Review Article

Try to Remember: Interplay between Memory and Substance Use Disorder

Author(s): Rashidi Mohamed Pakri Mohamed, Jaya Kumar*, Ernie Yap, Isa Naina Mohamed, Hatta Sidi, Raja Lope Adam and Srijit Das

Volume 20, Issue 2, 2019

Page: [158 - 165] Pages: 8

DOI: 10.2174/1389450118666170622092824

Price: $65

Abstract

Memories associated with substance use disorders, or substance-associated cues increase the likelihood of craving and relapse during abstinence. There is a growing consensus that manipulation of synaptic plasticity may reduce the strength of substance abuse-related memories. On the biological front, there are new insights that suggest memories associated with substance use disorder may follow unique neurobiological pathways that render them more accessible to pharmacological intervention. In parallel to this, research in neurochemistry has identified several potential candidate molecules that could influence the formation and maintenance of long-term memory. Drugs that target these molecules (blebbistatin, isradipine and zeta inhibitory peptide) have shown promise at the preclinical stage. In this review, we shall provide an overview of the evolving understanding on the biochemical mechanisms involved in memory formation and expound on the premise that substance use disorder is a learning disorder.

Keywords: Addiction, memory, relapse, cue, blebbistatin, isradipine, PKM zeta.

Graphical Abstract
[1]
Volkow ND, Baler RD, Goldstein RZ. Addiction: Pulling at the neural threads of social behaviors. Neuron 2011; 69(4): 599-602.
[2]
Carroll KM. cognitive behavioral approach: Treating cocaine addiction. National institute on drug abuse; Rockville, MD: 1998. 1998.
[3]
Dutra L, Stathopoulou G, Basden SL, et al. A meta-analytic review of psychosocial interventions for substance use disorders. Am J Psychiatry 2008; 165: 179-87.
[4]
Kopetz CE, Lejuez CW, Wiers RW, Kruglanski AW. Motivatin and self-regulation in addiction: A call for convergence. Perspect Psychol Sci 2013; 8(1): 3-24.
[5]
Olds J, Milner P. Positive reinforcement produced by electrical stimulation of the septal area and other regions of rat brain. J Comp Physiol Psychol 1954; 47: 419-27.
[6]
Olds J. Pleasure centers in the brain. Sci Am 1956; 195: 105-16.
[7]
Smith KS, Mahler SV, Pecina S, Berridge KC. Hedonic hotspots: Generating sensory pleasure in the brain. In: Kringelbach ML, Berridge KC, editors. Pleasures of the Brain. Oxford University Press; New York, New York, USA, 2010. pp. 27-49.
[8]
Dreyer JL. New insights into the roles of microRNAs in drug addiction and neuroplasticity. Genome Med 2010; 2(12): 92.
[9]
Fields HL, Hjelmstad GO, Margolis EB, Nicola SM. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 2007; 30: 289-316.
[10]
Wise RA. Brain reward circuitry: insights from unsensed incentives. Neuron 2002; 36: 229-40.
[11]
Kumar J, Hapidin H, Bee YTG, Ismail Z. Effects of the mGluR5 antagonist MPEP on ethanol withdrawal induced anxiety-like syndrome in rats. Behav Brain Funct 2013; 9: 43.
[12]
Kumar J, Hapidin H, Bee YTG, Ismail Z. Effects of acute ethanol administration on ethanol withdrawal induced anxiety-like syndrome in rats: A Biochemical Study. Alcohol 2016; 50: 9-17.
[13]
Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 2012; 4(6): a005710.
[14]
Hebb DO. The organization of behavior. Wiley: New York 1949.
[15]
Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973; 232(2): 331-56.
[16]
Lomo T. Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol Scand 1966; 68(277): 128.
[17]
Marr D. A theory of cerebellar cortex. J Physiol 1969; 202: 437-70.
[18]
Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 1982; 33(3): 253-8.
[19]
Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 1982; 324: 113-34.
[20]
Cooke SF, Bliss TV. Plasticity in the human central nervous system. Brain 2006; 129(7): 1659-73.
[21]
Massey PV, Bashir ZI. Long-term depression: multiple forms and implications for brain function. Trends Neurosci 2007; 30(4): 176-84.
[22]
Calabresi P, Lacey MG, North RA. Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. Br J Pharmacol 1989; 98(1): 135-40.
[23]
Mansvelder HD, Keath JR, Mcgehee DS. Synaptic mechanisms underlie nicotine- induced excitability of brain reward areas. Neuron 2002; 33: 905-19.
[24]
Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE. Synaptic plasticity in the lateral amygdale: a cellular hypothesis of fear conditioning. Learn Mem 2001; 8: 229-42.
[25]
Maren S, Holt W. The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behav Brain Res 2000; 110(1-2): 97-108.
[26]
Fuchs RA, See RE. Basolateral amygdala inactivation abolishes conditioned stimulus- and heroin-induced reinstatement of extinguished heroin-seeking behavior in rats. Psychopharmacology (Berl) 2002; 160: 425-33.
[27]
Childress AR, Ehrman RN, Wang Z, et al. Prelude to passion: Limbic activation by unseen drug and sexual cues. PLoS One 2008; 3: e1506.
[28]
Bonson KR, Grant SJ, Contoreggi CS, et al. Neural systems and cue induced cocaine craving. Neuropsychopharmacology 2002; 26: 376-86.
[29]
Caine SB, Humby T, Robbins TW, et al. Behavioral effects of psychomotor stimulants in rats with dorsal or ventralsubiculum lesions: Locomotion, cocaine selfadministration, and prepulse inhibition of startle. Behav Neurosci 2001; 115: 880-94.
[30]
Burns LH, Robbins TW, Everitt BJ, et al. Differential effects of excitotoxic lesions of the basolateral amygdala, ventralsubiculumandmedial prefrontal cortex on responding with conditioned reinforcement and locomotoractivity potentiated by intra-accumbens infusions of D-amphetamine. Behav Brain Res 1993; 55: 167-83.
[31]
Müller P, Pohlmann A. Experimentelle beiträge zur lehre vom gedächtnis 1906.
[32]
Wm H. Burnham retroactive amnesia: Illustrative cases and a tentative explanation. Am J Psychol 1903; 14(3/4): 118-32.
[33]
Lechner H, Squire L, Byrne J. 100 years of consolidation--remembering Müller and Pilzecker. Learn Mem 1999; 6(2): 77-87.
[34]
Bartlett F. Sir Frederic Charles Bartlett, Bartlett, FC Remembering. Cambridge University Press 1995.
[35]
McGaugh J. Time-dependent processes in memory storage. Science 1966; 153(3742): 1351-8.
[36]
McGaugh J. Memory--a century of consolidation. Science 2000; 287(5451): 248-51.
[37]
Rogan M, Stäubli U, LeDoux J. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 1997; 390(6660): 604-7.
[38]
Nader K, Schafe G, Le D. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 2000; 406(6797): 722-6.
[39]
Dudai Y, Eisenberg M. Rites of passage of the engram: Reconsolidation and the lingering consolidation hypothesis. Neuron 2004; 44(1): 93-100.
[40]
Cohen R, Blomberg F, Berzins K, Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol 1977; 74(1): 181-203.
[41]
Matus A, Ackermann M, Pehling G, Byers H, Fujiwara K. High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci USA 1982; 79(23): 7590-4.
[42]
Lattal K, Abel T. Different requirements for protein synthesis in acquisition and extinction of spatial preferences and context-evoked fear. J Neurosci 2001; 21(15): 5773-80.
[43]
Antonova I, Arancio O, Trillat A, et al. Rapid increase in clusters of presynaptic proteins at onset of long-lasting potentiation. Science 2001; 294(5546): 1547-50.
[44]
Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J. Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J Neurosci 2004; 24(8): 1962-6.
[45]
Rochlin M, Itoh K, Adelstein R, Bridgman P. Localization of myosin II A and B isoforms in cultured neurons. J Cell Sci 1995; 3661-70.
[46]
Lin C, Espreafico E, Mooseker M, Forscher P. Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 1996; 16(4): 769-82.
[47]
Espreafico E, Cheney R, Matteoli M, et al. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J Cell Biol 1992; 119(6): 1541-57.
[48]
Rex C, Gavin C, Rubio M, et al. Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 2010; 67(4): 603-17.
[49]
Rehberg K, Bergado-Acosta J, Koch J, Stork O. Disruption of fear memory consolidation and reconsolidation by actin filament arrest in the basolateral amygdala. Neurobiol Learn Mem 2010; 94(2): 117-26.
[50]
Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009; 10: 778-90.
[51]
Goeckeler ZM, Masaracchia RA, Zeng Q, Chew TL, Gallagher P, Wysolmerski RB. Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2. J Biol Chem 2000; 275: 18366-74.
[52]
Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays 2007; 29(4): 356-70.
[53]
Boureux A, Vignal E, Faure S, Fort P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 2007; 24(1): 203-16.
[54]
Zhou Q, Homma KJ, Poo MM. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 2004; 44: 749-57.
[55]
Gavin C, Rubio M, Young E, Miller C, Rumbaugh G. Myosin II motor activity in the lateral amygdala is required for fear memory consolidation. Learn Mem 2011; 19(1): 9-14.
[56]
Young EJ, Aceti M, Griggs EM, et al. Selective, retrieval-independent disruption of methamphetamine-associated memory by actin depolymerization. Biol Psychiatry 2014; 75(2): 96-104.
[57]
Young E, Blouin A, Briggs S, et al. Nonmuscle myosin IIB as a therapeutic target for the prevention of relapse to methamphetamine use. Mol Psychiatry 2016; 21(5): 615-23.
[58]
Tran-Nguyen LT, Fuchs RA, Coffey GP, Baker DA, O’Dell LE, Neisewander JL. Time dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala during cocaine withdrawal. Neuropsychopharmacology 1998; 19: 48-59.
[59]
West EA, Saddoris MP, Kerfoot EC, Carelli RM. Prelimbic and infralimbic cortical regions differentially encode cocaine-associated stimuli and cocaine-seeking before and following abstinence. Eur J Neurosci 2014; 39: 1891-902.
[60]
Wikler A. Dynamics of drug dependence, implication of a conditioningtheory for research and treatment. Arch Gen Psychiatry 1973; 28: 611-6.
[61]
O’Brien CP, Ehrman RN, Ternes JW. Classical conditioning in human opioid dependence.In: Behavioral analysis of drug dependence(Goldberg S, Stolerman I, eds). Orlando: Academic 1986; pp. pp. 329-356.
[62]
Hernandez AI, Blace N, Crary JF, et al. Protein kinase M zeta synthesisfrom a brain mRNA encoding an independent protein kinase C zeta catalyticdomain. Implications for the molecular mechanism of memory. J Biol Chem 2003; 278: 40305-16.
[63]
Sacktor TC, Osten P, Valsamis H, et al. Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation. Proc Natl Acad Sci USA 1993; 90: 8342-6.
[64]
Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC. Storage of spatial information by the maintenance mechanism of LTP. Science 2006; 313: 1141-4.
[65]
Serrano P, Friedman EL, Kenney J, et al. PKMzeta maintains spatial, instrumental, and classicallyconditioned long-term memories. PLoS Biol 2008; 6: 2698-706.
[66]
Li YQ, Xue YX, He YY, et al. Inhibition of PKMζ in Nucleus Accumbens Core Abolishes Long-Term Drug Reward Memory. J Neurosci 2011; 31(14): 5436-46.
[67]
Kessels HW, Malinow R. Synaptic AMPA receptor plasticity and behavior. Neuron 2009; 61: 340-50.
[68]
Frey U, Krug M, Reymann KG, Matthies H. Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res 1988; 452: 57-65.
[69]
Zhu Ping J, Huang W, Kalikulov D, et al. Suppression of PKR promotes network excitability and enhanced cognition by interferon-g-mediated disinhibition. Cell 2011; 147: 1384-96.
[70]
Yao Y, Kelly MT, Sajikumar S, et al. PKMz maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. J Neurosci 2008; 28: 7820-7.
[71]
Migues PV, Hardt O, Wu DC, et al. PKMzeta maintains memories by regulating GluR2- dependent AMPA receptor trafficking. Nat Neurosci 2010; 13: 630-4.
[72]
Brebner K, Wong TP, Liu L, et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 2005; 310: 1340-3.
[73]
Lee AM, Kanter BR, Wang D, et al. Prkcz null mice show normal learning and memory. Nature 2013; 493(7432): 416-9.
[74]
Volk LJ, Bachman JL, Johnson R, Yu Y, Huganir RL. PKM-ζ is not required for hippocampal synaptic plasticity, learning and memory. Nature 2013; 493(7432): 420-3.
[75]
Deng Z, Lubinski AJ, Page TL. Zeta Inhibitory Peptide (ZIP) erases long-term memories in a cockroach. Neurobiol Learn Mem 2015; 118: 89-5.
[76]
Fitton A, Benfield P. Isradipine. Drugs 1990; 40(1): 31-74.
[77]
Martellotta MC, Kuzmin A, Zvartau E, Cossu G, Gessa GL, Fratta W. Isradipine inhibits nicotine intravenous self-administrationin drug-naive mice. Pharmacol Biochem Behav 1995; 52(2): 271-4.
[78]
Kuzmin A, Zvartau E, Gessa GL, Martellotta MC, Fratta W. Calcium antagonists isradipine and nimodipine suppress cocaine and morphine intravenousself-administrationin drug-naive mice. Pharmacol Biochem Behav 1992; 41(3): 497-500.
[79]
Lipscombe D, Helton TD, Xu W. L-type calcium channels: the low down. J Neurophysiol 2004; 92: 2633-41.
[80]
Rajadhyaksha A, Husson I, Satpute SS, et al. L-type Ca2+ channels mediate adaptation of extracellular signal-regulated kinase 1/2 phosphorylation in the ventral tegmental area after chronic amphetamine treatment. J Neurosci 2004; 24: 7464-76.
[81]
Chan CS, Guzman JN, Ilijic E, et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 2007; 447: 1081-6.
[82]
Pucilowski O, Plaznik A, Overstreet DH. Isradipine suppresses amphetamine induced conditioned place preference and locomotor stimulation in the rat. Neuropsychopharmacology 1995; 12: 239-44.
[83]
Cramer CM, Hubbell CL, Reid LD. A combination of isradipine and naltrexone blocks cocaine’s enhancement of a cocaine place preference. Pharmacol Biochem Behav 1998; 60(4): 847-53.
[84]
Degoulet M, Stelly CE, Ahn KC, Morikawa H. L-type Ca2+ channel blockade with antihypertensive medication disrupts VTA synaptic plasticity and drug-associated contextual memory. Mol Psychiatry 2016; 21(3): 394-402.
[85]
Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol 1998; 80: 1-27.
[86]
Johnson BA, Roache JD, Ait-Daoud N, et al. Effects of isradipine on cocaine-induced changes in cognitive performance in recently abstinent cocaine-dependent individuals. Int J Neuropsychopharmacol 2005; 8: 549-56.
[87]
Cao X, Wang H, Mei B, et al. Inducible and selective erasure of memories in the mouse brain via chemical-genetic manipulation. Neuron 2008; 60: 353-66.
[88]
Sanhueza M, Lisman J. The CaMKII/NMDAR complex as a molecular memory. Mol Brain 2013; 6: 10.
[89]
Ren SQ, Yan JZ, Zhang XY, et al. PKClambda is critical in AMPA receptor phosphorylation and synaptic incorporation during LTP. EMBO J 2013; 32: 1365-80.
[90]
Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012; 489: 391-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy