Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Simultaneous Determination of Epinephrine and Tyrosine Using a Glassy Carbon Electrode Amplified with ZnO-Pt/CNTs Nanocomposite

Author(s): Ali Samadzadeh, Iran Sheikhshoaie* and Hassan Karimi-Maleh*

Volume 15, Issue 2, 2019

Page: [166 - 171] Pages: 6

DOI: 10.2174/1573411014666180313115001

Price: $65

Abstract

Background: Simultaneous analysis of epinephrine and tyrosine as two effective and important biological compounds in human blood and urine samples are very important for the investigation of human health.

Objective: In this research, a highly effective voltammetric sensor fabricated for simultaneous analysis of epinephrine and tyrosine. The sensor was fabricated by the modification of glassy carbon electrode with ZnO-Pt/CNTs nanocomposite (ZnO-Pt/CNTs/GCE). The synthesized nanocomposite was characterized by SEM method. The ZnO-Pt/CNTs/GCE showed two separated oxidation signals at potential ~220 mV and 700 mV for epinephrine and tyrosine, respectively. Also, we detected linear dynamic ranges 0.5-250.0 µM and 1.0-220 µM with a limit of detections 0.1 µM and 0.5 µM for the determination of epinephrine and tyrosine, respectively. The ZnO-Pt/CNTs/GCE was used for the determination of epinephrine and tyrosine in blood serum and human urine samples.

Keywords: Epinephrine, tyrosine, ZnO-Pt/CNTs nanocomposite, electrochemical sensors, carbon electrode, biological compounds.

Graphical Abstract
[1]
Schildkraut, J.J. The Catecholamine hypothesis of affective disorders: A review of supprting evidence. Am. J. Psychiatry, 1965, 122, 509-522.
[2]
Nutt, J.G.; Woodward, W.R.; Hammerstad, J.P.; Carter, J.H.; Anderson, J.L. The On-Off phenomenon in parkinson’s disease — relation to levodopa absorption and transport. N. Engl. J. Med., 1984, 310, 483-488.
[3]
Lee, P.F. The Influence of epinephrine and phenylephrine on intraocular pressure. AMA Arch. Opthalmol., 1958, 60(5), 863-867.
[4]
Barcroft, H.; Konzett, H. On the actions of noradrenaline, adrenaline and isopropyl noradrenaline on the arterial blood pressure, heart rate and muscle blood flow in man. J. Physiol., 1949, 110, 194-204.
[5]
Carrera, V.; Sabater, E.; Vilanova, E.; Sogorb, M.A. A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures. J. Chromatogr. B., 2007, 847, 88-94.
[6]
Deftereos, N.T.; Calokerinos, A.C.; Efstathiou, C.E. Flow injection chemiluminometric determination of epinephrine, norepinephrine, dopamine and L-dopa. Analyst, 1993, 118, 627-632.
[7]
Du, J.; Shen, L.; Lu, J. Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material. Anal. Chim. Acta, 2003, 489, 183-189.
[8]
Beitollahi, H.; Karimi-Maleh, H.; Khabazzadeh, H. Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal. Chem., 2008, 80(24), 9848-9851.
[9]
Tavana, T.; Khalilzadeh, M.A.; Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H.; Zareyee, D. Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode. J. Mol. Liq., 2012, 168, 69-74.
[10]
Sadeghi, R.; Karimi-Maleh, H.; Bahari, A.; Taghavi, M. A novel biosensor based on ZnO nanoparticle/1,3-dipropylimidazolium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine. Phys. Chem. Liquids, 2013, 51, 704-714.
[11]
Norouzi, P.; Larijani, B.; Ganjali, M.R. Ochratoxin A sensor based on nanocomposite hybrid film of ionic liquid-graphene nano-sheets using coulometric FFT cyclic voltammetry. Int. J. Electrochem. Sci., 2012, 7(8), 7313-7324.
[12]
Jafari, S.; Faridbod, F.; Norouzi, P.; Dezfuli, A.S.; Ajloo, D.; Mohammadipanah, F.; Ganjali, M.R. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry. Anal. Chim. Acta, 2015, 895, 80-88.
[13]
Venkataprasad, G.; Reddy, T.M.; Shaikshavali, P.; Gopal, P.; Narayana, P.V. Electrochemical determination of 3,5-dinitrobenzoic acid in the presence and absence of CTAB at multi-walled carbon nanotubes modified glassy carbon electrode: A voltammetric study. Anal. Bioanal. Electrochem., 2017, 9, 400-411.
[14]
Souza, C.D.; Braga, O.C.; Vieira, I.C.; Spinelli, A. Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sens. Actuat. B, 2008, 135, 66-73.
[15]
Ashjari, M.; Karimi-Maleh, H.; Ahmadpour, F.; Shabani-Nooshabadi, M.; Sadrnia, A.; Khalilzadeh, M.A. Voltammetric analysis of mycophenolate mofetilin pharmaceutical samples via electrochemical nanostructure based sensor modified with ionic liquid and MgO/SWCNTs. J. Taiwan, Inst. Chem. Eng., 2017, 80, 989-996.
[16]
Bananezhad, A.; Ganjali, M.R.; Karimi-Maleh, H.; Norouzi, P. Fabrication of Amplified Nanostructure Based Sensor for Analysis of N-Acetylcysteine in Presence of High Concentration Folic Acid. Int. J. Electrochem. Sci., 2017, 12, 8045-8058.
[17]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact., 2018, 12, 634-640.
[18]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food. samples. Food Anal. Methods, 2013, 6, 1639-1647.
[19]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Faghih-Mirzaei, E. A nanostructure label-free DNA biosensor for ciprofloxacin analysis as a chemotherapeutic agent; An experimental and theoretical investigation. New J. Chem., 2017, 41, 4985-4989.
[20]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A sensitive amplified sensor based on improved carbon paste electrode with 1-methyl-3-octylimidazolium tetrafluoroborate and ZnO/CNTs nanocomposite for differential pulse voltammetric analysis of raloxifene. Appl. Surf. Sci., 2017, 420, 882-885.
[21]
Bavandpour, R.; Karimi-Maleh, H.; Asif, M.; Gupta, V.K.; Atar, N.; Abbasghorbani, M. Liquid phase determination of adrenaline uses a voltammetric sensor employing CuFe2O4 nanoparticles and room temperature ionic liquids. J. Mol. Liq., 2016, 213, 369-373.
[22]
Meadows, G.G.; Pierson, H.F.; Abdallah, P.M.; Desai, P.R. Dietary influence of tyrosine and phenylalanine on the response of B16 melanoma to Carbidopa-Levodopa methyl ester chemotherapy. Cancer Res., 1982, 42, 3056-3063.
[23]
Yola, M.L.; Atar, N. Functionalized graphene quantum dots with bi-metallic nanoparticles composite: Sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J. Electrochem. Soc., 2016, 163(14), B718-B725.
[24]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[25]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[26]
Keivani, Z.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. An electrochemical strategy to determine thiosulfate, 4-chlorophenol and nitrite as three important pollutants in water samples via a nanostructure modified sensor. J. Colloid Interface Sci., 2017, 507, 11-17.
[27]
Karimi-Maleh, H.; Ganjali, M.R.; Norouzi, P.; Bananezhad, A. Amplified nanostructure electrochemical sensor for simultaneous determination of captopril, acetaminophen, tyrosine and hydrochlorothiazide. Mater. Sci. Eng. C, 2017, 73, 472-477.
[28]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P. Electrochemical nanostructure platform for the analysis of glutathione in the presence of uric acid and tryptophan. Anal. Methods, 2017, 9, 6228-6234.
[29]
Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping differential pulsevoltammetric determination of venlafaxine and desvenlafaxine employingNafion-carbon nanotube composite glassy carbon electrode. Electrochim. Acta, 2011, 56, 4188-4196.
[30]
Atta, N.F.; Galal, A.; Wassel, A.A.; Ibrahim, A.H. Sensitive electrochemical determination of morphine using gold nanoparticles-ferrocene modified carbon paste electrode. Int. J. Electrochem. Sci., 2012, 7, 10501-10518.
[31]
Karimi-Maleh, H.; Salehi, M.; Faghani, F. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples. J. Food Drug Anal., 2017, 25, 1000-1007.
[32]
Karimi-Maleh, H.; Shojaei, M.; Amini, F.; Akbari, A. Analysis of levodopa in the presence of Vitamin B6 using carbon paste electrode modified with1-Butyl-3 methylimidazolium Hexafluorophosphate and CuO nanoparticles. Electroanalysis, 2017, 29, 1854-1859.
[33]
Ngai, K.S.; Tan, W.T.; Zainal, Z.; Zawawi, R.M.; Zidan, M. Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide. Int. J. Electrochem. Sci., 2013, 8, 10557-10567.
[34]
Yola, M.L.; Atar, N. A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: Application to the simultaneous determination of quercetin and rutin. Electrochim. Acta, 2014, 119, 24-31.
[35]
Arabali, V.; Ebrahimi, M.; Abbasghorbani, M.; Gupta, V.K.; Farsi, M.; Ganjali, M.R.; Karimi, F. Electrochemical determination of vitamin C in the presence of NADH using a CdO nanoparticle/ionic liquid modified carbon paste electrode as a sensor. J. Mol. Liq., 2016, 213(1), 312-316.
[36]
Shang, L.; Zhao, F.; Zeng, B. Sensitive voltammetric determination of vanillin with an AuPd nanoparticles-graphene composite modified electrode. Food Chem., 2014, 151, 53-57.
[37]
Jiang, L.; Ding, Y.; Jiang, F.; Li, L.; Mo, F. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin. Anal. Chim. Acta, 2014, 833, 22-28.
[38]
Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron., 2013, 48, 270-275.
[39]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite /N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[40]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Atar, N.; Yola, M.L.; Gupta, V.K.; Ensafi, A.A. A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind. Eng. Chem. Res., 2015, 54, 3634-3639.
[41]
Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid. J. Colloid Interface Sci., 2017, 495, 61-67.
[42]
Rahmanifar, E.; Yoosefian, M.; Karimi-Maleh, H. Application of CdO/SWCNTs nanocomposite ionic liquids carbon paste electrode as a voltammetric sensor for determination of benserazide. Curr. Anal. Chem., 2017, 13, 46-51.
[43]
Karimi-Maleh, H.; Hatami, M.; Moradi, R.; Khalilzadeh, M.A.; Amiri, S.; Sadeghifar, H. Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid. Mikrochim. Acta, 2016, 183, 2957-2964.
[44]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[45]
Ensafi, A.A.; Karimi‐Maleh, H.; Mallakpour, S.N. ‐(3,4‐Dihydroxyphenethyl)‐3,5‐dinitrobenzamide‐Modified Multiwall carbon nanotubes paste electrode as a novel sensor for simultaneous determination of penicillamine, uric acid, and tryptophan. Electroanalysis, 2011, 23(6), 1478-1487.
[46]
Akhgar, M.R.; Beitollahi, H.; Salari, M.; Karimi-Maleh, H.; Zamani, H. Fabrication of a sensor for simultaneous determination of norepinephrine, acetaminophen and tryptophan using a modified carbon nanotube paste electrode. Anal. Methods, 2012, 4(1), 259-264.
[47]
Baghayeri, M.; Veisi, H.; Veisi, H.; Maleki, B.; Karimi-Maleh, H.; Beitollahi, H. Multi-walled carbon nanotubes decorated with palladium nanoparticles as a novel platform for electrocatalytic sensing applications. RSC Advances, 2014, 4(91), 49595-49604.
[48]
Ensafi, A.A.; Karimi-Maleh, H. Ferrocenedicarboxylic acid modified multiwall carbon nanotubes paste electrode for voltammetric determination of sulfite. Int. J. Electrochem. Sci., 2010, 5(3), 392-406.
[49]
Gupta, V.K.; Eren, T.; Atar, N.; Yola, M.L.; Parlak, C.; Karimi-Maleh, H. CoFe2O4@ TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J. Mol. Liq., 2015, 208, 122-129.
[50]
Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H.; Nasiri, V.; Khalilzadeh, M.A. Biparva. Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: application for determination of sulfite in real samples. Ionics, 2012, 18, 687-694.
[51]
Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M. A Voltammetric sensor for simultaneous determination of Vitamin C and Vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal. Methods, 2015, 8, 549-557.
[52]
Karimi-Maleh, H.; Moazampour, M.; Ensafi, A.A.; Mallakpour, S.; Hatami, M. An electrochemical nanocomposite modified carbon paste electrode as a sensor for simultaneous determination of hydrazine and phenol in water and wastewater samples. Environ. Sci. Pollut. Res. Int., 2014, 21(9), 5879-5888.
[53]
Fouladgar, M.; Karimi-Maleh, H. Ionic liquid/multiwall carbon nanotubes paste electrode for square wave voltammetric determination of methyldopa. Ionics, 2013, 19(8), 1163-1170.
[54]
Karimi-Maleh, H.; Moazampour, M.; Ahmar, H.; Beitollahi, H.; Ensafi, A.A. A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan. Measurement, 2014, 51, 91-99.
[55]
Jin, G.P.; Lin, X.Q. The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine. Electrochem. Commun., 2004, 6, 454-460.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy