Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biomarkers Determining Prognosis of Atrial Fibrillation Ablation

Author(s): Dimitris Tsiachris*, George Giannopoulos, Spyridon Deftereos, Charis Kossyvakis, Constantinos Tsioufis, Gerasimos Siasos, Evangelos Oikonomou, Konstantinos Gatzoulis, Dimitris Tousoulis and Christodoulos Stefanadis

Volume 26, Issue 5, 2019

Page: [925 - 937] Pages: 13

DOI: 10.2174/0929867325666180320122930

Price: $65

Abstract

Catheter ablation for rhythm control is recommended in specific patient populations with paroxysmal, persistent, or long-standing persistent atrial fibrillation. Pulmonary vein isolation is the cornerstone of the ablative therapy for atrial fibrillation. However, relapse is still common since the single procedure efficacy of atrial fibrillation ablation was estimated to be 60-80% in paroxysmal and 50-70% in persistent atrial fibrillation. It is important to identify predictors of successful atrial fibrillation patients ablation. In the present review, we will assess the role of available biomarkers to predict responders of an initial atrial fibrillation catheter ablation. Emphasis has been given on the role of myocardial injury biomarkers, natriuretic peptides and traditional inflammatory markers. Novel inflammatory markers, oxidative stress biomarkers and microRNAs have also been examined as predictors of a successful atrial fibrillation procedure. Notably, the impact of procedural and short-term administration of steroids, as well as the role of colchicine on preventing atrial fibrillation recurrence after ablation is thoroughly presented.

Keywords: Atrial fribrillation ablation, colchicine, inflammatory markers, microRNAs, natriuretic peptides, oxidative stress, pulmonary vein isolation.

« Previous
[1]
Kannel, W.B.; Wolf, P.A.; Benjamin, E.J.; Levy, D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am. J. Cardiol., 1998, 82(8A), 2N-9N.
[2]
Benjamin, E.J.; Wolf, P.A.; D’Agostino, R.B.; Silbershatz, H.; Kannel, W.B.; Levy, D. Impact of atrial fibrillation on the risk of death: The Framingham heart study. Circulation, 1998, 98(10), 946-952.
[3]
Wang, T.J.; Larson, M.G.; Levy, D.; Vasan, R.S.; Leip, E.P.; Wolf, P.A.; D’Agostino, R.B.; Murabito, J.M.; Kannel, W.B.; Benjamin, E.J. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: The Framingham heart study. Circulation, 2003, 107(23), 2920-2925.
[4]
Calkins, H.; Kuck, K.H.; Cappato, R.; Brugada, J.; Camm, A.J.; Chen, S.A.; Crijns, H.J.; Damiano, R.J., Jr; Davies, D.W.; DiMarco, J.; Edgerton, J.; Ellenbogen, K.; Ezekowitz, M.D.; Haines, D.E.; Haissaguerre, M.; Hindricks, G.; Iesaka, Y.; Jackman, W.; Jalife, J.; Jais, P.; Kalman, J.; Keane, D.; Kim, Y.H.; Kirchhof, P.; Klein, G.; Kottkamp, H.; Kumagai, K.; Lindsay, B.D.; Mansour, M.; Marchlinski, F.E.; McCarthy, P.M.; Mont, J.L.; Morady, F.; Nademanee, K.; Nakagawa, H.; Natale, A.; Nattel, S.; Packer, D.L.; Pappone, C.; Prystowsky, E.; Raviele, A.; Reddy, V.; Ruskin, J.N.; Shemin, R.J.; Tsao, H.M.; Wilber, D. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Heart Rhythm, 2012, 9(4), 632-696.e21.
[5]
Georgiopoulos, G.; Tsiachris, D.; Manolis, A.S. Cryoballoon ablation of atrial fibrillation: A practical and effective approach. Clin. Cardiol., 2017, 40(5), 333-342.
[6]
Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med., 1998, 339(10), 659-666.
[7]
Verma, A.; Jiang, C.Y.; Betts, T.R.; Chen, J.; Deisenhofer, I.; Mantovan, R.; Macle, L.; Morillo, C.A.; Haverkamp, W.; Weerasooriya, R.; Albenque, J.P.; Nardi, S.; Menardi, E.; Novak, P.; Sanders, P. Approaches to catheter ablation for persistent atrial fibrillation. N. Engl. J. Med., 2015, 372(19), 1812-1822.
[8]
Gianni, C.; Mohanty, S.; Di Biase, L.; Metz, T.; Trivedi, C.; Gökoğlan, Y.; Güneş, M.F.; Bai, R.; Al-Ahmad, A.; Burkhardt, J.D.; Gallinghouse, G.J.; Horton, R.P.; Hranitzky, P.M.; Sanchez, J.E.; Halbfaß, P.; Müller, P.; Schade, A.; Deneke, T.; Tomassoni, G.F.; Natale, A. Acute and early outcomes of focal impulse and rotor modulation (FIRM)-guided rotors-only ablation in patients with nonparoxysmal atrial fibrillation. Heart Rhythm, 2016, 13(4), 830-835.
[9]
Miller, J.M.; Kowal, R.C.; Swarup, V.; Daubert, J.P.; Daoud, E.G.; Day, J.D.; Ellenbogen, K.A.; Hummel, J.D.; Baykaner, T.; Krummen, D.E.; Narayan, S.M.; Reddy, V.Y.; Shivkumar, K.; Steinberg, J.S.; Wheelan, K.R. Initial independent outcomes from focal impulse and rotor modulation ablation for atrial fibrillation: multicenter FIRM registry. J. Cardiovasc. Electrophysiol., 2014, 25(9), 921-929.
[10]
Haegeli, L.M.; Calkins, H. Catheter ablation of atrial fibrillation: An update. Eur. Heart J., 2014, 35(36), 2454-2459.
[11]
Goudis, C.A.; Kallergis, E.M.; Vardas, P.E. Extracellular matrix alterations in the atria: Insights into the mechanisms and perpetuation of atrial fibrillation. Europace, 2012, 14(5), 623-630.
[12]
Madrid, A.H.; del Rey, J.M.; Rubí, J.; Ortega, J.; González Rebollo, J.M.; Seara, J.G.; Ripoll, E.; Moro, C. Biochemical markers and cardiac troponin I release after radiofrequency catheter ablation: Approach to size of necrosis. Am. Heart J., 1998, 136(6), 948-955.
[13]
Pudil, R.; Parízek, P.; Tichý, M.; Haman, L.; Horáková, L.; Ulrychová, M.; Vojácek, J.; Palicka, V. Use of the biochip microarray system in detection of myocardial injury caused by radiofrequency catheter ablation. Clin. Chem. Lab. Med., 2008, 46(12), 1726-1728.
[14]
Wu, A.H.B.; Jaffe, A.S. The clinical need for high-sensitivity cardiac troponin assays for acute coronary syndromes and the role for serial testing. Am. Heart J., 2008, 155(2), 208-214.
[15]
Vasatova, M.; Pudil, R.; Tichy, M.; Buchler, T.; Horacek, J.M.; Haman, L.; Parizek, P.; Palicka, V. High-sensitivity troponin T as a marker of myocardial injury after radiofrequency catheter ablation. Ann. Clin. Biochem., 2011, 48(Pt 1), 38-40.
[16]
Fishbein, M.C.; Wang, T.; Matijasevic, M.; Hong, L.; Apple, F.S. Myocardial tissue troponins T and I. An immunohistochemical study in experimental models of myocardial ischemia. Cardiovasc. Pathol., 2003, 12(2), 65-71.
[17]
Alaiti, M.A.; Maroo, A.; Edel, T.B. Troponin levels after cardiac electrophysiology procedures: Review of the literature. Pacing Clin. Electrophysiol., 2009, 32(6), 800-810.
[18]
Wójcik, M.; Kuniss, M.; Berkowitsch, A.; Zaltsberg, S.; Janin, S.; Wysokiński, A.; Hamm, C.W.; Pitschner, H.F.; Neumann, T. Major determinants of myocardial injury after pulmonary vein isolation with radiofrequency ablation. Kardiol. Pol., 2012, 70(6), 549-554.
[19]
Yoshida, K.; Yui, Y.; Kimata, A.; Koda, N.; Kato, J.; Baba, M.; Misaki, M.; Abe, D.; Tokunaga, C.; Akishima, S.; Sekiguchi, Y.; Tada, H.; Aonuma, K.; Takeyasu, N. Troponin elevation after radiofrequency catheter ablation of atrial fibrillation: relevance to AF substrate, procedural outcomes, and reverse structural remodeling. Heart Rhythm, 2014, 11(8), 1336-1342.
[20]
Lim, H.S.; Schultz, C.; Dang, J.; Alasady, M.; Lau, D.H.; Brooks, A.G.; Wong, C.X.; Roberts-Thomson, K.C.; Young, G.D.; Worthley, M.I.; Sanders, P.; Willoughby, S.R. Time course of inflammation, myocardial injury, and prothrombotic response after radiofrequency catheter ablation for atrial fibrillation. Circ Arrhythm Electrophysiol, 2014, 7(1), 83-89.
[21]
Casella, M.; Dello Russo, A.; Russo, E.; Al-Mohani, G.; Santangeli, P.; Riva, S.; Fassini, G.; Moltrasio, M.; Innocenti, E.; Colombo, D.; Bologna, F.; Izzo, G.; Gallinghouse, J.G.; Di Biase, L.; Natale, A.; Tondo, C. Biomarkers of myocardial injury with different energy sources for atrial fibrillation catheter ablation. Cardiol. J., 2014, 21(5), 516-523.
[22]
Richter, B.; Gwechenberger, M.; Socas, A.; Zorn, G.; Albinni, S.; Marx, M.; Bergler-Klein, J.; Binder, T.; Wojta, J.; Gössinger, H.D. Markers of oxidative stress after ablation of atrial fibrillation are associated with inflammation, delivered radiofrequency energy and early recurrence of atrial fibrillation. Clin. Res. Cardiol., 2012, 101(3), 217-225.
[23]
Arujuna, A.; Karim, R.; Caulfield, D.; Knowles, B.; Rhode, K.; Schaeffter, T.; Kato, B.; Rinaldi, C.A.; Cooklin, M.; Razavi, R.; O’Neill, M.D.; Gill, J. Acute pulmonary vein isolation is achieved by a combination of reversible and irreversible atrial injury after catheter ablation: evidence from magnetic resonance imaging. Circ Arrhythm Electrophysiol, 2012, 5(4), 691-700.
[24]
Ren, J.F.; Callans, D.J.; Schwartzman, D.; Michele, J.J.; Marchlinski, F.E. Changes in local wall thickness correlate with pathologic lesion size following radiofrequency catheter ablation: An intracardiac echocardiographic imaging study. Echocardiography, 2001, 18(6), 503-507.
[25]
Neuzil, P.; Reddy, V.Y.; Kautzner, J.; Petru, J.; Wichterle, D.; Shah, D.; Lambert, H.; Yulzari, A.; Wissner, E.; Kuck, K.H. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study. Circ Arrhythm Electrophysiol, 2013, 6(2), 327-333.
[26]
Wynn, G.J.; Das, M.; Bonnett, L.J.; Hall, M.C.S.; Snowdon, R.L.; Waktare, J.E.P.; Modi, S.; Todd, D.M.; Gupta, D. A novel marker to predict early recurrence after atrial fibrillation ablation: The ablation effectiveness quotient. J. Cardiovasc. Electrophysiol., 2015, 26(4), 397-403.
[27]
Khairy, P.; Chauvet, P.; Lehmann, J.; Lambert, J.; Macle, L.; Tanguay, J.F.; Sirois, M.G.; Santoianni, D.; Dubuc, M. Lower incidence of thrombus formation with cryoenergy versus radiofrequency catheter ablation. Circulation, 2003, 107(15), 2045-2050.
[28]
Kühne, M.; Suter, Y.; Altmann, D.; Ammann, P.; Schaer, B.; Osswald, S.; Sticherling, C. Cryoballoon versus radiofrequency catheter ablation of paroxysmal atrial fibrillation: biomarkers of myocardial injury, recurrence rates, and pulmonary vein reconnection patterns. Heart Rhythm, 2010, 7(12), 1770-1776.
[29]
Herrera Siklódy, C.; Arentz, T.; Minners, J.; Jesel, L.; Stratz, C.; Valina, C.M.; Weber, R.; Kalusche, D.; Toti, F.; Morel, O.; Trenk, D. Cellular damage, platelet activation, and inflammatory response after pulmonary vein isolation: a randomized study comparing radiofrequency ablation with cryoablation. Heart Rhythm, 2012, 9(2), 189-196.
[30]
Schmidt, M.; Marschang, H.; Clifford, S.; Harald, R.; Guido, R.; Oliver, T.; Johannes, B.; Daccarett, M. Trends in inflammatory biomarkers during atrial fibrillation ablation across different catheter ablation strategies. Int. J. Cardiol., 2012, 158(1), 33-38.
[31]
Coulombe, N.; Paulin, J.; Su, W. Improved in vivo performance of second-generation cryoballoon for pulmonary vein isolation. J. Cardiovasc. Electrophysiol., 2013, 24(8), 919-925.
[32]
Bordignon, S.; Fürnkranz, A.; Dugo, D.; Perrotta, L.; Gunawardene, M.; Bode, F.; Klemt, A.; Nowak, B.; Schulte-Hahn, B.; Schmidt, B.; Chun, K.R. Improved lesion formation using the novel 28 mm cryoballoon in atrial fibrillation ablation: Analysis of biomarker release. Europace, 2014, 16(7), 987-993.
[33]
Miyazaki, S.; Kuroi, A.; Hachiya, H.; Nakamura, H.; Taniguchi, H.; Ichihara, N.; Takagi, T.; Iwasawa, J.; Iesaka, Y. Early recurrence after pulmonary vein isolation of paroxysmal atrial fibrillation with different ablation technologies - Prospective comparison of radiofrequency vs. second-generation cryoballoon ablation. Circ. J., 2016, 80(2), 346-353.
[34]
Kızılırmak, F.; Gokdeniz, T.; Gunes, H.M.; Demir, G.G.; Cakal, B.; Guler, G.B.; Guler, E.; Olgun, F.E.; Kilicaslan, F. Myocardial injury biomarkers after radiofrequency catheter and cryoballoon ablation for atrial fibrillation and their impact on recurrence. Kardiol. Pol., 2017, 75(2), 126-134.
[35]
Aksu, T.; Golcuk, S.E.; Guler, T.E.; Yalin, K.; Erden, I. Prediction of mid-term outcome after cryo-balloon ablation of atrial fibrillation using post-procedure high-sensitivity troponin level. Cardiovasc. J. Afr., 2015, 26(4), 165-170.
[36]
Luchner, A.; Stevens, T.L.; Borgeson, D.D.; Redfield, M.; Wei, C.M.; Porter, J.G.; Burnett, J.C., Jr Differential atrial and ventricular expression of myocardial BNP during evolution of heart failure. Am. J. Physiol., 1998, 274(5 Pt 2), H1684-H1689.
[37]
Wang, T.J.; Larson, M.G.; Levy, D.; Benjamin, E.J.; Leip, E.P.; Omland, T.; Wolf, P.A.; Vasan, R.S. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N. Engl. J. Med., 2004, 350(7), 655-663.
[38]
Panagopoulou, V.; Deftereos, S.; Kossyvakis, C.; Raisakis, K.; Giannopoulos, G.; Bouras, G.; Pyrgakis, V.; Cleman, M.W. NTproBNP: An important biomarker in cardiac diseases. Curr. Top. Med. Chem., 2013, 13(2), 82-94.
[39]
Hammerer-Lercher, A.; Puschendorf, B.; Mair, J. Cardiac natriuretic peptides: New laboratory parameters in heart failure patients. Clin. Lab., 2001, 47(5-6), 265-277.
[40]
Hussein, A.A.; Saliba, W.I.; Martin, D.O.; Shadman, M.; Kanj, M.; Bhargava, M.; Dresing, T.; Chung, M.; Callahan, T.; Baranowski, B.; Tchou, P.; Lindsay, B.D.; Natale, A.; Wazni, O.M. Plasma B-type natriuretic peptide levels and recurrent arrhythmia after successful ablation of lone atrial fibrillation. Circulation, 2011, 123(19), 2077-2082.
[41]
Pillarisetti, J.; Reddy, N.; Biria, M.; Ryschon, K.; Nagarajan, D.; Murray, C.; Atkins, D.; Bommana, S.; Reddy, M.Y.; DiBiase, L.; Pimentel, R.; Berenbom, L.; Dawn, B.; Natale, A.; Lakkireddy, D. Elevated brain natriuretic peptide level in patients undergoing atrial fibrillation ablation: is it a predictor of failed ablation or a mere function of atrial rhythm and rate at a point in time? J. Interv. Card. Electrophysiol., 2014, 40(2), 161-168.
[42]
Date, T.; Yamane, T.; Inada, K.; Matsuo, S.; Miyanaga, S.; Sugimoto, K.; Shibayama, K.; Taniguchi, I.; Mochizuki, S. Plasma brain natriuretic peptide concentrations in patients undergoing pulmonary vein isolation. Heart, 2006, 92(11), 1623-1627.
[43]
den Uijl, D.W.; Delgado, V.; Tops, L.F.; Ng, A.C.; Boersma, E.; Trines, S.A.; Zeppenfeld, K.; Schalij, M.J.; van der Laarse, A.; Bax, J.J. Natriuretic peptide levels predict recurrence of atrial fibrillation after radiofrequency catheter ablation. Am. Heart J., 2011, 161(1), 197-203.
[44]
Fan, J.; Cao, H.; Su, L.; Ling, Z.; Liu, Z.; Lan, X.; Xu, Y.; Chen, W.; Yin, Y. NT-proBNP, but not ANP and C-reactive protein, is predictive of paroxysmal atrial fibrillation in patients undergoing pulmonary vein isolation. J. Interv. Card. Electrophysiol., 2012, 33(1), 93-100.
[45]
Hwang, H.J.; Son, J.W.; Nam, B.H.; Joung, B.; Lee, B.; Kim, J.B.; Lee, M.H.; Jang, Y.; Chung, N.; Shim, W.H.; Cho, S.Y.; Kim, S.S. Incremental predictive value of pre-procedural N-terminal pro-B-type natriuretic peptide for short-term recurrence in atrial fibrillation ablation. Clin. Res. Cardiol., 2009, 98(4), 213-218.
[46]
Giannopoulos, G.; Kossyvakis, C.; Angelidis, C.; Efremidis, M.; Panagopoulou, V.; Letsas, K.; Bouras, G.; Vassilikos, V.P.; Goudevenos, J.; Tousoulis, D.; Lekakis, J.; Deftereos, S. Amino-terminal B-natriuretic peptide levels and postablation recurrence in hypertensive patients with paroxysmal atrial fibrillation. Heart Rhythm, 2015, 12(7), 1470-1475.
[47]
Ellinor, P.T.; Low, A.F.; Patton, K.K.; Shea, M.A.; Macrae, C.A. Discordant atrial natriuretic peptide and brain natriuretic peptide levels in lone atrial fibrillation. J. Am. Coll. Cardiol., 2005, 45(1), 82-86.
[48]
Deftereos, S.; Giannopoulos, G.; Kossyvakis, C.; Raisakis, K.; Theodorakis, A.; Kaoukis, A.; Toli, K.; Panagopoulou, V.; Driva, M.; Mantas, I.; Pyrgakis, V.; Alpert, M.A. Short-term fluctuations of plasma NT-proBNP levels in patients with new-onset atrial fibrillation: a way to assess time of onset? Heart, 2010, 96(13), 1033-1036.
[49]
Deftereos, S.; Giannopoulos, G.; Kossyvakis, C.; Raisakis, K.; Kaoukis, A.; Aggeli, C.; Toli, K.; Theodorakis, A.; Panagopoulou, V.; Driva, M.; Mantas, I.; Pyrgakis, V.; Rentoukas, I.; Stefanadis, C. Estimation of atrial fibrillation recency of onset and safety of cardioversion using NTproBNP levels in patients with unknown time of onset. Heart, 2011, 97(11), 914-917.
[50]
Zhang, Y.; Chen, A.; Song, L.; Li, M.; Chen, Y.; He, B. Association between baseline natriuretic peptides and atrial fibrillation recurrence after catheter ablation. Int. Heart J., 2016, 57(2), 183-189.
[51]
Issac, T.T.; Dokainish, H.; Lakkis, N.M. Role of inflammation in initiation and perpetuation of atrial fibrillation: a systematic review of the published data. J. Am. Coll. Cardiol., 2007, 50(21), 2021-2028.
[52]
Aviles, R.J.; Martin, D.O.; Apperson-Hansen, C.; Houghtaling, P.L.; Rautaharju, P.; Kronmal, R.A.; Tracy, R.P.; Van Wagoner, D.R.; Psaty, B.M.; Lauer, M.S.; Chung, M.K. Inflammation as a risk factor for atrial fibrillation. Circulation, 2003, 108(24), 3006-3010.
[53]
Tziakas, D.N.; Chalikias, G.K.; Papanas, N.; Stakos, D.A.; Chatzikyriakou, S.V.; Maltezos, E. Circulating levels of collagen type I degradation marker depend on the type of atrial fibrillation. Europace, 2007, 9(8), 589-596.
[54]
Henningsen, K.M.; Nilsson, B.; Bruunsgaard, H.; Chen, X.; Pedersen, B.K.; Svendsen, J.H. Prognostic impact of hs-CRP and IL-6 in patients undergoing radiofrequency catheter ablation for atrial fibrillation. Scand. Cardiovasc. J., 2009, 43(5), 285-291.
[55]
Yamashita, T.; Inoue, H.; Okumura, K.; Kodama, I.; Aizawa, Y.; Atarashi, H.; Ohe, T.; Ohtsu, H.; Kato, T.; Kamakura, S.; Kumagai, K.; Kurachi, Y.; Koretsune, Y.; Saikawa, T.; Sakurai, M.; Sato, T.; Sugi, K.; Nakaya, H.; Hirai, M.; Hirayama, A.; Fukatani, M.; Mitamura, H.; Yamazaki, T.; Watanabe, E.; Ogawa, S. Randomized trial of angiotensin II-receptor blocker vs. dihydropiridine calcium channel blocker in the treatment of paroxysmal atrial fibrillation with hypertension (J-RHYTHM II study). Europace, 2011, 13(4), 473-479.
[56]
Negi, S.; Shukrullah, I.; Veledar, E.; Bloom, H.L.; Jones, D.P.; Dudley, S.C. Statin therapy for the prevention of atrial fibrillation trial (SToP AF trial). J. Cardiovasc. Electrophysiol., 2011, 22(4), 414-419.
[57]
Lin, Y.J.; Tsao, H.M.; Chang, S.L.; Lo, L.W.; Tuan, T.C.; Hu, Y.F.; Udyavar, A.R.; Tsai, W.C.; Chang, C.J.; Tai, C.T.; Lee, P.C.; Suenari, K.; Huang, S.Y.; Nguyen, H.T.; Chen, S.A. Prognostic implications of the high-sensitive C-reactive protein in the catheter ablation of atrial fibrillation. Am. J. Cardiol., 2010, 105(4), 495-501.
[58]
Rotter, M.; Jaïs, P.; Vergnes, M.C.; Nurden, P.; Takahashi, Y.; Sanders, P.; Rostock, T.; Hocini, M.; Sacher, F.; Haïssaguerre, M. Decline in C-reactive protein after successful ablation of long-lasting persistent atrial fibrillation. J. Am. Coll. Cardiol., 2006, 47(6), 1231-1233.
[59]
McCabe, J.M.; Smith, L.M.; Tseng, Z.H.; Badhwar, N.; Lee, B.K.; Lee, R.J.; Scheinman, M.M.; Olgin, J.E.; Marcus, G.M. Protracted CRP elevation after atrial fibrillation ablation. Pacing Clin. Electrophysiol., 2008, 31(9), 1146-1151.
[60]
Lellouche, N.; Sacher, F.; Wright, M.; Nault, I.; Brottier, J.; Knecht, S.; Matsuo, S.; Lomas, O.; Hocini, M.; Haïssaguerre, M.; Jaïs, P. Usefulness of C-reactive protein in predicting early and late recurrences after atrial fibrillation ablation. Europace, 2009, 11(5), 662-664.
[61]
Koyama, T.; Sekiguchi, Y.; Tada, H.; Arimoto, T.; Yamasaki, H.; Kuroki, K.; Machino, T.; Tajiri, K.; Zhu, X.D.; Kanemoto, M.; Sugiyasu, A.; Kuga, K.; Aonuma, K. Comparison of characteristics and significance of immediate versus early versus no recurrence of atrial fibrillation after catheter ablation. Am. J. Cardiol., 2009, 103(9), 1249-1254.
[62]
Grubman, E.; Pavri, B.B.; Lyle, S.; Reynolds, C.; Denofrio, D.; Kocovic, D.Z. Histopathologic effects of radiofrequency catheter ablation in previously infarcted human myocardium. J. Cardiovasc. Electrophysiol., 1999, 10(3), 336-342.
[63]
Rodriguez, L.M.; Leunissen, J.; Hoekstra, A.; Korteling, B.J.; Smeets, J.L.; Timmermans, C.; Vos, M.; Daemen, M.; Wellens, H.J. Transvenous cold mapping and cryoablation of the AV node in dogs: observations of chronic lesions and comparison to those obtained using radiofrequency ablation. J. Cardiovasc. Electrophysiol., 1998, 9(10), 1055-1061.
[64]
Deneke, T.; Khargi, K.; Müller, K.M.; Lemke, B.; Mügge, A.; Laczkovics, A.; Becker, A.E.; Grewe, P.H. Histopathology of intraoperatively induced linear radiofrequency ablation lesions in patients with chronic atrial fibrillation. Eur. Heart J., 2005, 26(17), 1797-1803.
[65]
Dubuc, M.; Roy, D.; Thibault, B.; Ducharme, A.; Tardif, J.C.; Villemaire, C.; Leung, T.K.; Talajic, M. Transvenous catheter ice mapping and cryoablation of the atrioventricular node in dogs. Pacing Clin. Electrophysiol., 1999, 22(10), 1488-1498.
[66]
Kimura, T.; Takatsuki, S.; Inagawa, K.; Katsumata, Y.; Nishiyama, T.; Nishiyama, N.; Fukumoto, K.; Aizawa, Y.; Tanimoto, Y.; Tanimoto, K.; Fukuda, K. Serum inflammation markers predicting successful initial catheter ablation for atrial fibrillation. Heart Lung Circ., 2014, 23(7), 636-643.
[67]
Kalogeropoulos, A.S.; Tsiodras, S.; Rigopoulos, A.G.; Sakadakis, E.A.; Triantafyllis, A.; Kremastinos, D.T.; Rizos, I. Novel association patterns of cardiac remodeling markers in patients with essential hypertension and atrial fibrillation. BMC Cardiovasc. Disord., 2011, 11, 77.
[68]
Wang, W.; Wu, P.S.; Yang, X.L. Role of matrix metalloproteinase and tissue inhibitor of metalloproteinase in atrial structural remodeling in patients with atrial fibrillation. Nan Fang Yi Ke Da Xue Xue Bao, 2010, 30(5), 1160-1162.
[69]
Kato, K.; Fujimaki, T.; Yoshida, T.; Oguri, M.; Yajima, K.; Hibino, T.; Murohara, T. Impact of matrix metalloproteinase-2 levels on long-term outcome following pharmacological or electrical cardioversion in patients with atrial fibrillation. Europace, 2009, 11(3), 332-337.
[70]
Okumura, Y.; Watanabe, I.; Nakai, T.; Ohkubo, K.; Kofune, T.; Kofune, M.; Nagashima, K.; Mano, H.; Sonoda, K.; Kasamaki, Y.; Hirayama, A. Impact of biomarkers of inflammation and extracellular matrix turnover on the outcome of atrial fibrillation ablation: Importance of matrix metalloproteinase-2 as a predictor of atrial fibrillation recurrence. J. Cardiovasc. Electrophysiol., 2011, 22(9), 987-993.
[71]
Deng, H.; Xue, Y.M.; Zhan, X.Z.; Liao, H.T.; Guo, H.M.; Wu, S.L. Role of tumor necrosis factor-alpha in the pathogenesis of atrial fibrillation. Chin. Med. J. (Engl.), 2011, 124(13), 1976-1982.
[72]
Ueland, T.; Yndestad, A.; Øie, E.; Florholmen, G.; Halvorsen, B.; Frøland, S.S.; Simonsen, S.; Christensen, G.; Gullestad, L.; Aukrust, P. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation, 2005, 111(19), 2461-2468.
[73]
Schnabel, R.B.; Larson, M.G.; Yamamoto, J.F.; Kathiresan, S.; Rong, J.; Levy, D.; Keaney, J.F., Jr; Wang, T.J.; Vasan, R.S.; Benjamin, E.J. Relation of multiple inflammatory biomarkers to incident atrial fibrillation. Am. J. Cardiol., 2009, 104(1), 92-96.
[74]
Cao, H.; Wang, J.; Xi, L.; Røe, O.D.; Chen, Y.; Wang, D. Dysregulated atrial gene expression of osteoprotegerin/receptor activator of nuclear factor-κB (RANK)/RANK ligand axis in the development and progression of atrial fibrillation. Circ. J., 2011, 75(12), 2781-2788.
[75]
Cao, H.; Wu, Y.; Li, Q.; Wu, Y.; Zhou, Q.; Røe, O.D.; Chen, Y.; Wang, R.; Wang, D. Serum sRANKL/OPG predict recurrence after radiofrequency catheter ablation of lone atrial fibrillation. Int. J. Cardiol., 2014, 170(3), 298-302.
[76]
Korantzopoulos, P.; Kolettis, T.M.; Galaris, D.; Goudevenos, J.A. The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation. Int. J. Cardiol., 2007, 115(2), 135-143.
[77]
Mihm, M.J.; Yu, F.; Carnes, C.A.; Reiser, P.J.; McCarthy, P.M.; Van Wagoner, D.R.; Bauer, J.A. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation, 2001, 104(2), 174-180.
[78]
Kim, Y.H.; Lim, D.S.; Lee, J.H.; Shim, W.J.; Ro, Y.M.; Park, G.H.; Becker, K.G.; Cho-Chung, Y.S.; Kim, M.K. Gene expression profiling of oxidative stress on atrial fibrillation in humans. Exp. Mol. Med., 2003, 35(5), 336-349.
[79]
Böhm, A.; Tothova, L.; Urban, L.; Slezak, P.; Bacharova, L.; Musil, P.; Hatala, R. The relation between oxidative stress biomarkers and atrial fibrillation after pulmonary veins isolation. J. Electrocardiol., 2016, 49(3), 423-428.
[80]
Nishi, H.; Sakaguchi, T.; Miyagawa, S.; Yoshikawa, Y.; Fukushima, S.; Saito, S.; Ueno, T.; Kuratani, T.; Sawa, Y. Impact of microRNA expression in human atrial tissue in patients with atrial fibrillation undergoing cardiac surgery. PLoS One, 2013, 8(9), e73397.
[81]
Dawson, K.; Wakili, R.; Ordog, B.; Clauss, S.; Chen, Y.; Iwasaki, Y. MicroRNA29: A mechanistic contributor and potential biomarker in atrial fibrillation. Circulation, 2013, 127, 1466-1475.
[82]
Liu, T.; Zhong, S.; Rao, F.; Xue, Y.; Qi, Z.; Wu, S. Catheter ablation restores decreased plasma miR-409-3p and miR-432 in atrial fibrillation patients. Europace, 2016, 18(1), 92-99.
[83]
Sousa, P.A.; Providência, R.; Albenque, J.P.; Khoueiry, Z.; Combes, N.; Combes, S.; Boveda, S. Impact of free thyroxine on the outcomes of left atrial ablation procedures. Am. J. Cardiol., 2015, 116(12), 1863-1868.
[84]
Machino, T.; Tada, H.; Sekiguchi, Y.; Yamasaki, H.; Kuroki, K.; Igarashi, M.; Naruse, Y.; Nakano, E.; Ito, Y.; Kaneshiro, T.; Yoshida, K.; Aonuma, K. Prevalence and influence of hyperthyroidism on the long-term outcome of catheter ablation for drug-refractory atrial fibrillation. Circ. J., 2012, 76, 2546-2551.
[85]
Maisel, A.; Mueller, C.; Nowak, R.; Peacock, W.F.; Landsberg, J.W.; Ponikowski, P.; Mockel, M.; Hogan, C.; Wu, A.H.; Richards, M.; Clopton, P.; Filippatos, G.S.; Di Somma, S.; Anand, I.; Ng, L.; Daniels, L.B.; Neath, S.X.; Christenson, R.; Potocki, M.; McCord, J.; Terracciano, G.; Kremastinos, D.; Hartmann, O.; von Haehling, S.; Bergmann, A.; Morgenthaler, N.G.; Anker, S.D. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: Results from the BACH (Biomarkers in Acute Heart Failure) trial. J. Am. Coll. Cardiol., 2010, 55(19), 2062-2076.
[86]
Parwani, A.S.; von Haehling, S.; Kolodziejski, A.I.; Huemer, M.; Wutzler, A.; Attanasio, P.; Stojakovic, T.; Scharnagl, H.; Haverkamp, W.; Boldt, L.H. Mid-regional proadrenomedullin levels predict recurrence of atrial fibrillation after catheter ablation. Int. J. Cardiol., 2015, 180, 129-133.
[87]
Ho, J.E.; Yin, X.; Levy, D.; Vasan, R.S.; Magnani, J.W.; Ellinor, P.T.; McManus, D.D.; Lubitz, S.A.; Larson, M.G.; Benjamin, E.J. Galectin 3 and incident atrial fibrillation in the community. Am. Heart J., 2014, 167(5), 729-34.e1.
[88]
Kornej, J.; Schmidl, J.; Ueberham, L.; John, S.; Daneschnejad, S.; Dinov, B.; Hindricks, G.; Adams, V.; Husser, D.; Bollmann, A. Galectin-3 in patients with atrial fibrillation undergoing radiofrequency catheter ablation. PLoS One, 2015, 10(4), e0123574.
[89]
Andrade, J.G.; Khairy, P.; Nattel, S.; Vanella, A.; Rivard, L.; Guerra, P.G.; Dubuc, M.; Dyrda, K.; Thibault, B.; Talajic, M.; Mondesert, B.; Roy, D.; Macle, L. Corticosteroid use during pulmonary vein isolation is associated with a higher prevalence of dormant pulmonary vein conduction. Heart Rhythm, 2013, 10(10), 1569-1575.
[90]
Won, H.; Kim, J.Y.; Shim, J.; Uhm, J.S.; Pak, H.N.; Lee, M.H.; Joung, B. Effect of a single bolus injection of low-dose hydrocortisone for prevention of atrial fibrillation recurrence after radiofrequency catheter ablation. Circ. J., 2013, 77(1), 53-59.
[91]
Koyama, T.; Tada, H.; Sekiguchi, Y.; Arimoto, T.; Yamasaki, H.; Kuroki, K.; Machino, T.; Tajiri, K.; Zhu, X.D.; Kanemoto-Igarashi, M.; Sugiyasu, A.; Kuga, K.; Nakata, Y.; Aonuma, K. Prevention of atrial fibrillation recurrence with corticosteroids after radiofrequency catheter ablation: a randomized controlled trial. J. Am. Coll. Cardiol., 2010, 56(18), 1463-1472.
[92]
Kim, Y.R.; Nam, G.B.; Han, S.; Kim, S.H.; Kim, K.H.; Lee, S.; Kim, J.; Choi, K.J.; Kim, Y.H. Effect of short-term steroid therapy on early recurrence during the blanking period after catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol, 2015, 8(6), 1366-1372.
[93]
Deftereos, S.; Giannopoulos, G.; Efremidis, M.; Kossyvakis, C.; Katsivas, A.; Panagopoulou, V.; Papadimitriou, C.; Karageorgiou, S.; Doudoumis, K.; Raisakis, K.; Kaoukis, A.; Alexopoulos, D.; Manolis, A.S.; Stefanadis, C.; Cleman, M.W. Colchicine for prevention of atrial fibrillation recurrence after pulmonary vein isolation: mid-term efficacy and effect on quality of life. Heart Rhythm, 2014, 11(4), 620-628.
[94]
Deftereos, S.; Giannopoulos, G.; Kossyvakis, C.; Efremidis, M.; Panagopoulou, V.; Kaoukis, A.; Raisakis, K.; Bouras, G.; Angelidis, C.; Theodorakis, A.; Driva, M.; Doudoumis, K.; Pyrgakis, V.; Stefanadis, C. Colchicine for prevention of early atrial fibrillation recurrence after pulmonary vein isolation: A randomized controlled study. J. Am. Coll. Cardiol., 2012, 60(18), 1790-1796.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy