.doi.org/10.2174/1570159X15666170313122937] [PMID: 28294067]
[63]
Chiu, W.C.; Tsan, Y.T.; Tsai, S.L.; Chang, C.J.; Wang, J.D.; Chen, P.C. Hepatitis C viral infection and the risk of dementia. Eur. J. Neurol., 2014, 21(8), 1068-e59.
[http://dx.doi.org/10.1111/ene.12317] [PMID: 24313931]
[64]
Solinas, A.; Piras, M.R.; Deplano, A. Cognitive dysfunction and hepatitis C virus infection. World J. Hepatol., 2015, 7(7), 922-925.
[http://dx.doi.org/10.4254/wjh.v7.i7.922] [PMID: 25954475]
[65]
Wilkinson, J.; Radkowski, M.; Eschbacher, J.M.; Laskus, T. Activation of brain macrophages/microglia cells in hepatitis C infection. Gut, 2010, 59(10), 1394-1400.
[http://dx.doi.org/10.1136/gut.2009.199356] [PMID: 20675697]
[66]
Liu, Z.; Zhao, F.; He, J.J. Hepatitis C virus (HCV) interaction with astrocytes: nonproductive infection and induction of IL-18. J. Neurovirol., 2014, 20(3), 278-293.
[http://dx.doi.org/10.1007/s13365-014-0245-7] [PMID: 24671718]
[67]
Forton, D.M.; Allsop, J.M.; Main, J.; Foster, G.R.; Thomas, H.C.; Taylor-Robinson, S.D. Evidence for a cerebral effect of the hepatitis C virus. Lancet, 2001, 358(9275), 38-39.
[http://dx.doi.org/10.1016/S0140-6736(00)05270-3] [PMID: 11454379]
[68]
Forton, D.M.; Hamilton, G.; Allsop, J.M.; Grover, V.P.; Wesnes, K.; O’Sullivan, C.; Thomas, H.C.; Taylor-Robinson, S.D. Cerebral immune activation in chronic hepatitis C infection: a magnetic resonance spectroscopy study. J. Hepatol., 2008, 49(3), 316-322.
[http://dx.doi.org/10.1016/j.jhep.2008.03.022] [PMID: 18538439]
[69]
Karim, S.; Mirza, Z.; Kamal, M.A.; Abuzenadah, A.M.; Azhar, E.I.; Al-Qahtani, M.H.; Sohrab, S.S. An association of virus infection with type 2 diabetes and Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2014, 13(3), 429-439.
[http://dx.doi.org/10.2174/18715273113126660164] [PMID: 24059298]
[70]
Hilsabeck, R.C.; Hassanein, T.I.; Carlson, M.D.; Ziegler, E.A.; Perry, W. Cognitive functioning and psychiatric symptomatology in patients with chronic hepatitis C. J. Int. Neuropsychol. Soc., 2003, 9(6), 847-854.
[http://dx.doi.org/10.1017/S1355617703960048] [PMID: 14632243]
[71]
Sutcliffe, J.G.; Hedlund, P.B.; Thomas, E.A.; Bloom, F.E.; Hilbush, B.S. Peripheral reduction of β-amyloid is sufficient to reduce brain β-amyloid: implications for Alzheimer’s disease. J. Neurosci. Res., 2011, 89(6), 808-814.
[http://dx.doi.org/10.1002/jnr.22603] [PMID: 21374699]
[72]
McIntosh, P.B.; Martin, S.R.; Jackson, D.J.; Khan, J.; Isaacson, E.R.; Calder, L.; Raj, K.; Griffin, H.M.; Wang, Q.; Laskey, P.; Eccleston, J.F.; Doorbar, J. Structural analysis reveals an amyloid form of the human papillomavirus type 16 E1--E4 protein and provides a molecular basis for its accumulation. J. Virol., 2008, 82(16), 8196-8203.
[http://dx.doi.org/10.1128/JVI.00509-08] [PMID: 18562538]
[73]
Omura, Y.; Lu, D.; Jones, M.K.; Nihrane, A.; Duvvi, H.; Shimotsuura, Y.; Ohki, M. Early detection of autism (ASD) by a non-invasive quick measurement of markedly reduced acetylcholine & DHEA and increased β-amyloid (1-42), asbestos (Chrysotile), titanium dioxide, Al, Hg & often coexisting virus infections (CMV, HPV 16 and 18), bacterial infections etc. in the brain and corresponding safe individualized effective treatment. Acupunct. Electrother. Res., 2015, 40(3), 157-187.
[http://dx.doi.org/10.3727/036012915X14473562232941] [PMID: 26829843]
[74]
Shim, S.M.; Cheon, H.S.; Jo, C.; Koh, Y.H.; Song, J.; Jeon, J.P. Elevated epstein-barr virus antibody level is associated with cognitive decline in the korean elderly. J. Alzheimers Dis., 2017, 55(1), 293-301.
[http://dx.doi.org/10.3233/JAD-160563] [PMID: 27589534]
[75]
Licastro, F.; Raschi, E.; Carbone, I.; Porcellini, E. Variants in antiviral genes are risk factors for cognitive decline and dementia. J. Alzheimers Dis., 2015, 46(3), 655-663.
[http://dx.doi.org/10.3233/JAD-142718] [PMID: 25835418]
[76]
Volpi, A. Epstein-Barr virus and human herpesvirus type 8 infections of the central nervous system. Herpes, 2004, 11(Suppl. 2), 120A-127A.
[77]
Itzhaki, R.F. Herpes simplex virus type 1 and Alzheimer’s disease: possible mechanisms and signposts. FASEB J., 2017, 31(8), 3216-3226.
[http://dx.doi.org/10.1096/fj.201700360] [PMID: 28765170]
[78]
Steel, A.J.; Eslick, G.D. Herpes viruses increase the risk of alzheimer’s disease: A meta-analysis. J. Alzheimers Dis., 2015, 47(2), 351-364.
[http://dx.doi.org/10.3233/JAD-140822] [PMID: 26401558]
[79]
Carter, C.J. Alzheimer’s disease: a pathogenetic autoimmune disorder caused by herpes simplex in a gene-dependent manner. Int. J. Alzheimers Dis., 2010, 2010, 140539.
[http://dx.doi.org/10.4061/2010/140539] [PMID: 21234306]
[80]
Nakano, K.; Kobayashi, M.; Nakamura, K.; Nakanishi, T.; Asano, R.; Kumagai, I.; Tahara, H.; Kuwano, M.; Cohen, J.B.; Glorioso, J.C. Mechanism of HSV infection through soluble adapter-mediated virus bridging to the EGF receptor. Virology, 2011, 413(1), 12-18.
[http://dx.doi.org/10.1016/j.virol.2011.02.014] [PMID: 21382632]
[81]
Harris, S.A.; Harris, E.A. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer’s Disease. Front. Aging Neurosci., 2018, 10, 48.
[http://dx.doi.org/10.3389/fnagi.2018.00048] [PMID: 29559905]
[82]
Hemling, N.; Röyttä, M.; Rinne, J.; Pöllänen, P.; Broberg, E.; Tapio, V.; Vahlberg, T.; Hukkanen, V. Herpesviruses in brains in Alzheimer’s and Parkinson’s diseases. Ann. Neurol., 2003, 54(2), 267-271.
[http://dx.doi.org/10.1002/ana.10662] [PMID: 12891684]
[83]
Wu, L.; Feng, X.; Li, T.; Sun, B.; Khan, M.Z.; He, L. Risperidone ameliorated Abeta1-42-induced cognitive and hippocampal synaptic impairments in mice Behav. Brain Res., 2017, 322(Pt A), 145-156.
[84]
Leost, M.; Schultz, C.; Link, A.; Wu, Y.Z.; Biernat, J.; Mandelkow, E.M.; Bibb, J.A.; Snyder, G.L.; Greengard, P.; Zaharevitz, D.W.; Gussio, R.; Senderowicz, A.M.; Sausville, E.A.; Kunick, C.; Meijer, L. Paullones are potent inhibitors of glycogen synthase kinase-3beta and cyclin-dependent kinase 5/p25. Eur. J. Biochem., 2000, 267(19), 5983-5994.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01673.x] [PMID: 10998059]
[85]
Zhang, S.G.; Wang, X.S.; Zhang, Y.D.; Di, Q.; Shi, J.P.; Qian, M.; Xu, L.G.; Lin, X.J.; Lu, J. Indirubin-3′-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation. Neural Regen. Res., 2016, 11(6), 988-993.
[PMID: 27482230]
[86]
Zhang, S.; Zhang, Y.; Xu, L.; Lin, X.; Lu, J.; Di, Q.; Shi, J.; Xu, J. Indirubin-3′-monoxime inhibits beta-amyloid-induced neurotoxicity in neuroblastoma SH-SY5Y cells. Neurosci. Lett., 2009, 450(2), 142-146.
[http://dx.doi.org/10.1016/j.neulet.2008.11.030] [PMID: 19027827]
[87]
Sharma, S.; Taliyan, R. Neuroprotective role of Indirubin-3′-monoxime, a GSKβ inhibitor in high fat diet induced cognitive impairment in mice. Biochem. Biophys. Res. Commun., 2014, 452(4), 1009-1015.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.034] [PMID: 25234596]
[88]
Ding, Y.; Qiao, A.; Fan, G.H. Indirubin-3′-monoxime rescues spatial memory deficits and attenuates beta-amyloid-associated neuropathology in a mouse model of Alzheimer’s disease. Neurobiol. Dis., 2010, 39(2), 156-168.
[http://dx.doi.org/10.1016/j.nbd.2010.03.022] [PMID: 20381617]
[89]
Budni, J.; Feijó, D.P.; Batista-Silva, H.; Garcez, M.L.; Mina, F.; Belletini-Santos, T.; Krasilchik, L.R.; Luz, A.P.; Schiavo, G.L.; Quevedo, J. Lithium and memantine improve spatial memory impairment and neuroinflammation induced by β-amyloid 1-42 oligomers in rats. Neurobiol. Learn. Mem., 2017, 141, 84-92.
[http://dx.doi.org/10.1016/j.nlm.2017.03.017] [PMID: 28359852]
[90]
Matsunaga, S.; Kishi, T.; Annas, P.; Basun, H.; Hampel, H.; Iwata, N. Lithium as a treatment for alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis., 2015, 48(2), 403-410.
[http://dx.doi.org/10.3233/JAD-150437] [PMID: 26402004]
[91]
Morris, G.; Berk, M. The putative use of lithium in alzheimer’s disease. Curr. Alzheimer Res., 2016, 13(8), 853-861.
[http://dx.doi.org/10.2174/1567205013666160219113112] [PMID: 26892287]
[92]
Lan, X.; Kiyota, T.; Hanamsagar, R.; Huang, Y.; Andrews, S.; Peng, H.; Zheng, J.C.; Swindells, S.; Carlson, G.A.; Ikezu, T. The effect of HIV protease inhibitors on amyloid-beta peptide degradation and synthesis in human cells and Alzheimer’s disease animal model. J. Neuroimmune Pharmacol., 2012, 7(2), 412-423.
[93]
Geifman, N.; Brinton, R.D.; Kennedy, R.E.; Schneider, L.S.; Butte, A.J. Evidence for benefit of statins to modify cognitive decline and risk in Alzheimer’s disease. Alzheimers Res. Ther., 2017, 9(1), 10.
[http://dx.doi.org/10.1186/s13195-017-0237-y] [PMID: 28212683]
[94]
Adeli, S.; Zahmatkesh, M.; Tavoosidana, G.; Karimian, M.; Hassanzadeh, G. Simvastatin enhances the hippocampal klotho in a rat model of streptozotocin-induced cognitive decline. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 72, 87-94.
[http://dx.doi.org/10.1016/j.pnpbp.2016.09.009] [PMID: 27687042]
[95]
Yamamoto, N.; Fujii, Y.; Kasahara, R.; Tanida, M.; Ohora, K.; Ono, Y.; Suzuki, K.; Sobue, K. Simvastatin and atorvastatin facilitates amyloid β-protein degradation in extracellular spaces by increasing neprilysin secretion from astrocytes through activation of MAPK/Erk1/2 pathways. Glia, 2016, 64(6), 952-962.
[PMID: 26875818]
[96]
Erez, H.; Shemesh, O.A.; Spira, M.E. Rescue of tau-induced synaptic transmission pathology by paclitaxel. Front. Cell. Neurosci., 2014, 8, 34.
[http://dx.doi.org/10.3389/fncel.2014.00034] [PMID: 24574970]
[97]
Shemesh, O.A.; Spira, M.E. Rescue of neurons from undergoing hallmark tau-induced Alzheimer’s disease cell pathologies by the antimitotic drug paclitaxel. Neurobiol. Dis., 2011, 43(1), 163-175.
[http://dx.doi.org/10.1016/j.nbd.2011.03.008] [PMID: 21406229]
[98]
Michaelis, M.L.; Ranciat, N.; Chen, Y.; Bechtel, M.; Ragan, R.; Hepperle, M.; Liu, Y.; Georg, G. Protection against beta-amyloid toxicity in primary neurons by paclitaxel (Taxol). J. Neurochem., 1998, 70(4), 1623-1627.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70041623.x] [PMID: 9523579]
[99]
Siman, R.; Cocca, R.; Dong, Y. The mTOR inhibitor rapamycin mitigates perforant pathway neurodegeneration and synapse loss in a mouse model of early-stage alzheimer-type tauopathy. PLoS One, 2015, 10(11), e0142340.
[http://dx.doi.org/10.1371/journal.pone.0142340] [PMID: 26540269]
[100]
Ramírez, A.E.; Pacheco, C.R.; Aguayo, L.G.; Opazo, C.M. Rapamycin protects against Aβ-induced synaptotoxicity by increasing presynaptic activity in hippocampal neurons. Biochim. Biophys. Acta, 2014, 1842(9), 1495-1501.
[http://dx.doi.org/10.1016/j.bbadis.2014.04.019] [PMID: 24794719]
[101]
Lin, A.L.; Zheng, W.; Halloran, J.J.; Burbank, R.R.; Hussong, S.A.; Hart, M.J.; Javors, M.; Shih, Y.Y.; Muir, E.; Solano Fonseca, R.; Strong, R.; Richardson, A.G.; Lechleiter, J.D.; Fox, P.T.; Galvan, V. Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease. J. Cereb. Blood Flow Metab., 2013, 33(9), 1412-1421.
[http://dx.doi.org/10.1038/jcbfm.2013.82] [PMID: 23801246]
[102]
Jiang, T.; Yu, J.T.; Zhu, X.C.; Tan, M.S.; Wang, H.F.; Cao, L.; Zhang, Q.Q.; Shi, J.Q.; Gao, L.; Qin, H.; Zhang, Y.D.; Tan, L. Temsirolimus promotes autophagic clearance of amyloid-β and provides protective effects in cellular and animal models of Alzheimer’s disease. Pharmacol. Res., 2014, 81, 54-63.
[http://dx.doi.org/10.1016/j.phrs.2014.02.008] [PMID: 24602800]
[103]
Klettner, A. The induction of heat shock proteins as a potential strategy to treat neurodegenerative disorders. Drug News Perspect., 2004, 17(5), 299-306.
[http://dx.doi.org/10.1358/dnp.2004.17.5.829033] [PMID: 15334179]
[104]
Calcul, L.; Zhang, B.; Jinwal, U.K.; Dickey, C.A.; Baker, B.J. Natural products as a rich source of tau-targeting drugs for Alzheimer’s disease. Future Med. Chem., 2012, 4(13), 1751-1761.
[http://dx.doi.org/10.4155/fmc.12.124] [PMID: 22924511]
[105]
Zare, N.; Motamedi, F.; Digaleh, H.; Khodagholi, F.; Maghsoudi, N. Collaboration of geldanamycin-activated P70S6K and Hsp70 against beta-amyloid-induced hippocampal apoptosis: an approach to long-term memory and learning. Cell Stress Chaperones, 2015, 20(2), 309-319.
[http://dx.doi.org/10.1007/s12192-014-0550-3] [PMID: 25576151]
[106]
Obuchowicz, E.; Bielecka-Wajdman, A.M.; Paul-Samojedny, M.; Nowacka, M. Different influence of antipsychotics on the balance between pro- and anti-inflammatory cytokines depends on glia activation: An in vitro study. Cytokine, 2017, 94, 37-44.
[http://dx.doi.org/10.1016/j.cyto.2017.04.004] [PMID: 28411046]
[107]
Focosi, D.; Fazzi, R.; Montanaro, D.; Emdin, M.; Petrini, M. Progressive multifocal leukoencephalopathy in a haploidentical stem cell transplant recipient: a clinical, neuroradiological and virological response after treatment with risperidone. Antiviral Res., 2007, 74(2), 156-158.
[http://dx.doi.org/10.1016/j.antiviral.2006.10.011] [PMID: 17140673]
[108]
Baker, H.; Bannister, R.; Rothaul, A. Treatment of degenerative diseases. U.S. Patent Application 10/345,530, filed November 4, 2004.
[109]
Wallet, M.A.; Reist, C.M.; Williams, J.C.; Appelberg, S.; Guiulfo, G.L.; Gardner, B.; Sleasman, J.W.; Goodenow, M.M. The HIV-1 protease inhibitor nelfinavir activates PP2 and inhibits MAPK signaling in macrophages: a pathway to reduce inflammation. J. Leukoc. Biol., 2012, 92(4), 795-805.
[http://dx.doi.org/10.1189/jlb.0911447] [PMID: 22786868]
[110]
Gantt, S.; Gachelet, E.; Carlsson, J.; Barcy, S.; Casper, C.; Lagunoff, M. Nelfinavir impairs glycosylation of herpes simplex virus 1 envelope proteins and blocks virus maturation. Adv. Virol., 2015, 2015, 687162.
[http://dx.doi.org/10.1155/2015/687162] [PMID: 25709648]
[111]
Chou, D.H.; Bodycombe, N.E.; Carrinski, H.A.; Lewis, T.A.; Clemons, P.A.; Schreiber, S.L.; Wagner, B.K. Small-molecule suppressors of cytokine-induced beta-cell apoptosis. ACS Chem. Biol., 2010, 5(8), 729-734.
[http://dx.doi.org/10.1021/cb100129d] [PMID: 20550176]
[112]
Guendel, I.; Agbottah, E.T.; Kehn-Hall, K.; Kashanchi, F. Inhibition of human immunodeficiency virus type-1 by cdk inhibitors. AIDS Res. Ther., 2010, 7(1), 7.
[http://dx.doi.org/10.1186/1742-6405-7-7] [PMID: 20334651]
[113]
Kim, J.K.; Park, G.M. Indirubin-3-monoxime exhibits anti-inflammatory properties by down-regulating NF-kappaB and JNK signaling pathways in lipopolysaccharide-treated RAW264.7 cells. Inflamm. Res., 2012, 61(4), 319-325.
[114]
Benson, J.M.; Shepherd, D.M. Dietary ligands of the aryl hydrocarbon receptor induce anti-inflammatory and immunoregulatory effects on murine dendritic cells. Toxicol. Sci., 2011, 124(2), 327-338.
[http://dx.doi.org/10.1093/toxsci/kfr249]
[115]
Heredia, A.; Davis, C.; Bamba, D.; Le, N.; Gwarzo, M.Y.; Sadowska, M.; Gallo, R.C.; Redfield, R.R. Indirubin-3′-monoxime, a derivative of a Chinese antileukemia medicine, inhibits P-TEFb function and HIV-1 replication. AIDS, 2005, 19(18), 2087-2095.
[http://dx.doi.org/10.1097/01.aids.0000194805.74293.11] [PMID: 16284457]
[116]
Lotteau, V.; De Chassey, B.; Andre, P.; Meyniel-Schicklin, L.; Aublin-Gex, A. Methods and pharmaceutical compositions for inhibiting influenza viruses replication. United States patent US 9,168,236. October 27, 2015.
[117]
Leu, S.J.; Yang, Y.Y.; Liu, H.C.; Cheng, C.Y.; Wu, Y.C.; Huang, M.C.; Lee, Y.L.; Chen, C.C.; Shen, W.W.; Liu, K.J. Valproic acid and lithium meditate anti-inflammatory effects by differentially modulating dendritic cell differentiation and function. J. Cell. Physiol., 2017, 232(5), 1176-1186.
[http://dx.doi.org/10.1002/jcp.25604] [PMID: 27639185]
[118]
Nassar, A.; Azab, A.N. Effects of lithium on inflammation. ACS Chem. Neurosci., 2014, 5(6), 451-458.
[http://dx.doi.org/10.1021/cn500038f] [PMID: 24803181]
[119]
Zhao, F.R.; Xie, Y.L.; Liu, Z.Z.; Shao, J.J.; Li, S.F.; Zhang, Y.G.; Chang, H.Y. Lithium chloride inhibits early stages of foot-and-mouth disease virus (FMDV) replication in vitro. J. Med. Virol., 2017, 89(11), 2041-2046.
[http://dx.doi.org/10.1002/jmv.24821] [PMID: 28390158]
[120]
Chen, Y.; Kong, D.; Cai, G.; Jiang, Z.; Jiao, Y.; Shi, Y.; Li, H.; Wang, C. Novel antiviral effect of lithium chloride on mammalian orthoreoviruses in vitro. Microb. Pathog., 2016, 93, 152-157.
[http://dx.doi.org/10.1016/j.micpath.2016.01.023] [PMID: 26835657]
[121]
Amsterdam, J.D.; Maislin, G.; Hooper, M.B. Suppression of herpes simplex virus infections with oral lithium carbonate--a possible antiviral activity. Pharmacotherapy, 1996, 16(6), 1070-1075.
[PMID: 8947995]
[122]
Forlenza, O.V.; Aprahamian, I.; de Paula, V.J.; Hajek, T. Lithium, a therapy for AD: Current evidence from clinical trials of neurodegenerative disorders. Curr. Alzheimer Res., 2016, 13(8), 879-886.
[http://dx.doi.org/10.2174/1567205013666160219112854] [PMID: 26892289]
[123]
Wan, W.; DePetrillo, P.B. Ritonavir protects hippocampal neurons against oxidative stress-induced apoptosis. Neurotoxicology, 2002, 23(3), 301-306.
[http://dx.doi.org/10.1016/S0161-813X(02)00057-8] [PMID: 12387358]
[124]
Antonopoulos, A.S.; Margaritis, M.; Lee, R.; Channon, K.; Antoniades, C. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr. Pharm. Des., 2012, 18(11), 1519-1530.
[http://dx.doi.org/10.2174/138161212799504803] [PMID: 22364136]
[125]
Feng, Y.; Lei, B.; Zhang, F.; Niu, L.; Zhang, H.; Zhang, M. Anti-inflammatory effects of simvastatin during the resolution phase of experimentally formed venous thrombi. J. Clin. Res, 2017, 65(6), 999-1007.
[http://dx.doi.org/10.1136/jim-2017-000442]
[126]
Patel, K.; Lim, S.G.; Cheng, C.W.; Lawitz, E.; Tillmann, H.L.; Chopra, N.; Altmeyer, R.; Randle, J.C.; McHutchison, J.G. Open-label phase 1b pilot study to assess the antiviral efficacy of simvastatin combined with sertraline in chronic hepatitis C patients. Antivir. Ther. (Lond.), 2011, 16(8), 1341-1346.
[http://dx.doi.org/10.3851/IMP1898] [PMID: 22155916]
[127]
Mihaila, R.G.; Nedelcu, L.; Fratila, O.; Retzler, L.; Domnariu, C.; Cipaian, R.C.; Rezi, E.C.; Beca, C.; Deac, M. Effects of simvastatin in patients with viral chronic hepatitis C. Hepatogastroenterology, 2011, 58(109), 1296-1300.
[http://dx.doi.org/10.5754/hge08074] [PMID: 21937398]
[128]
Li, W.; Cao, F.; Li, J.; Wang, Z.; Ren, Y.; Liang, Z.; Liu, P. Simvastatin exerts anti-hepatitis B virus activity by inhibiting expression of minichromosome maintenance protein 7 in HepG2.2.15 cells. Mol. Med. Rep., 2016, 14(6), 5334-5342.
[http://dx.doi.org/10.3892/mmr.2016.5868] [PMID: 27779671]
[129]
Feinstein, M.J.; Achenbach, C.J.; Stone, N.J.; Lloyd-Jones, D.M. A Systematic review of the usefulness of statin therapy in HIV-infected patients. Am. J. Cardiol., 2015, 115(12), 1760-1766.
[http://dx.doi.org/10.1016/j.amjcard.2015.03.025] [PMID: 25907504]
[130]
Hui, K.P.; Kuok, D.I.; Kang, S.S.; Li, H.S.; Ng, M.M.; Bui, C.H.; Peiris, J.S.; Chan, R.W.; Chan, M.C. Modulation of sterol biosynthesis regulates viral replication and cytokine production in influenza A virus infected human alveolar epithelial cells. Antiviral Res., 2015, 119, 1-7.
[http://dx.doi.org/10.1016/j.antiviral.2015.04.005] [PMID: 25882623]
[131]
Ponroy, N.; Taveira, A.; Mueller, N.J.; Millard, A.L. Statins demonstrate a broad anti-cytomegalovirus activity in vitro in ganciclovir-susceptible and resistant strains. J. Med. Virol., 2015, 87(1), 141-153.
[http://dx.doi.org/10.1002/jmv.23998] [PMID: 24976258]
[132]
Kanter, C.T.; Luin, Mv.; Solas, C.; Burger, D.M.; Vrolijk, J.M. Rhabdomyolysis in a hepatitis C virus infected patient treated with telaprevir and simvastatin. Ann. Hepatol., 2014, 13(4), 452-455.
[PMID: 24927617]
[133]
Mehrbod, P.; Hair-Bejo, M.; Tengku Ibrahim, T.A.; Omar, A.R.; El Zowalaty, M.; Ajdari, Z.; Ideris, A. Simvastatin modulates cellular components in influenza A virus-infected cells. Int. J. Mol. Med., 2014, 34(1), 61-73.
[http://dx.doi.org/10.3892/ijmm.2014.1761] [PMID: 24788303]
[134]
Wickert, L.E.; Karta, M.R.; Audhya, A.; Gern, J.E.; Bertics, P.J. Simvastatin attenuates rhinovirus-induced interferon and CXCL10 secretion from monocytic cells in vitro. J. Leukoc. Biol., 2014, 95(6), 951-959.
[http://dx.doi.org/10.1189/jlb.0713413] [PMID: 24532643]
[135]
Brooks, M.B. Erlotinib and gefitinib, epidermal growth factor receptor kinase inhibitors, may treat non-cancer-related tumor necrosis factor-α mediated inflammatory diseases. Oncologist, 2013, 18(1), e3-e5.
[http://dx.doi.org/10.1634/theoncologist.2012-0219] [PMID: 23355622]
[136]
Langhammer, S.; Koban, R.; Yue, C.; Ellerbrok, H. Inhibition of poxvirus spreading by the anti-tumor drug Gefitinib (Iressa). Antiviral Res., 2011, 89(1), 64-70.
[http://dx.doi.org/10.1016/j.antiviral.2010.11.006] [PMID: 21094187]
[137]
Randhawa, P.S.; Farasati, N.A.; Huang, Y.; Mapara, M.Y.; Shapiro, R. Viral drug sensitivity testing using quantitative PCR: effect of tyrosine kinase inhibitors on polyomavirus BK replication. Am. J. Clin. Pathol., 2010, 134(6), 916-920.
[http://dx.doi.org/10.1309/AJCP7JYHJN1PGQVC] [PMID: 21088155]
[138]
Schleiss, M.; Eickhoff, J.; Auerochs, S.; Leis, M.; Abele, S.; Rechter, S.; Choi, Y.; Anderson, J.; Scott, G.; Rawlinson, W.; Michel, D.; Ensminger, S.; Klebl, B.; Stamminger, T.; Marschall, M. Protein kinase inhibitors of the quinazoline class exert anti-cytomegaloviral activity in vitro and in vivo. Antiviral Res., 2008, 79(1), 49-61.
[http://dx.doi.org/10.1016/j.antiviral.2008.01.154] [PMID: 18329738]
[139]
Niu, M.; Hu, J.; Wu, S.; Xiaoe, Z.; Xu, H.; Zhang, Y.; Zhang, J.; Yang, Y. Structural bioinformatics-based identification of EGFR inhibitor gefitinib as a putative lead compound for BACE. Chem. Biol. Drug Des., 2014, 83(1), 81-88.
[http://dx.doi.org/10.1111/cbdd.12200] [PMID: 24516878]
[140]
Wang, L.; Chiang, H.C.; Wu, W.; Liang, B.; Xie, Z.; Yao, X.; Ma, W.; Du, S.; Zhong, Y. Epidermal growth factor receptor is a preferred target for treating amyloid-β-induced memory loss. Proc. Natl. Acad. Sci. USA, 2012, 109(41), 16743-16748.
[http://dx.doi.org/10.1073/pnas.1208011109] [PMID: 23019586]
[141]
Zhong, Y.; Chiang, H-c.; Wang, L. Methods and compositions for treating Alzheimer's disease. U.S. Patent 9,271,987, issued March 1, 2016.
[142]
Bekerman, E.; Neveu, G.; Shulla, A.; Brannan, J.; Pu, S.Y.; Wang, S.; Xiao, F.; Barouch-Bentov, R.; Bakken, R.R.; Mateo, R.; Govero, J.; Nagamine, C.M.; Diamond, M.S.; De Jonghe, S.; Herdewijn, P.; Dye, J.M.; Randall, G.; Einav, S. Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects. J. Clin. Invest., 2017, 127(4), 1338-1352.
[http://dx.doi.org/10.1172/JCI89857] [PMID: 28240606]
[143]
Neveu, G.; Ziv-Av, A.; Barouch-Bentov, R.; Berkerman, E.; Mulholland, J.; Einav, S. AP-2-associated protein kinase 1 and cyclin G-associated kinase regulate hepatitis C virus entry and are potential drug targets. J. Virol., 2015, 89(8), 4387-4404.
[http://dx.doi.org/10.1128/JVI.02705-14] [PMID: 25653444]
[144]
Xiao, F.; Fofana, I.; Thumann, C.; Mailly, L.; Alles, R.; Robinet, E.; Meyer, N.; Schaeffer, M.; Habersetzer, F.; Doffoël, M.; Leyssen, P.; Neyts, J.; Zeisel, M.B.; Baumert, T.F. Synergy of entry inhibitors with direct-acting antivirals uncovers novel combinations for prevention and treatment of hepatitis C. Gut, 2015, 64(3), 483-494.
[http://dx.doi.org/10.1136/gutjnl-2013-306155] [PMID: 24848265]
[145]
Bekerman, E.; Einav, S. Infectious disease. Combating emerging viral threats. Science, 2015, 348(6232), 282-283.
[http://dx.doi.org/10.1126/science.aaa3778] [PMID: 25883340]
[146]
Bardou-Jacquet, E.; Lorho, R.; Guyader, D. Kinase inhibitors in the treatment of chronic hepatitis C virus. Gut, 2011, 60(6), 879-880.
[http://dx.doi.org/10.1136/gut.2010.212068] [PMID: 20966026]
[147]
Prüßing, K.; Voigt, A.; Schulz, J.B. Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol. Neurodegener., 2013, 8, 35.
[http://dx.doi.org/10.1186/1750-1326-8-35] [PMID: 24267573]
[148]
Stolzenburg, N.; Breinl, J.; Bienek, S.; Jaguszewski, M.; Löchel, M.; Taupitz, M.; Speck, U.; Wagner, S.; Schnorr, J. Paclitaxel-coated balloons: Investigation of drug transfer in healthy and atherosclerotic arteries - first experimental results in rabbits at low inflation pressure. Cardiovasc. Drugs Ther., 2016, 30(3), 263-270.
[http://dx.doi.org/10.1007/s10557-016-6658-1] [PMID: 27033233]
[149]
Xu, P.P.; Li, Q.F.; Cui, Y.M.; Lin, H.X. Synthesis and anti-inflammatory evaluation of novel paclitaxel analogs. J. Asian Nat. Prod. Res., 2017, 19(8), 803-822.
[http://dx.doi.org/10.1080/10286020.2016.1236793] [PMID: 27756149]
[150]
Borowski, P.; Niebuhr, A.; Schmitz, H.; Hosmane, R.S.; Bretner, M.; Siwecka, M.A.; Kulikowski, T. NTPase/helicase of Flaviviridae: inhibitors and inhibition of the enzyme. Acta Biochim. Pol., 2002, 49(3), 597-614.
[PMID: 12422230]
[151]
Mita, A.; Ricordi, C.; Miki, A.; Barker, S.; Haertter, R.; Hashikura, Y.; Miyagawa, S.; Burke, G.W., III; Inverardi, L.; Ichii, H. Anti-proinflammatory effects of sirolimus on human islet preparations. Transplantation, 2008, 86(1), 46-53.
[http://dx.doi.org/10.1097/TP.0b013e31817c79c0] [PMID: 18622277]
[152]
Mengke, N.S.; Hu, B.; Han, Q.P.; Deng, Y.Y.; Fang, M.; Xie, D.; Li, A.; Zeng, H.K. Rapamycin inhibits lipopolysaccharide-induced neuroinflammation in vitro and in vivo. Mol. Med. Rep., 2016, 14(6), 4957-4966.
[http://dx.doi.org/10.3892/mmr.2016.5883] [PMID: 27779711]
[153]
Liacini, A.; Seamone, M.E.; Muruve, D.A.; Tibbles, L.A. Anti-BK virus mechanisms of sirolimus and leflunomide alone and in combination: toward a new therapy for BK virus infection. Transplantation, 2010, 90(12), 1450-1457.
[http://dx.doi.org/10.1097/TP.0b013e3182007be2] [PMID: 21079551]
[154]
Aso, E.; Ferrer, I. It may be possible to delay the onset of neurodegenerative diseases with an immunosuppressive drug (rapamycin). Expert Opin. Biol. Ther., 2013, 13(9), 1215-1219.
[http://dx.doi.org/10.1517/14712598.2013.799129] [PMID: 23668915]
[155]
Bucci, M.; Roviezzo, F.; Cicala, C.; Sessa, W.C.; Cirino, G. Geldanamycin, an inhibitor of heat shock protein 90 (Hsp90) mediated signal transduction has anti-inflammatory effects and interacts with glucocorticoid receptor in vivo. Br. J. Pharmacol., 2000, 131(1), 13-16.
[http://dx.doi.org/10.1038/sj.bjp.0703549] [PMID: 10960063]
[156]
Kacimi, R.; Yenari, M.A. Pharmacologic heat shock protein 70 induction confers cytoprotection against inflammation in gliovascular cells. Glia, 2015, 63(7), 1200-1212.
[http://dx.doi.org/10.1002/glia.22811] [PMID: 25802219]
[157]
Dello Russo, C.; Polak, P.E.; Mercado, P.R.; Spagnolo, A.; Sharp, A.; Murphy, P.; Kamal, A.; Burrows, F.J.; Fritz, L.C.; Feinstein, D.L. The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J. Neurochem., 2006, 99(5), 1351-1362.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04221.x] [PMID: 17064348]
[158]
Li, Y.P.; Shan, G.Z.; Peng, Z.G.; Zhu, J.H.; Meng, S.; Zhang, T.; Gao, L.Y.; Tao, P.Z.; Gao, R.M.; Li, Y.H.; Jiang, J.D.; Li, Z.R. Synthesis and biological evaluation of heat-shock protein 90 inhibitors: geldanamycin derivatives with broad antiviral activities. Antivir. Chem. Chemother., 2010, 20(6), 259-268.
[PMID: 20710066]
[159]
Li, Y.H.; Lu, Q.N.; Wang, H.Q.; Tao, P.Z.; Jiang, J.D. Geldanamycin, a ligand of heat shock protein 90, inhibits herpes simplex virus type 2 replication both in vitro and in vivo. J. Antibiot. (Tokyo), 2012, 65(10), 509-512.
[http://dx.doi.org/10.1038/ja.2012.67] [PMID: 22909975]
[160]
Shan, G.Z.; Peng, Z.G.; Li, Y.H.; Li, D.; Li, Y.P.; Meng, S.; Gao, L.Y.; Jiang, J.D.; Li, Z.R. A novel class of geldanamycin derivatives as HCV replication inhibitors targeting on Hsp90: synthesis, structure-activity relationships and anti-HCV activity in GS4.3 replicon cells. J. Antibiot. (Tokyo), 2011, 64(2), 177-182.
[http://dx.doi.org/10.1038/ja.2010.161] [PMID: 21179047]
[161]
Evers, D.L.; Chao, C.F.; Zhang, Z.; Huang, E.S. 17-allylamino-17-(demethoxy)geldanamycin (17-AAG) is a potent and effective inhibitor of human cytomegalovirus replication in primary fibroblast cells. Arch. Virol., 2012, 157(10), 1971-1974.
[http://dx.doi.org/10.1007/s00705-012-1379-7] [PMID: 22711259]
[162]
Li, Y.H.; Tao, P.Z.; Liu, Y.Z.; Jiang, J.D. Geldanamycin, a ligand of heat shock protein 90, inhibits the replication of herpes simplex virus type 1 in vitro. Antimicrob. Agents Chemother., 2004, 48(3), 867-872.
[http://dx.doi.org/10.1128/AAC.48.3.867-872.2004] [PMID: 14982777]
[163]
Basha, W.; Kitagawa, R.; Uhara, M.; Imazu, H.; Uechi, K.; Tanaka, J. Geldanamycin, a potent and specific inhibitor of Hsp90, inhibits gene expression and replication of human cytomegalovirus. Antivir. Chem. Chemother., 2005, 16(2), 135-146.
[http://dx.doi.org/10.1177/095632020501600206] [PMID: 15889536]
[164]
Rathore, A.P.; Haystead, T.; Das, P.K.; Merits, A.; Ng, M.L.; Vasudevan, S.G. Chikungunya virus nsP3 & nsP4 interacts with HSP-90 to promote virus replication: HSP-90 inhibitors reduce CHIKV infection and inflammation in vivo. Antiviral Res., 2014, 103, 7-16.
[http://dx.doi.org/10.1016/j.antiviral.2013.12.010] [PMID: 24388965]
[165]
Smith, D.R.; McCarthy, S.; Chrovian, A.; Olinger, G.; Stossel, A.; Geisbert, T.W.; Hensley, L.E.; Connor, J.H. Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antiviral Res., 2010, 87(2), 187-194.
[http://dx.doi.org/10.1016/j.antiviral.2010.04.015] [PMID: 20452380]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy