Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Electrochemical Determination of Mycophenolate Mofetil in Drug Samples Using Carbon Paste Electrode Modified with 1-methyl-3-butylimidazolium Bromide and NiO/SWCNTs Nanocomposite

Author(s): Firuzeh Hosseini, Mahmoud Ebrahimi* and Hassan Karimi-Maleh*

Volume 15, Issue 2, 2019

Page: [177 - 182] Pages: 6

DOI: 10.2174/1573411014666180326114345

Price: $65

Abstract

Background: The mycophenolate mofetil is an immunosuppressant drug with wide application in the treatment of cancer and prevent rejection in organ transplantation. This drug showed many sides effects for pregnant women and determination of this drug is very important in the human body.

Objective: A new electrochemical strategy was described for analysis of Mycophenolate Mofetil (MMF) using novel voltammetric sensor. The sensor was fabricated using NiO/SWCNTs and 1-methyl- 3-butylimidazolium bromide as two conductive mediators for modification of carbon paste electrode (NiO/SWCNTs/MBBr/CPE). The NiO/SWCNTs/MBBr/CPE can be used for analysis of MMF in aqueous buffer solution in the concentration range of 0.08-900 µM. In addition, the NiO/SWCNTs/ MBBr/CPE reduced oxidation over-potential of MMF ~ 80 mV and increased the oxidation current of MMF ~ 2.85 times. In the final step, NiO/SWCNTs/MBBr/CPE was used for determination of MMF in pharmaceutical serum and tablet samples.

Keywords: NiO/SWCNTs, mycophenolate mofetil, 1-methyl-3-butylimidazolium bromide, electrochemical analysis, drug samples, carbon paste electrode modified.

« Previous
Graphical Abstract
[1]
Chen, D.; Jiang, S.; Chen, Y.; Hu, Y. HPLC determination of sertraline in bulk drug, tablets and capsules using hydroxypropyl-β-cyclodextrin as mobile phase additive. J. Pharm. Biomed. Anal., 2004, 34, 239-245.
[2]
Du, J.; Shen, L.; Lu, J. Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material. Anal. Chim. Acta, 2003, 489, 183-189.
[3]
Michałowski, J.; Hałaburda, P. Flow-injection chemiluminescence determination of epinephrine in pharmaceutical preparations using raw apple juice as enzyme source. Talanta, 2001, 55, 1165-1171.
[4]
Ertürk, S.; Sevin, E.; Ersoy, L.; Fıçıcıoğlu, S. An HPLC method for the determination of atorvastatin and its impurities in bulk drug and tablets. J. Pharm. Biomed. Anal., 2003, 33, 1017-1023.
[5]
Naidu, K.R.; Kale, U.N.; Shingare, M.S. Stability indicating RP-HPLC method for simultaneous determination of amlodipine and benazepril hydrochloride from their combination drug product. J. Pharm. Biomed. Anal., 2005, 39, 147-155.
[6]
Askholt, J.; Nielsen-Kudsk, F. Rapid HPLC-determination of ibuprofen and flurbiprofen in plasma for therapeutic drug control and pharmacokinetic applications. Basic Clin. Pharmacol. Toxicol., 1986, 59, 382-386.
[7]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Faghih-Mirzaei, E. A nanostructure label-free DNA biosensor for ciprofloxacin analysis as a chemotherapeutic agent; an experimental and theoretical investigation. New J. Chem., 2017, 41, 4985-4989.
[8]
Alizadeh, T.; Ganjali, M.R.; Zare, M.; Norouzi, P. Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer. Food Chem., 2012, 130, 1108-1114.
[9]
Özcan, A.; Gürbüz, M.; Özbal, A. Preparation of a double-step modified carbon paste electrode for the voltammetric determination of propham via bulk modification with fumed silica and drop-casting of maghemite-modified fumed silica nanocomposite. Sens. Actuators B., 2018, 255, 1517-1524.
[10]
Ashjari, M.; Karimi-Maleh, H.; Ahmadpour, F.; Shabani-Nooshabadi, M.; Sadrnia, A.; Khalilzadeh, M.A. Voltammetric analysis of mycophenolate mofetilin pharmaceutical samples via electrochemical nanostructure based sensor modified with ionic liquid and MgO/SWCNTs. J. Taiwan. Inst. Chem. Eng., 2017, 80, 989-996.
[11]
Venkataprasad, G.; Reddy, T.M.; Shaikshavali, P.; Gopal, P.; Narayana, P.V. Electrochemical determination of 3,5-dinitrobenzoic acid in the presence and absence of CTAB at Multi-walled carbon nanotubes modified glassy carbon electrode: A voltammetric study. Anal. Bioanal. Electrochem., 2017, 9, 400-411.
[12]
Jafari, S.; Faridbod, F.; Norouzi, P.; Dezfuli, A.S.; Ajloo, D.; Mohammadipanah, F.; Ganjali, M.R. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry. Anal. Chim. Acta, 2015, 895, 80-88.
[13]
Bananezhad, A.; Ganjali, M.R.; Karimi-Maleh, H.; Norouzi, P. Fabrication of amplified nanostructure based sensor for analysis of N-Acetylcysteine in presence of high concentration folic acid. Int. J. Electrochem. Sci., 2017, 12, 8045-8058.
[14]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact., 2018, 12, 634-640.
[15]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6, 1639-1647.
[16]
Souza, C.D.; Braga, O.C.; Vieira, I.C.; Spinelli, A. Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sens. Actuators B Chem., 2008, 135, 66-73.
[17]
Yola, M.L.; Atar, N. Functionalized graphene quantum dots with bi-metallic nanoparticles composite: Sensor application for simul-taneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J. Electrochem. Soc., 2016, 163(14), B718-B725.
[18]
Baghayeri, M.; Veisi, H.; Veisi, H.; Maleki, B.; Karimi-Maleh, H.; Beitollahi, H. Multi-walled carbon nanotubes decorated with palladium nanoparticles as a novel platform for electrocatalytic sensing applications. RSC Advances, 2014, 4(91), 49595-49604.
[19]
Bavandpour, R.; Karimi-Maleh, H.; Asif, M.; Gupta, V.K.; Atar, N.; Abbasghorbani, M. Liquid phase determination of adrenaline uses a voltammetric sensor employing CuFe2O4 nanoparticles and room temperature ionic liquids. J. Mol. Liq., 2016, 213, 369-373.
[20]
Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M. A voltammetric sensor for simultaneous determination of Vitamin C and Vitamin B6 in food samples using ZrO2 Nanoparticle/Ionic liquids carbon paste electrode. Food Anal. Methods, 2015, 8, 549-557.
[21]
Sanghavi, B.J.; Hirsch, G.; Karna, S.P.; Srivastava, A.K. Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal. Chim. Acta, 2012, 735, 37-45.
[22]
Norouzi, P.; Larijani, B.; Ganjali, M.R. Ochratoxin A sensor based on nanocomposite hybrid film of ionic liquid-graphene nano-sheets using coulometric FFT cyclic voltammetry. Int. J. Electrochem. Sci., 2012, 7(8), 7313-7324.
[23]
Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H.; Nasiri, V.; Khalilzadeh, M.A. Biparva. Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: application for determination of sulfite in real samples. Ionics, 2012, 18, 687-694.
[24]
Arabali, V.; Ebrahimi, M.; Gheibi, S.; Khaleghi, F.; Bijad, M.; Rudbaraki, A.; Abbasghorbani, M.; Ganjali, M.R. Bisphenol A analysis in food samples using modified nanostructure carbon paste electrode as a sensor. Food Anal. Methods, 2016, 9, 1763-1769.
[25]
Hajiaghababaei, L.; Tajmiri, T.; Badiei, A.; Ganjali, M.R.; Khaniani, Y.; Ziarani, G.M. Heavy metals determination in water and food samples after preconcentration by a new nanoporous adsorbent. Food Chem., 2013, 141, 1916-1922.
[26]
Karimi-Maleh, H.; Ganjali, M.R.; Norouzi, P.; Bananezhad, A. Amplified nanostructure electrochemical sensor for simultaneous determination of captopril, acetaminophen, tyrosine and hydrochlorothiazide. Mater. Sci. Eng. C, 2017, 73, 472-477.
[27]
Arabali, V.; Ebrahimi, M.; Abbasghorbani, M.; Gupta, V.K.; Farsi, M.; Ganjali, M.R.; Karimi, F. Electrochemical determination of vitamin C in the presence of NADH using a CdO nanoparticle/ionic liquid modified carbon paste electrode as a sensor. J. Mol. Liq., 2016, 213(1), 312-316.
[28]
Yola, M.L.; Atar, N. A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: Application to the simultaneous determination of quercetin and rutin. Electrochim. Acta, 2014, 119, 24-31.
[29]
Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid. J. Colloid Interface Sci., 2017, 495, 61-67.
[30]
Keivani, Z.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. An electrochemical strategy to determine thiosulfate, 4-chlorophenol and nitrite as three important pollutants in water samples via a nanostructure modified sensor. J. Colloid Interface Sci., 2017, 507, 11-17.
[31]
Atta, N.F.; Galal, A.; Wassel, A.A.; Ibrahim, A.H. Sensitive electrochemical determination of morphine using gold nanoparticles–ferrocene modified carbon paste electrode. Int. J. Electrochem. Sci., 2012, 7, 10501-10518.
[32]
Jiang, L.; Ding, Y.; Jiang, F.; Li, L.; Mo, F. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin. Anal. Chim. Acta, 2014, 833, 22-28.
[33]
Shang, L.; Zhao, F.; Zeng, B. Sensitive voltammetric determination of vanillin with an AuPd nanoparticles-graphene composite modified electrode. Food Chem., 2014, 151, 53-57.
[34]
Rahmanifar, E.; Yoosefian, M.; Karimi-Maleh, H. Application of CdO/SWCNTs nanocomposite ionic liquids carbon paste electrode as a voltammetric sensor for determination of benserazide. Curr. Anal. Chem., 2017, 13, 46-51.
[35]
Karimi-Maleh, H.; Hatami, M.; Moradi, R.; Khalilzadeh, M.A.; Amiri, S.; Sadeghifar, H. Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid. Mikrochim. Acta, 2016, 183, 2957-2964.
[36]
Ensafi, A.A.; Karimi‐Maleh, H.; Mallakpour, S.N. ‐(3,4‐Dihydro-xyphenethyl)‐3,5‐dinitrobenzamide‐Modified multiwall carbon nanotubes paste electrode as a novel sensor for simultaneous determination of penicillamine, uric acid, and tryptophan. Electroanalysis, 2011, 23(6), 1478-1487.
[37]
Akhgar, M.R.; Beitollahi, H.; Salari, M.; Karimi-Maleh, H.; Zamani, H. Fabrication of a sensor for simultaneous determination of norepinephrine, acetaminophen and tryptophan using a modified carbon nanotube paste electrode. Anal. Methods, 2012, 4(1), 259-264.
[38]
Fouladgar, M.; Karimi-Maleh, H. Ionic liquid/multiwall carbon nanotubes paste electrode for square wave voltammetric determination of methyldopa. Ionics, 2013, 19(8), 1163-1170.
[39]
Jin, G.P.; Lin, X.Q. The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine. Electrochem. Commun., 2004, 6, 454-460.
[40]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Atar, N.; Yola, M.L.; Gupta, V.K.; Ensafi, A.A. A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind. Eng. Chem. Res., 2015, 54, 3634-3639.
[41]
Sanghavi, B.J.; Sitaula, S.; Griep, M.H.; Karna, S.P.; Ali, M.F.; Swami, N.S. Real-Time electrochemical monitoring of adenosine triphosphate in the picomolar to micromolar range using graphene-modified electrodes. Anal. Chem., 2013, 85, 8158-8165.
[42]
Mohamed, M.A.; El-Gendy, D.M.; Ahmed, N.; Banks, C.E.; Allam, N.K. 3D spongy graphene-modified screen-printed sensors for the voltammetric determination of the narcotic drug codeine. Biosens. Bioelectron., 2018, 101, 90-95.
[43]
Sanghavi, B.J.; Srivastava, A.K. Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim. Acta, 2010, 55, 8638-8648.
[44]
Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst., 2013, 138, 1395-1404.
[45]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P. Electrochemical nanostructure platform for the analysis of glutathione in the presence of uric acid and tryptophan. Anal. Methods, 2017, 9, 6228-6234.
[46]
Beitollahi, H.; Karimi-Maleh, H.; Khabazzadeh, H. Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal. Chem., 2008, 80(24), 9848-9851.
[47]
Tavana, T.; Khalilzadeh, M.A.; Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H.; Zareyee, D. Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode. J. Mol. Liq., 2012, 168, 69-74.
[48]
Sadeghi, R.; Karimi-Maleh, H.; Bahari, A.; Taghavi, M. A novel biosensor based on ZnO nanoparticle/1,3-dipropylimidazolium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine. Phy. Chem. Lid., 2013, 51, 704-714.
[49]
Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping differential pulsevoltammetric determination of venlafaxine and desvenlafaxine employingNafion–carbon nanotube composite glassy carbon electrode. Electrochim. Acta, 2011, 56, 4188-4196.
[50]
Karimi-Maleh, H.; Shojaei, M.; Amini, F.; Akbari, A. Analysis of levodopa in the presence of vitamin B6 using carbon paste electrode modified with1-Butyl-3 methylimidazolium Hexafluorophosphate and CuO nanoparticles. Electroanalysis, 2017, 29, 1854-1859.
[51]
Ngai, K.S.; Tan, W.T.; Zainal, Z.; Zawawi, R.M.; Zidan, M. Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide. Int. J. Electrochem. Sci., 2013, 8, 10557-10567.
[52]
Karimi-Maleh, H.; Moazampour, M.; Ahmar, H.; Beitollahi, H.; Ensafi, A.A. A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan. Measurement, 2014, 51, 91-99.
[53]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[54]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A sensitive amplified sensor based on improved carbon paste electrode with 1-methyl-3-octylimidazolium tetrafluoroborate and ZnO/CNTs nanocomposite for differential pulse voltammetric analysis of raloxifene. Appl. Surf. Sci., 2017, 420, 882-885.
[55]
Hogan, J.; Godron, A.; Baudouin, V.; Kwon, T.; Harambat, J.; Deschênes, J.; Niel, O. Combination therapy of rituximab and mycophenolate mofetil in childhood lupus nephritis. Pediatr. Nephrol., 2018, 33, 111-116.
[56]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[57]
Karimi-Maleh, H.; Salehi, M.; Faghani, F. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples. J. Food. Drug. Anal., 2017, 25, 1000-1007.
[58]
Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron., 2013, 48, 270-275.
[59]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite /N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[60]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[61]
Karimi-Maleh, H.; Moazampour, M.; Ensafi, A.A.; Mallakpour, S.; Hatami, M. An electrochemical nanocomposite modified carbon paste electrode as a sensor for simultaneous determination of hydrazine and phenol in water and wastewater samples. Environ. Sci. Pollut. Res. Int., 2014, 21(9), 5879-5888.
[62]
Ensafi, A.A.; Karimi-Maleh, H. A multiwall carbon nanotubes paste electrode as a sensor and ferrocenemonocarboxylic acid as a mediator for electrocatalytic determination of isoproterenol. Int. J. Electrochem. Sci., 2010, 5, 1484-1495.
[63]
Karimi-Maleh, H.; Sanati, A.L.; Gupta, V.K.; Yoosefian, M.; Asif, M.; Bahari, A. A voltammetric biosensor based on ionic liquid/NiO nanoparticle modified carbon paste electrode for the determination of nicotinamide adenine dinucleotide (NADH). Sens. Actuator B, 2014, 204, 647-654.
[64]
Ensafi, A.A.; Dadkhah, M.; Karimi-Maleh, H. Determination of isoproterenol and uric acid by voltammetric method using carbon nanotubes paste electrode and p-chloranil. Colloids Surf. B., 2011, 84(1), 148-154.
[65]
Cheraghi, S.; Taher, M.A.; Karimi‐Maleh, H. A novel strategy for determination of paracetamol in the presence of morphine using a carbon paste electrode modified with CdO nanoparticles and ionic liquids. Electroanalysis, 2016, 28(2), 366-371.
[66]
Karimi-Maleh, H.; Keyvanfard, M.; Alizad, K.; Fouladgar, M.; Beitollahi, H.; Mokhtari, A.; Fathali Gholami-Orimi, H. Voltammetric determination of N-Actylcysteine using modified multiwall carbon nanotubes paste electrode. Int. J. Electrochem. Sci., 2011, 6, 6141-6150.
[67]
Prashanth, S.; Ramesh, K.; Seetharamappa, J. Electrochemical oxidation of an im- munosuppressant, mycophenolate mofetil, and its assay in pharmaceutical formulations. Int. J. Electrochem., 2011, 2011, Article ID 193041.
[68]
Madrakian, T.; Soleimani, M.; Afkhami, A. Simultaneous determination of my- cophenolate mofetil and its active metabolite, mycophenolic acid, by differen- tial pulse voltammetry using multi-walled carbon nanotubes modified glassy carbon electrode. Mater. Sci. Eng. C, 2014, 42, 38-45.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy