Full Text Inquiry
ePub [ahead of print] Inquiry Form:

Thank you for your interest in the full text of this ePub article. The full text of this article is not available as yet. Could you please complete and submit the brief EPub full text inquiry form given below and one of our representatives will contact you shortly with details of the article, it's availability, and price on order.


Article Detail:

Title:
Helminthicidal and Larvicidal Potentials of Biogenic Silver Nanoparticles Synthesized from Medicinal Plant Momordica charantia

Abstract:

Background: The drug formulations used to control mosquito vectors and helminth infections have resulted in the development of resistance, and negative impact on non-target organisms and environment.

Objective: Plant-mediated synthesis of silver nanoparticles (P-AgNPs) using aqueous fruit peel extract of M. charantia, applications of P-AgNPs for helminthicidal activity against Indian earthworms (P. posthuma) and larvicidal activity against larvae of mosquito A. albopictus and A. aegypti.

Methods: Aqueous fruit peel extract of Momordica charantia was used to reduce silver ions to silver nanoparticles (P-AgNPs). UV-Visible (UV-Vis) Spectroscopy, X-ray diffraction, Fourier Transform Infrared Spectroscopy and Transmission Electron Microscopy characterize synthesized P-AgNPs. The motility and survival rate of the worms were recorded for the helminthicidal activity. Percent mortality of larvae of A. albopictus and A. aegypti was recorded for larvicidal activity.

Results: The UV-Vis absorption spectrum of P-AgNPs showed a strong surface plasmon absorption band in the visible region with a maximum absorption at 445 nm indicating the synthesis of silver nanoparticles by the addition of aqueous fruit peel extract. The XRD spectrum of P-AgNPs showed Bragg's reflection peaks 2θ value characteristics for the Face-Centered Cubic (FCC) structure of silver. The sharp absorption peak in FTIR at 1659 cm-1 assigned to C=O stretching vibration in carbonyl compounds represents terpenoids, flavonoids and polyphenols in the corona of PAgNPs; a 2 mg/mL of P-AgNPs. The concentration aqueous extract and P-AgNPs showed complete death of worms (the morphological alteration/coiling of body). A 20 ppm concentration of PAgNPs showed 85% mortality in larvae of Ae. albopictus and Ae. aegypti. P-AgNPs were nontoxic at low concentrations.

Conclusion: The aqueous extracts played a dual role as reducing and capping agent during the biosynthesis of AgNPs as per FTIR and XRD results. The surface reactivity facilitated by biomolecule corona attached to silver nanoparticles can further help to functionalize AgNPs in various pharmaceuticals, biomedicals, and environmental applications.



Journal Title: Medicinal Chemistry

Price: $58


Inquiry Form

4 + 11 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.