Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis and Characterization of Copper (II) and Nickel (II) Immobilized on Silica- Coated Copper Ferrite: As Novel Magnetically Reusable Nano Catalysts Towards Reduction of Nitroarenes with NaBH4

Author(s): Behzad Zeynizadeh*, Maryam Sadeghbari and Nader N. Pesyan

Volume 16, Issue 7, 2019

Page: [1010 - 1023] Pages: 14

DOI: 10.2174/1570179416666190725094949

Price: $65

Abstract

Aim and Objective: Nowadays, the design, synthesis and application of magnetically nanocomposite systems have attracted the attention of numerous scientists. The huge surface area and magnetic characteristic of nanoparticles as well as the inherent potentiality of the used metal species, makes them susceptible to have different reactivity in chemical reactions. In this context, we therefore encouraged to prepare a new design of magnetic nanocatalysts as CuFe2O4@SiO2@AAPTMS@Ni(II) and CuFe2O4@SiO2@AAPTMS@Cu(II) followed by monitoring of their catalytic activities towards reduction of nitroarenes with NaBH4.

Materials and Methods: Magnetically nanoparticles of CuFe2 O4@SiO2@AAPTMS@Ni(II) and CuFe2O4@SiO2@AAPTMS@Cu(II) were prepared through a four-step procedure: i) preparation of CuFe2O4 MNPs, ii) coating of CuFe2O4 nucleus by silica-layer using tetraethyl orthosilicate (TEOS), iii) layering of CuFe2O4@SiO2 MNPs with [3-(2-aminoethylamino)propyl] trimethoxysilane (AAPTMS), and iv) the complexation of CuFe2O4@SiO2@AAPTMS MNPs with an aqueous solution of Ni(OAc)2·4H2O or Cu(OAc)2·H2O.

Results: The catalytic activity of CuFe2O4@SiO2@AAPTMS@Ni(II) and the Cu(II)-analogue towards reduction of nitroarenes with NaBH4 was studied. The examinations resulted that using a molar ratio of 1:2 for ArNO2 and NaBH4 in the presence of 20 mg of nanocomposites in H2O under reflux conditions reduces various aromatic nitro compounds to arylamines in high yields.

Conclusion: The immobilization of Ni(II) and Cu(II) species on silica-layered CuFe2O4 was investigated. Magnetically nanoparticles of CuFe2O4@SiO2@AAPTMS@Ni(II) and the Cu(II)-analogue showed the perfect catalytic activity towards reduction of nitroarenes with NaBH4 in H2O. All reactions were carried out within 2– 15 min to afford aniline products in high yields.

Keywords: Arylamines, copper, NaBH4, nitroarenes, reduction, nickel.

Graphical Abstract
[1]
Rothenberg, G. Catalysis: Concepts and Green Applications; Wiley-VCH: Weinheim, 2008, pp. 1-273.
[http://dx.doi.org/10.1002/9783527621866]
[2]
Hagen, J. Industrial Catalysis: A Practical Approach, 3rd ed; Wiley-VCH: Weinheim, 2015, pp. 1-512.
[http://dx.doi.org/10.1002/9783527684625]
[3]
Vern, L. Schramm, V.L. Introduction: Principles of enzymatic catalysis. Chem. Rev., 2006, 106, 3029-3030.
[http://dx.doi.org/10.1021/cr050246s]
[4]
Drauz, K.; Gröger, H.; May, O. Enzyme Catalysis in Organic Synthesis, 3rd ed; Wiley-VCH: Weinheim, 2012.
[http://dx.doi.org/10.1002/9783527639861]
[5]
Garcia-Junceda, E. Multi-Step Enzyme Catalysis: Biotransformations and Chemoenzymatic Synthesis; Wiley-VCH: Weinheim, 2008, pp. 1-233.
[http://dx.doi.org/10.1002/9783527623389]
[6]
Drauz, K.; Waldmann, H. Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook; Wiley-VCH: Weinheim, 1995.
[http://dx.doi.org/10.1002/9783527619429]
[7]
Can, L.; Yan, L. Bridging Heterogeneous and Homogeneous Catalysis: Concepts, Strategies, and Applications; Wiley-VCH: Weinheim, 2014.
[http://dx.doi.org/10.1002/9783527675906]
[8]
Polshettiwar, V.; Asefa, T. Nanocatalysis Synthesis and Applications; John Wiley & Sons, Inc., 2013.
[http://dx.doi.org/10.1002/9781118609811]
[9]
Van de Voorde, M.; Sels, B. Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection; Wiley-VCH: Weinheim, 2017.
[http://dx.doi.org/10.1002/9783527699827]
[10]
Zecchina, A.; Bordiga, S.; Groppo, E. Selective Nanocatalysts and Nanoscience: Concepts for Heterogeneous and Homogeneous Catalysis; Wiley-VCH: Weinheim, 2011.
[http://dx.doi.org/10.1002/9783527635689]
[11]
Hemalatha, K.; Madhumitha, G.; Kajbafvala, A.; Anupama, N.; Sompalle, R.; Roopan, S.M. Function of nanocatalyst in chemistry of organic compounds revolution: An overview. J. Nanomater., 2013, 2013341015
[http://dx.doi.org/10.1155/2013/341015]
[12]
Corma, A. State of the art and future challenges of zeolites as catalysts. J. Catal., 2003, 216, 298-312.
[http://dx.doi.org/10.1016/S0021-9517(02)00132-X]
[13]
Gawande, M.B.; Pandey, R.K.; Jayaram, R.V. Role of mixed metal oxides in catalysis science-versatile applications in organic synthesis. Catal. Sci. Technol., 2012, 2, 1113-1125.
[http://dx.doi.org/10.1039/c2cy00490a]
[14]
Othman, M.R.; Helwani, Z.; Fernando, W.J.N. Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: A review. Appl. Organomet. Chem., 2009, 23, 335-346.
[http://dx.doi.org/10.1002/aoc.1517]
[15]
Gelbard, G. Organic synthesis by catalysis with ion-exchange resins. Ind. Eng. Chem. Res., 2005, 44, 8468-8498.
[http://dx.doi.org/10.1021/ie0580405]
[16]
Smith, K. Solid Supports and Catalysts in Organic Synthesis; Ellis Horwood Ltd., 1992.
[17]
Zhang, W.; Cue, B.W. Green Techniques for Organic Synthesis and Medicinal Chemistry, 2nd ed; , 2018.
[http://dx.doi.org/10.1002/9781119288152]
[18]
Früchtel, J.S.; Jung, G. Organic chemistry on solid supports. Angew. Chem. Int. Ed., 1996, 35, 17-42.
[http://dx.doi.org/10.1002/anie.199600171]
[19]
Drewry, D.H.; Coe, D.M.; Poon, S. Solid-supported reagents in organic synthesis. Med. Res. Rev., 1999, 19(2), 97-148.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199903)19:2<97:AID-MED2>3.0.CO;2-Y] [PMID: 10189175]
[20]
Katsoulis, D.E. A survey of applications of polyoxometalates. Chem. Rev., 1998, 98(1), 359-388.
[http://dx.doi.org/10.1021/cr960398a] [PMID: 11851510]
[21]
Ammam, M. Polyoxometalates: formation, structures, principal properties, main deposition methods and application in sensing. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 6291-6312.
[http://dx.doi.org/10.1039/c3ta01663c]
[22]
Ren, Y.; Wang, M.; Chen, X.; Yue, B.; He, H. Heterogeneous catalysis of polyoxometalate based organic-inorganic hybrids. Materials (Basel), 2015, 8(4), 1545-1567.
[http://dx.doi.org/10.3390/ma8041545] [PMID: 28788017]
[23]
Karimi, B.; Mansouri, F.; Mirzaei, H.M. Recent applications of magnetically recoverable nanocatalysts in C-C and C-X coupling reactions. ChemCatChem, 2015, 7, 1736-1789.
[http://dx.doi.org/10.1002/cctc.201403057]
[24]
Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev., 2013, 42(8), 3371-3393.
[http://dx.doi.org/10.1039/c3cs35480f] [PMID: 23420127]
[25]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J-M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111(5), 3036-3075.
[http://dx.doi.org/10.1021/cr100230z] [PMID: 21401074]
[26]
Varma, R.S. Nano-catalysts with magnetic core: sustainable options for greener synthesis. Sustain. Chem. Process., 2014, 2014(2), 11.
[27]
Gawande, M.B.; Rathi, A.K.; Branco, P.S.; Varma, R.S. Appl. Sci. (Basel), 2013, 3, 656-674.
[http://dx.doi.org/10.3390/app3040656]
[28]
Nasir Baig, R.B.; Varma, R.S. Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green Chem., 2013, 15, 398-417.
[http://dx.doi.org/10.1039/C2GC36455G]
[29]
Kyeong, S.; Jeong, C.; Kang, H.; Cho, H.J.; Park, S.J.; Yang, J.K.; Kim, S.; Kim, H.M.; Jun, B.H.; Lee, Y.S. Double-layer magnetic nanoparticle-embedded silica particles for efficient bio-separation. PLoS One, 2015, 10(11)e0143727
[http://dx.doi.org/10.1371/journal.pone.0143727] [PMID: 26599084]
[30]
Glaria, A.; Soulé, S.; Hallali, N.; Ojo, W.S.; Mirjolet, M.; Fuks, G.; Cornejo, A.; Allouche, J.; Dupin, J.C.; Martinez, H.; Carrey, J.; Chaudret, B.; Delpech, F.; Lachaize, S.; Nayral, C. Silica coated iron nanoparticles: synthesis, interface control, magnetic and hyperthermia properties. RSC Advances, 2018, 8, 32146-32156.
[http://dx.doi.org/10.1039/C8RA06075D]
[31]
Kralj, S.; Makovec, D.; Čampelj, S.; Drofenik, M. Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity. J. Magn. Magn. Mater., 2010, 322, 1847-1853.
[http://dx.doi.org/10.1016/j.jmmm.2009.12.038]
[32]
Singh, R.K.; Kim, T.H.; Patel, K.D.; Knowles, J.C.; Kim, H.W. Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: physicochemical and magnetic properties, and cellular compatibility. J. Biomed. Mater. Res. A, 2012, 100(7), 1734-1742.
[http://dx.doi.org/10.1002/jbm.a.34140] [PMID: 22447364]
[33]
Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev., 2012, 112(4), 2373-2433.
[http://dx.doi.org/10.1021/cr100449n] [PMID: 22204603]
[34]
Tafesh, A.M.; Weiguny, J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem. Rev., 1996, 96(6), 2035-2052.
[http://dx.doi.org/10.1021/cr950083f] [PMID: 11848820]
[35]
Farooqui, T.; Farooqui, A.A. Biogenic Amines: Pharmacological; Nova Science Publishers: New York, 2010.
[36]
Lawrence, S.A. Amines: Synthesis, Properties and Applications; Cambridge University Press: Cambridge, 2004.
[37]
Andersso, P.G.; Munslow, I.J. Modern Reduction Methods; Wiley: New York, 2008.
[http://dx.doi.org/10.1002/9783527622115]
[38]
Seyden-Penne, J. Reductions by the Alumino and Borohydrides in Organic Synthesis; Wiley-VCH: New York, 1997.
[39]
Abdel-Magid, A.F. Reductions in Organic Synthesis. ACS Symposium Series , ACS Publications, 1996.
[40]
Hudlicky, M. Reductions in Organic Chemistry; Ellis Horwood: Chichester, 1984.
[41]
Cho, A.; Byun, S.; Kim, B.M. AuPd−Fe3O4 nanoparticle catalysts for highly selective, one-pot cascade nitro-reduction and reductive amination. Adv. Synth. Catal., 2018, 360, 1253-1261.
[http://dx.doi.org/10.1002/adsc.201701462]
[42]
Kadam, H.K.; Tilve, S.G. Advancement in methodologies for reduction of nitroarenes. RSC Advances, 2015, 5, 83391-83407.
[http://dx.doi.org/10.1039/C5RA10076C]
[43]
Kadam, H.K.; Tilve, S.G. Copper(II) bromide as a procatalyst for in situ preparation of active Cu nanoparticles for reduction of nitroarenes. RSC Advances, 2012, 2, 6057-6060.
[http://dx.doi.org/10.1039/c2ra20371e]
[44]
Goksu, H.; Sert, H.; Kilbas, B.; Sen, F. Recent advances in the reduction of nitro compounds by heterogenous catalysts. Curr. Org. Chem., 2017, 21, 794-820.
[http://dx.doi.org/10.2174/1385272820666160525123907]
[45]
Naseem, K.; Begum, R.; Farooqi, Z.H. Catalytic reduction of 2-nitroaniline: A review. Environ. Sci. Pollut. Res. Int., 2017, 24(7), 6446-6460.
[http://dx.doi.org/10.1007/s11356-016-8317-2] [PMID: 28054271]
[46]
Tabatabaei Rezaei, S.J.; Khorramabadi, H.; Hesami, A.; Ramazani, A.; Amani, V.; Ahmadi, R. Chemoselective reduction of nitro and nitrile compounds with magnetic carbon nanotubes-supported Pt(II) catalyst under mild conditions. Ind. Eng. Chem. Res., 2017, 56, 12256-12266.
[http://dx.doi.org/10.1021/acs.iecr.7b02795]
[47]
Gawande, M.B.; Rathi, A.K.; Branco, P.S.; Nogueira, I.D.; Velhinho, A.; Shrikhande, J.J.; Indulkar, U.U.; Jayaram, R.V.; Ghumman, C.A.A.; Bundaleski, N.; Teodoro, O.M.N.D. Regio- and chemoselective reduction of nitroarenes and carbonyl compounds over recyclable magnetic ferrite-nickel nanoparticles (Fe3O4-Ni) by using glycerol as a hydrogen source. Chemistry, 2012, 18(40), 12628-12632.
[http://dx.doi.org/10.1002/chem.201202380] [PMID: 22933355]
[48]
Rai, R.K.; Mahata, A.; Mukhopadhyay, S.; Gupta, S.; Li, P.Z.; Nguyen, K.T.; Zhao, Y.; Pathak, B.; Singh, S.K. Room-temperature chemoselective reduction of nitro groups using non-noble metal nanocatalysts in water. Inorg. Chem., 2014, 53(6), 2904-2909.
[http://dx.doi.org/10.1021/ic402674z] [PMID: 24564248]
[49]
Patra, A.K.; Vo, N.T.; Kim, D. Highly robust magnetically recover-able Ag/Fe3O4 nanocatalyst for chemoselective hydrogenation of nitroarenes in water. Appl. Catal. A Gen., 2017, 538, 148-156.
[http://dx.doi.org/10.1016/j.apcata.2017.03.007]
[50]
Jagadeesh, R.V.; Banerjee, D.; Arockiam, P.B.; Junge, H.; Junge, K.; Pohl, M.M.; Radnik, J.; Brückner, A.; Beller, M. Highly selective transfer hydrogenation of functionalised nitroarenes using cobalt-based nanocatalysts. Green Chem., 2015, 17, 898-902.
[http://dx.doi.org/10.1039/C4GC00731J]
[51]
Veisi, H.; Nasrabadi, N.H.; Mohammadi, P. Biosynthesis of palladium nanoparticles as a heterogeneous and reusable nonocatalyst for reduction of nitroarenes and Suzuki coupling reactions. Appl. Organomet. Chem., 2016, 30, 890-896.
[http://dx.doi.org/10.1002/aoc.3517]
[52]
Zeynizadeh, B.; Zabihzadeh, M. Rapid and green reduction of aromatic/aliphatic nitro compounds to amines with NaBH4 and additive Ni2B in H2O. J. Iran. Chem. Soc., 2015, 12, 1221-1226.
[http://dx.doi.org/10.1007/s13738-014-0585-5]
[53]
Zeynizadeh, B.; Mohammadzadeh, I.; Shokri, Z.; Ali Hosseini, S. Synthesis and characterization of NiFe2O4@Cu nanoparticles as a magnetically recoverable catalyst for reduction of nitroarenes to arylamines with NaBH4. J. Colloid Interface Sci., 2017, 500, 285-293.
[http://dx.doi.org/10.1016/j.jcis.2017.03.030] [PMID: 28411434]
[54]
Shokri, Z.; Zeynizadeh, B. Impregnated copper on Fe3O4: An efficient magnetically separable nanocatalyst for rapid and selective acylation of amines. J. Iran. Chem. Soc., 2017, 14, 2467-2474.
[http://dx.doi.org/10.1007/s13738-017-1181-2]
[55]
Zeynizadeh, B.; Sepehraddin, F. Deposited zirconocene chloride on silica-layered CuFe2O4 as a highly efficient and reusable magnetically nanocatalyst for one-pot Suzuki-Miyaura coupling reaction. J. Organomet. Chem., 2018, 856, 70-77.
[http://dx.doi.org/10.1016/j.jorganchem.2017.12.033]
[56]
Zeynizadeh, B.; Sepehraddin, F. Synthesis and characterization of magnetically nanoparticles of Fe3O4@APTMS@ZrCp2 as a novel and reusable catalyst for convenient reduction of nitro compounds with glycerol. J. Iran. Chem. Soc., 2017, 14, 2649-2657.
[http://dx.doi.org/10.1007/s13738-017-1199-5]
[57]
Karami, S.; Zeynizadeh, B.; Shokri, Z. Cellulose supported bimetallic Fe–Cu nanoparticles: A magnetically recoverable nanocatalyst for quick reduction of nitroarenes to amines in water. Cellulose, 2018, 25, 3295-3305.
[http://dx.doi.org/10.1007/s10570-018-1809-0]
[58]
Karami, S.; Zeynizadeh, B. Reduction of 4-nitrophenol by a disused adsorbent: EDA-functionalized magnetic cellulose nanocomposite after the removal of Cu2+. Carbohydr. Polym., 2019, 211, 298-307.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.113] [PMID: 30824092]
[59]
Zeynizadeh, B.; Shokri, Z.; Hasanpour Galehban, M. The immobilized Ni(II)‐thiourea complex on silica-layered copper ferrite: A novel and reusable nanocatalyst for one-pot reductive-acetylation of nitroarenes. Appl. Organomet. Chem., 2019, 33e4771
[http://dx.doi.org/10.1002/aoc.4771]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy