Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Expression and Interactions of Kinetoplastid Kinetochore Proteins (KKTs) from Trypanosoma brucei

Author(s): Fangzhen Shan*, Yating Diwu, Xiao Yang and Xiaoming Tu *

Volume 26, Issue 11, 2019

Page: [860 - 868] Pages: 9

DOI: 10.2174/0929866526666190723152359

Price: $65

Abstract

Background: Kinetochores are the macromolecular protein complex that drives chromosome segregation by interacting with centromeric DNA and spindle microtubules in eukaryotes. Kinetochores in well studied eukaryotes bind DNA through widely conserved components like Centromere Protein (CENP)-A and bind microtubules through the Ndc80 complex. However, unconventional type of kinetochore proteins (KKT1-20) were identified in evolutionarily divergent kinetoplastid species such as Trypanosoma brucei (T. brucei), indicating that chromosome segregation is driven by a distinct set of proteins. KKT proteins are comprised of sequential α-helixes that tend to form coiled-coil structures, which will further lead to polymerization and misfolding of proteins, resulting in the formation of inclusion bodies.

Results and Conclusion: We expressed and purified the stable KKT proteins with Maltose Binding Protein (MBP) fusion tag in E. coli or Protein A tag in Human Embryonic Kidney (HEK) 293T cells. Furthermore, we identified interactions among KKT proteins using yeast two-hybrid system. The study provides an important basis for further better understanding of the structure and function of KKT proteins.

Keywords: Kinetoplastid kinetochore protein, expression system, protein expression, MBP-tag protein, Protein A-tag protein, yeast two-hybrid, protein-protein interactions.

Graphical Abstract
[1]
Heinemann, J.A. Genetics of gene transfer between species. Trends Genet., 1991, 7(6), 181-185.
[http://dx.doi.org/10.1016/0168-9525(91)90433-Q] [PMID: 2068792]
[2]
Richerson, P.J.; Boyd, R. Not by genes alone: How culture transformed human evolution; University of Chicago press: Chicago, IL, 2005.
[http://dx.doi.org/10.7208/chicago/9780226712130.001.0001]
[3]
Tkačik, G.; Walczak, A.M. Information transmission in genetic regulatory networks: a review. J. Phys. Condens. Matter, 2011, 23(15)153102
[http://dx.doi.org/10.1088/0953-8984/23/15/153102] [PMID: 21460423]
[4]
Enoch, T.; Nurse, P. Coupling M phase and S phase: controls maintaining the dependence of mitosis on chromosome replication. Cell, 1991, 65(9), 921-923.
[http://dx.doi.org/10.1016/0092-8674(91)90542-7] [PMID: 2044152]
[5]
Laskey, R.A.; Fairman, M.P.; Blow, J.J. S phase of the cell cycle. Science, 1989, 246(4930), 609-614.
[http://dx.doi.org/10.1126/science.2683076] [PMID: 2683076]
[6]
Nasmyth, K.; Haering, C.H. Cohesin: its roles and mechanisms. Annu. Rev. Genet., 2009, 43, 525-558.
[http://dx.doi.org/10.1146/annurev-genet-102108-134233] [PMID: 19886810]
[7]
Murray, A.W.; Szostak, J.W. Chromosome segregation in mitosis and meiosis. Annu. Rev. Cell Biol., 1985, 1, 289-315.
[http://dx.doi.org/10.1146/annurev.cb.01.110185.001445] [PMID: 3916318]
[8]
Santaguida, S.; Musacchio, A. The life and miracles of kinetochores. EMBO J., 2009, 28(17), 2511-2531.
[http://dx.doi.org/10.1038/emboj.2009.173] [PMID: 19629042]
[9]
Cheeseman, I.M. The kinetochore. Cold Spring Harb. Perspect. Biol., 2014, 6(7)a015826
[http://dx.doi.org/10.1101/cshperspect.a015826] [PMID: 24984773]
[10]
Brinkley, B.R.; Stubblefield, E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma, 1966, 19(1), 28-43.
[http://dx.doi.org/10.1007/BF00332792] [PMID: 5912064]
[11]
Brinkley, B.; Tousson, A.; Valdivia, M. The kinetochore of mammalian chromosomes: structure and function in normal mitosis and aneuploidy. In: Aneuploidy; Plenum Press: New York, NY, 1985, pp. 243-267.
[http://dx.doi.org/doi.org/10.1007/978-1-4613-2127-9_16]
[12]
Biggins, S. The composition, functions, and regulation of the budding yeast kinetochore. Genetics, 2013, 194(4), 817-846.
[http://dx.doi.org/10.1534/genetics.112.145276] [PMID: 23908374]
[13]
Cheeseman, I.M.; Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol., 2008, 9(1), 33-46.
[http://dx.doi.org/10.1038/nrm2310] [PMID: 18097444]
[14]
Hori, T.; Shang, W.H.; Takeuchi, K.; Fukagawa, T. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol., 2013, 200(1), 45-60.
[http://dx.doi.org/10.1083/jcb.201210106] [PMID: 23277427]
[15]
Earnshaw, W.C.; Rothfield, N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma, 1985, 91(3-4), 313-321.
[http://dx.doi.org/10.1007/BF00328227] [PMID: 2579778]
[16]
Hori, T.; Fukagawa, T. Establishment of the vertebrate kinetochores. Chromosome Res., 2012, 20(5), 547-561.
[http://dx.doi.org/10.1007/s10577-012-9289-9] [PMID: 22733403]
[17]
Wei, R.R.; Sorger, P.K.; Harrison, S.C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl. Acad. Sci. USA, 2005, 102(15), 5363-5367.
[http://dx.doi.org/10.1073/pnas.0501168102] [PMID: 15809444]
[18]
Friedman, S.; Freitag, M. Evolving centromeres and kinetochores. Adv. Genet., 2017, 98, 1-41.
[http://dx.doi.org/10.1016/bs.adgen.2017.07.001] [PMID: 28942791]
[19]
van Hooff, J.J.; Tromer, E.; van Wijk, L.M.; Snel, B.; Kops, G.J. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep., 2017, 18(9), 1559-1571.
[http://dx.doi.org/10.15252/embr.201744102] [PMID: 28642229]
[20]
Maddox, P.S.; Corbett, K.D.; Desai, A. Structure, assembly and reading of centromeric chromatin. Curr. Opin. Genet. Dev., 2012, 22(2), 139-147.
[http://dx.doi.org/10.1016/j.gde.2011.11.005] [PMID: 22178421]
[21]
Berriman, M.; Ghedin, E.; Hertz-Fowler, C.; Blandin, G.; Renauld, H.; Bartholomeu, D.C.; Lennard, N.J.; Caler, E.; Hamlin, N.E.; Haas, B.; Böhme, U.; Hannick, L.; Aslett, M.A.; Shallom, J.; Marcello, L.; Hou, L.; Wickstead, B.; Alsmark, U.C.; Arrowsmith, C.; Atkin, R.J.; Barron, A.J.; Bringaud, F.; Brooks, K.; Carrington, M.; Cherevach, I.; Chillingworth, T.J.; Churcher, C.; Clark, L.N.; Corton, C.H.; Cronin, A.; Davies, R.M.; Doggett, J.; Djikeng, A.; Feldblyum, T.; Field, M.C.; Fraser, A.; Goodhead, I.; Hance, Z.; Harper, D.; Harris, B.R.; Hauser, H.; Hostetler, J.; Ivens, A.; Jagels, K.; Johnson, D.; Johnson, J.; Jones, K.; Kerhornou, A.X.; Koo, H.; Larke, N.; Landfear, S.; Larkin, C.; Leech, V.; Line, A.; Lord, A.; Macleod, A.; Mooney, P.J.; Moule, S.; Martin, D.M.; Morgan, G.W.; Mungall, K.; Norbertczak, H.; Ormond, D.; Pai, G.; Peacock, C.S.; Peterson, J.; Quail, M.A.; Rabbinowitsch, E.; Rajandream, M.A.; Reitter, C.; Salzberg, S.L.; Sanders, M.; Schobel, S.; Sharp, S.; Simmonds, M.; Simpson, A.J.; Tallon, L.; Turner, C.M.; Tait, A.; Tivey, A.R.; Van Aken, S.; Walker, D.; Wanless, D.; Wang, S.; White, B.; White, O.; Whitehead, S.; Woodward, J.; Wortman, J.; Adams, M.D.; Embley, T.M.; Gull, K.; Ullu, E.; Barry, J.D.; Fairlamb, A.H.; Opperdoes, F.; Barrell, B.G.; Donelson, J.E.; Hall, N.; Fraser, C.M.; Melville, S.E.; El-Sayed, N.M. The genome of the African trypanosome Trypanosoma brucei. Science, 2005, 309(5733), 416-422.
[http://dx.doi.org/10.1126/science.1112642] [PMID: 16020726]
[22]
Ivens, A.C.; Peacock, C.S.; Worthey, E.A.; Murphy, L.; Aggarwal, G.; Berriman, M.; Sisk, E.; Rajandream, M.A.; Adlem, E.; Aert, R.; Anupama, A.; Apostolou, Z.; Attipoe, P.; Bason, N.; Bauser, C.; Beck, A.; Beverley, S.M.; Bianchettin, G.; Borzym, K.; Bothe, G.; Bruschi, C.V.; Collins, M.; Cadag, E.; Ciarloni, L.; Clayton, C.; Coulson, R.M.; Cronin, A.; Cruz, A.K.; Davies, R.M.; De Gaudenzi, J.; Dobson, D.E.; Duesterhoeft, A.; Fazelina, G.; Fosker, N.; Frasch, A.C.; Fraser, A.; Fuchs, M.; Gabel, C.; Goble, A.; Goffeau, A.; Harris, D.; Hertz-Fowler, C.; Hilbert, H.; Horn, D.; Huang, Y.; Klages, S.; Knights, A.; Kube, M.; Larke, N.; Litvin, L.; Lord, A.; Louie, T.; Marra, M.; Masuy, D.; Matthews, K.; Michaeli, S.; Mottram, J.C.; Müller-Auer, S.; Munden, H.; Nelson, S.; Norbertczak, H.; Oliver, K.; O’neil, S.; Pentony, M.; Pohl, T.M.; Price, C.; Purnelle, B.; Quail, M.A.; Rabbinowitsch, E.; Reinhardt, R.; Rieger, M.; Rinta, J.; Robben, J.; Robertson, L.; Ruiz, J.C.; Rutter, S.; Saunders, D.; Schäfer, M.; Schein, J.; Schwartz, D.C.; Seeger, K.; Seyler, A.; Sharp, S.; Shin, H.; Sivam, D.; Squares, R.; Squares, S.; Tosato, V.; Vogt, C.; Volckaert, G.; Wambutt, R.; Warren, T.; Wedler, H.; Woodward, J.; Zhou, S.; Zimmermann, W.; Smith, D.F.; Blackwell, J.M.; Stuart, K.D.; Barrell, B.; Myler, P.J. The genome of the kinetoplastid parasite, Leishmania major. Science, 2005, 309(5733), 436-442.
[http://dx.doi.org/10.1126/science.1112680] [PMID: 16020728]
[23]
Lowell, J.E.; Cross, G.A. A variant histone H3 is enriched at telomeres in Trypanosoma brucei. J. Cell Sci., 2004, 117(Pt 24), 5937-5947.
[http://dx.doi.org/10.1242/jcs.01515] [PMID: 15522895]
[24]
Akiyoshi, B.; Gull, K. Discovery of unconventional kinetochores in kinetoplastids. Cell, 2014, 156(6), 1247-1258.
[http://dx.doi.org/10.1016/j.cell.2014.01.049] [PMID: 24582333]
[25]
Nerusheva, O.O.; Akiyoshi, B. Divergent polo box domains underpin the unique kinetoplastid kinetochore. Open Biol., 2016, 6(3), 6.
[http://dx.doi.org/10.1098/rsob.150206] [PMID: 26984294]
[26]
Reinhardt, H.C.; Yaffe, M.B. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat. Rev. Mol. Cell Biol., 2013, 14(9), 563-580.
[http://dx.doi.org/10.1038/nrm3640] [PMID: 23969844]
[27]
Yu, X.; Chini, C.C.; He, M.; Mer, G.; Chen, J. The BRCT domain is a phospho-protein binding domain. Science, 2003, 302(5645), 639-642.
[http://dx.doi.org/10.1126/science.1088753] [PMID: 14576433]
[28]
Durocher, D.; Taylor, I.A.; Sarbassova, D.; Haire, L.F.; Westcott, S.L.; Jackson, S.P.; Smerdon, S.J.; Yaffe, M.B. The molecular basis of FHA domain: phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol. Cell, 2000, 6(5), 1169-1182.
[http://dx.doi.org/10.1016/S1097-2765(00)00114-3] [PMID: 11106755]
[29]
Jain, B.P.; Pandey, S. WD40 repeat proteins: signalling scaffold with diverse functions. Protein J., 2018, 37(5), 391-406.
[http://dx.doi.org/10.1007/s10930-018-9785-7] [PMID: 30069656]
[30]
Xu, C.; Min, J. Structure and function of WD40 domain proteins. Protein Cell, 2011, 2(3), 202-214.
[http://dx.doi.org/10.1007/s13238-011-1018-1] [PMID: 21468892]
[31]
Keller, L.C.; Geimer, S.; Romijn, E.; Yates, J., III; Zamora, I.; Marshall, W.F. Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control. Mol. Biol. Cell, 2009, 20(4), 1150-1166.
[http://dx.doi.org/10.1091/mbc.e08-06-0619] [PMID: 19109428]
[32]
Ajuh, P.; Sleeman, J.; Chusainow, J.; Lamond, A.I. A direct interaction between the carboxyl-terminal region of CDC5L and the WD40 domain of PLRG1 is essential for pre-mRNA splicing. J. Biol. Chem., 2001, 276(45), 42370-42381.
[http://dx.doi.org/10.1074/jbc.M105453200] [PMID: 11544257]
[33]
Li, H.; He, Z.; Lu, G.; Lee, S.C.; Alonso, J.; Ecker, J.R.; Luan, S.A. WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis. Plant Cell, 2007, 19(8), 2403-2416.
[http://dx.doi.org/10.1105/tpc.107.053579] [PMID: 17704213]
[34]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[35]
Hanks, S.K.; Quinn, A.M.; Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science, 1988, 241(4861), 42-52.
[http://dx.doi.org/10.1126/science.3291115] [PMID: 3291115]
[36]
Newton, A.C. Protein kinase C: structure, function, and regulation. J. Biol. Chem., 1995, 270(48), 28495-28498.
[http://dx.doi.org/10.1074/jbc.270.48.28495] [PMID: 7499357]
[37]
Sun, L.; Wang, H.; Wang, Z.; He, S.; Chen, S.; Liao, D.; Wang, L.; Yan, J.; Liu, W.; Lei, X.; Wang, X. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 2012, 148(1-2), 213-227.
[http://dx.doi.org/10.1016/j.cell.2011.11.031] [PMID: 22265413]
[38]
Shan, F.; Ye, K.; Zhang, J.; Liao, S.; Zhang, X.; Xu, C.; Tu, X. Solution structure of TbCentrin4 from Trypanosoma brucei and its interactions with Ca2+ and other centrins. Biochem. J., 2018, 475(23), 3763-3778.
[http://dx.doi.org/10.1042/BCJ20180752] [PMID: 30389845]
[39]
Shan, F.; Mei, S.; Zhang, J.; Zhang, X.; Xu, C.; Liao, S.; Tu, X. A telomerase subunit homolog La protein from Trypanosoma brucei plays an essential role in ribosomal biogenesis. FEBS J., 2019, 286(16), 3129-3147.
[http://dx.doi.org/10.1111/febs.14853] [PMID: 30993866]
[40]
Teramoto, H.; Crespo, P.; Coso, O.A.; Igishi, T.; Xu, N.; Gutkind, J.S. The small GTP-binding protein rho activates c-Jun N-terminal kinases/stress-activated protein kinases in human kidney 293T cells. Evidence for a Pak-independent signaling pathway. J. Biol. Chem., 1996, 271(42), 25731-25734.
[http://dx.doi.org/10.1074/jbc.271.42.25731] [PMID: 8824197]
[41]
Cuff, J.A.; Clamp, M.E.; Siddiqui, A.S.; Finlay, M.; Barton, G.J. JPred: a consensus secondary structure prediction server. Bioinformatics, 1998, 14(10), 892-893.
[http://dx.doi.org/10.1093/bioinformatics/14.10.892] [PMID: 9927721]
[42]
Simpson, A.G.; Stevens, J.R.; Lukes, J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol., 2006, 22(4), 168-174.
[http://dx.doi.org/10.1016/j.pt.2006.02.006] [PMID: 16504583]
[43]
El-Sayed, N.M.; Myler, P.J.; Bartholomeu, D.C.; Nilsson, D.; Aggarwal, G.; Tran, A.N.; Ghedin, E.; Worthey, E.A.; Delcher, A.L.; Blandin, G.; Westenberger, S.J.; Caler, E.; Cerqueira, G.C.; Branche, C.; Haas, B.; Anupama, A.; Arner, E.; Aslund, L.; Attipoe, P.; Bontempi, E.; Bringaud, F.; Burton, P.; Cadag, E.; Campbell, D.A.; Carrington, M.; Crabtree, J.; Darban, H.; da Silveira, J.F.; de Jong, P.; Edwards, K.; Englund, P.T.; Fazelina, G.; Feldblyum, T.; Ferella, M.; Frasch, A.C.; Gull, K.; Horn, D.; Hou, L.; Huang, Y.; Kindlund, E.; Klingbeil, M.; Kluge, S.; Koo, H.; Lacerda, D.; Levin, M.J.; Lorenzi, H.; Louie, T.; Machado, C.R.; McCulloch, R.; McKenna, A.; Mizuno, Y.; Mottram, J.C.; Nelson, S.; Ochaya, S.; Osoegawa, K.; Pai, G.; Parsons, M.; Pentony, M.; Pettersson, U.; Pop, M.; Ramirez, J.L.; Rinta, J.; Robertson, L.; Salzberg, S.L.; Sanchez, D.O.; Seyler, A.; Sharma, R.; Shetty, J.; Simpson, A.J.; Sisk, E.; Tammi, M.T.; Tarleton, R.; Teixeira, S.; Van Aken, S.; Vogt, C.; Ward, P.N.; Wickstead, B.; Wortman, J.; White, O.; Fraser, C.M.; Stuart, K.D.; Andersson, B. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science, 2005, 309(5733), 409-415.
[http://dx.doi.org/10.1126/science.1112631] [PMID: 16020725]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy