Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Effects of Arginine on Multimodal Chromatography: Experiments and Simulations

Author(s): Atsushi Hirano, Kentaro Shiraki and Tomoshi Kameda*

Volume 20, Issue 1, 2019

Page: [40 - 48] Pages: 9

DOI: 10.2174/1389203718666171024115407

open access plus

Abstract

Multimodal or mixed-mode chromatography can be used to separate various proteins, including antibodies. The separation quality and efficiency have been improved by the addition of solutes, especially arginine. This review summarizes the mechanism underlying the effects of arginine on protein elution in multimodal chromatography with neutral, anionic or cationic resin ligands; the mechanism has been investigated using experiments and molecular dynamics simulations. Arginine is effective in facilitating protein elution compared to salts and protein denaturants such as guanidine and urea. The unique elution effect of arginine can be explained by the interplay among arginine, proteins and the resin ligands. Arginine exhibits multiple binding modes for the ligands and further affinity for protein aromatic residues through its guanidinium group. These properties make arginine versatile for protein elution in multimodal chromatography. Taking into account that arginine is an aggregation suppressor for proteins but not a protein denaturant, arginine is a promising protein-eluting reagent for multimodal chromatography.

Keywords: Arginine, multimodal chromatography, simulations, proteins, antibodies, resin ligands.

Graphical Abstract
[1]
Zhao, G.; Dong, X.Y.; Sun, Y. Ligands for mixed-mode protein chromatography: Principles, characteristics and design. J. Biotechnol., 2009, 144, 3-11.
[2]
Yang, Y.; Geng, X. Mixed-mode chromatography and its applications to biopolymers. J. Chromatogr. A, 2011, 1218, 8813-8825.
[3]
Zhang, K.; Liu, X. Mixed-mode chromatography in pharmaceutical and biopharmaceutical applications. J. Pharm. Biomed. Anal., 2016, 128, 73-88.
[4]
McLaughlin, L.W. Mixed-mode chromatography of nucleic acids. Chem. Rev., 1989, 89, 309-319.
[5]
Arakawa, T.; Tsumoto, K.; Nagase, K.; Ejima, D. The effects of arginine on protein binding and elution in hydrophobic interaction and ion-exchange chromatography. Protein Expr. Purif., 2007, 54, 110-116.
[6]
Ejima, D.; Yumioka, R.; Tsumoto, K.; Arakawa, T. Effective elution of antibodies by arginine and arginine derivatives in affinity column chromatography. Anal. Biochem., 2005, 345, 250-257.
[7]
Arakawa, T.; Philo, J.S.; Tsumoto, K.; Yumioka, R.; Ejima, D. Elution of antibodies from a Protein-A column by aqueous arginine solutions. Protein Expr. Purif., 2004, 36, 244-248.
[8]
Ejima, D.; Yumioka, R.; Arakawa, T.; Tsumoto, K. Arginine as an effective additive in gel permeation chromatography. J. Chromatogr. A, 2005, 1094, 49-55.
[9]
Buchner, J.; Rudolph, R. Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology, 1991, 9, 157-162.
[10]
Lange, C.; Rudolph, R. Suppression of protein aggregation by L-arginine. Curr. Pharm. Biotechnol., 2009, 10, 408-414.
[11]
Tsumoto, K.; Umetsu, M.; Kumagai, I.; Ejima, D.; Philo, J.S.; Arakawa, T. Role of arginine in protein refolding, solubilization, and purification. Biotechnol. Prog., 2004, 20, 1301-1308.
[12]
Arakawa, T.; Tsumoto, K. The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation. Biochem. Biophys. Res. Commun., 2003, 304, 148-152.
[13]
Shiraki, K.; Kudou, M.; Fujiwara, S.; Imanaka, T.; Takagi, M. Biophysical effect of amino acids on the prevention of protein aggregation. J. Biochem., 2002, 132, 591-595.
[14]
Arakawa, T.; Ejima, D.; Tsumoto, K.; Obeyama, N.; Tanaka, Y.; Kita, Y.; Timasheff, S.N. Suppression of protein interactions by arginine: A proposed mechanism of the arginine effects. Biophys. Chem., 2007, 127, 1-8.
[15]
Arakawa, T.; Kita, Y.; Sato, H.; Ejima, D. MEP chromatography of antibody and Fc-fusion protein using aqueous arginine solution. Protein Expr. Purif., 2009, 63, 158-163.
[16]
Kaleas, K.A.; Schmelzer, C.H.; Pizarro, S.A. Industrial case study: Evaluation of a mixed-mode resin for selective capture of a human growth factor recombinantly expressed in E. coli. J. Chromatogr. A, 2010, 1217, 235-242.
[17]
Hou, Y.; Cramer, S.M. Evaluation of selectivity in multimodal anion exchange systems: a priori prediction of protein retention and examination of mobile phase modifier effects. J. Chromatogr. A, 2011, 1218, 7813-7820.
[18]
Pezzini, J.; Cabanne, C.; Gantier, R.; Janakiraman, V.N.; Santarelli, X. A comprehensive evaluation of mixed mode interactions of HEA and PPA HyperCel chromatographic media. J. Chromatogr. B ., 2015, 976-977, 68-77.
[19]
Burton, S.C.; Harding, D.R. Hydrophobic charge induction chromatography: Salt independent protein adsorption and facile elution with aqueous buffers. J. Chromatogr. A, 1998, 814, 71-81.
[20]
Boschetti, E. Antibody separation by hydrophobic charge induction chromatography. Trends Biotechnol., 2002, 20, 333-337.
[21]
Chen, J.; Tetrault, J.; Ley, A. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process. J. Chromatogr. A, 2008, 1177, 272-281.
[22]
Guerrier, L.; Girot, P.; Schwartz, W.; Boschetti, E. New method for the selective capture of antibodies under physiological conditions. Bioseparation, 2000, 9, 211-221.
[23]
Schwartz, W.; Judd, D.; Wysocki, M.; Guerrier, L.; Birck-Wilson, E.; Boschetti, E. Comparison of hydrophobic charge induction chromatography with affinity chromatography on protein A for harvest and purification of antibodies. J. Chromatogr. A, 2001, 908, 251-263.
[24]
Ghose, S.; Hubbard, B.; Cramer, S.M. Evaluation and comparison of alternatives to Protein A chromatography Mimetic and hydrophobic charge induction chromatographic stationary phases. J. Chromatogr. A, 2006, 1122, 144-152.
[25]
Ejima, D.; Tsumoto, K.; Fukada, H.; Yumioka, R.; Nagase, K.; Arakawa, T.; Philo, J.S. Effects of acid exposure on the conformation, stability, and aggregation of monoclonal antibodies. Proteins, 2007, 66, 954-962.
[26]
Arakawa, T.; Futatsumori-Sugai, M.; Tsumoto, K.; Kita, Y.; Sato, H.; Ejima, D. MEP HyperCel chromatography II: Binding, washing and elution. Protein Expr. Purif., 2010, 71, 168-173.
[27]
Hirano, A.; Maruyama, T.; Shiraki, K.; Arakawa, T.; Kameda, T. Mechanism of protein desorption from 4-mercaptoethylpyridine resins by arginine solutions. J. Chromatogr. A, 2014, 1373, 141-148.
[28]
Akerlof, G. Dielectric constants of some organic solvent-water mixtures at various temperatures. J. Am. Chem. Soc., 1932, 54, 4125-4139.
[29]
Miki, K.; Westh, P.; Koga, Y. Hydrophobicity vs hydrophilicity: Effects of poly(ethylene glycol) and tert-butyl alcohol on H2O as probed by 1-propanol. J. Phys. Chem. B, 2005, 109, 19536-19541.
[30]
Lin, D.Q.; Tong, H.F.; Wang, H.Y.; Shao, S.; Yao, S.J. Molecular mechanism of hydrophobic charge-induction chromatography: interactions between the immobilized 4-mercaptoethyl-pyridine ligand and IgG. J. Chromatogr. A, 2012, 1260, 143-153.
[31]
Lin, D.Q.; Tong, H.F.; Wang, H.Y.; Yao, S.J. Molecular insight into the ligand-IgG interactions for 4-mercaptoethyl-pyridine based hydrophobic charge-induction chromatography. J. Phys. Chem. B, 2012, 116, 1393-1400.
[32]
Yuan, X.M.; Lin, D.Q.; Zhang, Q.L.; Gao, D.; Yao, S.J. A microcalorimetric study of molecular interactions between immunoglobulin G and hydrophobic charge-induction ligand. J. Chromatogr. A, 2016, 1443, 145-151.
[33]
Cheng, F.; Li, M.Y.; Wang, H.Q.; Lin, D.Q.; Qu, J.P. Antibody-ligand interactions for hydrophobic charge-induction chromatography: A surface plasmon resonance study. Langmuir, 2015, 31, 3422-3430.
[34]
Ren, J.; Yao, P.; Cao, Y.; Cao, J.; Zhang, L.; Wang, Y.; Jia, L. Application of cyclodextrin-based eluents in hydrophobic charge-induction chromatography: Elution of antibody at neutral pH. J. Chromatogr. A, 2014, 1352, 62-68.
[35]
Li, P.; Xiu, G.; Mata, V.G.; Grande, C.A.; Rodrigues, A.E. Expanded bed adsorption/desorption of proteins with Streamline Direct CST I adsorbent. Biotechnol. Bioeng., 2006, 94, 1155-1163.
[36]
Li, P.; Xiu, G.H.; Rodrigues, A.E. Experimental and modeling study of protein adsorption in expanded bed. AlChE J., 2005, 51, 2965-2977.
[37]
Charoenrat, T.; Ketudat-Cairns, M.; Jahic, M.; Enfors, S.O.; Veide, A. Recovery of recombinant beta-glucosidase by expanded bed adsorption from Pichia pastoris high-cell-density culture broth. J. Biotechnol., 2006, 122, 86-98.
[38]
Holstein, M.A.; Parimal, S.; McCallum, S.A.; Cramer, S.M. Mobile phase modifier effects in multimodal cation exchange chromatography. Biotechnol. Bioeng., 2012, 109, 176-186.
[39]
Chung, W.K.; Hou, Y.; Holstein, M.; Freed, A.; Makhatadze, G.I.; Cramer, S.M. Investigation of protein binding affinity in multimodal chromatographic systems using a homologous protein library. J. Chromatogr. A, 2010, 1217, 191-198.
[40]
Freed, A.S.; Garde, S.; Cramer, S.M. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments. J. Phys. Chem. B, 2011, 115, 13320-13327.
[41]
Parimal, S.; Garde, S.; Cramer, S.M. Interactions of multimodal ligands with proteins: Insights into selectivity using molecular dynamics simulations. Langmuir, 2015, 31, 7512-7523.
[42]
Chung, W.K.; Freed, A.S.; Holstein, M.A.; McCallum, S.A.; Cramer, S.M. Evaluation of protein adsorption and preferred binding regions in multimodal chromatography using NMR. Proc. Natl. Acad. Sci. USA, 2010, 107, 16811-16816.
[43]
Wolfe, L.S.; Barringer, C.P.; Mostafa, S.S.; Shukla, A.A. Multimodal chromatography: Characterization of protein binding and selectivity enhancement through mobile phase modulators. J. Chromatogr. A, 2014, 1340, 151-156.
[44]
Arakawa, T.; Ponce, S.; Young, G. Isoform separation of proteins by mixed-mode chromatography. Protein Expr. Purif., 2015, 116, 144-151.
[45]
Hirano, A.; Arakawa, T.; Kameda, T. Interaction of arginine with Capto MMC in multimodal chromatography. J. Chromatogr. A, 2014, 1338, 58-66.
[46]
Kaleas, K.A.; Tripodi, M.; Revelli, S.; Sharma, V.; Pizarro, S.A. Evaluation of a multimodal resin for selective capture of CHO-derived monoclonal antibodies directly from harvested cell culture fluid. J. Chromatogr. B ., 2014, 969, 256-263.
[47]
Trexler-Schmidt, M.; Sze-Khoo, S.; Cothran, A.R.; Thai, B.Q.; Sargis, S.; Lebreton, B.; Kelley, B.; Blank, G.S. Purification strategies to process 5 g/L titers of monoclonal antibodies. BioPharm Int., 2009, 22, 8-15.
[48]
Eriksson, K.; Ljunglöf, A.; Rodrigo, G.; Brekkan, E. MAb contaminant removal with a multimodal anion exchanger: a platform step to follow protein A. BioProcess Int., 2009, 7, 52-56.
[49]
Gagnon, P. IgG aggregate removal by charged-hydrophobic mixed mode chromatography. Curr. Pharm. Biotechnol., 2009, 10, 434-439.
[50]
Voitl, A.; Muller-Spath, T.; Morbidelli, M. Application of mixed mode resins for the purification of antibodies. J. Chromatogr. A, 2010, 1217, 5753-5760.
[51]
Muller-Spath, T.; Aumann, L.; Strohlein, G.; Kornmann, H.; Valax, P.; Delegrange, L.; Charbaut, E.; Baer, G.; Lamproye, A.; Johnck, M.; Schulte, M.; Morbidelli, M. Two step capture and purification of IgG2 using multicolumn countercurrent solvent gradient purification (MCSGP). Biotechnol. Bioeng., 2010, 107, 974-984.
[52]
Ma, J.; Hoang, H.; Myint, T.; Peram, T.; Fahrner, R.; Chou, J.H. Using precipitation by polyamines as an alternative to chromatographic separation in antibody purification processes. J. Chromatogr. B., 2010, 878, 798-806.
[53]
Pezzini, J.; Joucla, G.; Gantier, R.; Toueille, M.; Lomenech, A.; Le Senechal, C.; Garbay, B.; Santarelli, X.; Cabanne, C. Antibody capture by mixed-mode chromatography: A comprehensive study from determination of optimal purification conditions to identification of contaminating host cell proteins. J. Chromatogr. A, 2011, 1218, 8197-8208.
[54]
Karkov, H.S.; Sejergaard, L.; Cramer, S.M. Methods development in multimodal chromatography with mobile phase modifiers using the steric mass action model. J. Chromatogr. A, 2013, 1318, 149-155.
[55]
Hirano, A.; Arakawa, T.; Kameda, T. Effects of arginine on multimodal anion exchange chromatography. Protein Expr. Purif., 2015, 116, 105-112.
[56]
Sejergaard, L.; Karkov, H.S.; Krarup, J.K.; Hagel, A.B.; Cramer, S.M. Model-based process development for the purification of a modified human growth hormone using multimodal chromatography. Biotechnol. Prog., 2014, 30, 1057-1064.
[57]
Vagenende, V.; Han, A.X.; Mueller, M.; Trout, B.L. Protein-associated cation clusters in aqueous arginine solutions and their effects on protein stability and size. ACS Chem. Biol., 2013, 8, 416-422.
[58]
Shukla, D.; Trout, B.L. Preferential interaction coefficients of proteins in aqueous arginine solutions and their molecular origins. J. Phys. Chem. B, 2011, 115, 1243-1253.
[59]
Hirano, A.; Kameda, T.; Arakawa, T.; Shiraki, K. Arginine-assisted solubilization system for drug substances: solubility experiment and simulation. J. Phys. Chem. B, 2010, 114, 13455-13462.
[60]
Ariki, R.; Hirano, A.; Arakawa, T.; Shiraki, K. Arginine increases the solubility of alkyl gallates through interaction with the aromatic ring. J. Biochem., 2011, 149, 389-394.
[61]
Hirano, A.; Tokunaga, H.; Tokunaga, M.; Arakawa, T.; Shiraki, K. The solubility of nucleobases in aqueous arginine solutions. Arch. Biochem. Biophys., 2010, 497, 90-96.
[62]
Hirano, A.; Kameda, T.; Shinozaki, D.; Arakawa, T.; Shiraki, K. Molecular dynamics simulation of the arginine-assisted solubilization of caffeic acid: intervention in the interaction. J. Phys. Chem. B, 2013, 117, 7518-7527.
[63]
Hirano, A.; Arakawa, T.; Shiraki, K. Arginine increases the solubility of coumarin: comparison with salting-in and salting-out additives. J. Biochem., 2008, 144, 363-369.
[64]
Wu, E.; Coppens, M.O.; Garde, S. Role of arginine in mediating protein-carbon nanotube interactions. Langmuir, 2015, 31, 1683-1692.
[65]
Shikiya, Y.; Tomita, S.; Arakawa, T.; Shiraki, K. Arginine inhibits adsorption of proteins on polystyrene surface. PLoS One, 2013, 8, e70762.
[66]
Hirano, A.; Tanaka, T.; Kataura, H.; Kameda, T. Arginine side chains as a dispersant for individual single-wall carbon nanotubes. Chem. Eur. J., 2014, 20, 4922-4930.
[67]
Li, J.; Garg, M.; Shah, D.; Rajagopalan, R. Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions. J. Chem. Phys., 2010, 133, 054902.
[68]
Zhang, L.; Zhao, G.; Sun, Y. Molecular insight into protein conformational transition in hydrophobic charge induction chromatography: a molecular dynamics simulation. J. Phys. Chem. B, 2009, 113, 6873-6880.
[69]
Zhang, L.; Zhao, G.; Sun, Y. Effects of ligand density on hydrophobic charge induction chromatography: molecular dynamics simulation. J. Phys. Chem. B, 2010, 114, 2203-2211.
[70]
Zhang, Q.; Zhuang, T.; Tong, H.; Wang, H.; Lin, D.; Yao, S. Experimental and in silico studies on three hydrophobic charge-induction adsorbents for porcine immunoglobulin purification. Chin. J. Chem. Eng., 2016, 24, 151-157.
[71]
Hirano, A.; Maruyama, T.; Shiraki, K.; Arakawa, T.; Kameda, T. A study of the small-molecule system used to investigate the effect of arginine on antibody elution in hydrophobic charge-induction chromatography. Protein Expr. Purif., 2017, 129, 44-52.
[72]
Shukla, D.; Zamolo, L.; Cavallotti, C.; Trout, B.L. Understanding the role of arginine as an eluent in affinity chromatography via molecular computations. J. Phys. Chem. B, 2011, 115, 2645-2654.

© 2024 Bentham Science Publishers | Privacy Policy