Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Obesity and Heart Failure

Author(s): Giovanni De Pergola, Adele Nardecchia, Vito Angelo Giagulli, Vincenzo Triggiani, Edoardo Guastamacchia, Manuela Castiglione Minischetti and Franco Silvestris

Volume 13, Issue 1, 2013

Page: [51 - 57] Pages: 7

DOI: 10.2174/1871530311313010007

Price: $65

Abstract

Epidemiological studies have recently shown that obesity, and abdominal obesity in particular, is an independent risk factor for the development of heart failure (HF). Higher cardiac oxidative stress is the early stage of heart dysfunction due to obesity, and it is the result of insulin resistance, altered fatty acid and glucose metabolism, and impaired mitochondrial biogenesis. Extense myocyte hypertrophy and myocardial fibrosis are early microscopic changes in patients with HF, whereas circumferential strain during the left ventricular (LV) systole, LV increase in both chamber size and wall thickness (LV hypertrophy), and LV dilatation are the early macroscopic and functional alterations in obese developing heart failure. LV hypertrophy leads to diastolic dysfunction and subendocardial ischemia in obesity, and pericardial fat has been shown to be significantly associated with LV diastolic dysfunction. Evolving abnormalities of diastolic dysfunction may include progressive hypertrophy and systolic dysfunction, and various degrees of eccentric and/or concentric LV hypertrophy may be present with time. Once HF is established, overweight and obese have a better prognosis than do their lean counterparts with the same level of cardiovascular disease, and this phenomenon is called “obesity paradox”. It is mainly due to lower muscle protein degradation, brain natriuretic peptide circulating levels and cardio-respiratory fitness than normal weight patients with HF.

Keywords: Body fat distributor, heart failure, obesity, obesity paradox.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy