Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

In Silico Design of a Single Protein Molecular Photoreaction Center

Author(s): Nibedita Mishra, Pranab K. Mohapatra and Mukesh K. Raval*

Volume 12, Issue 2, 2020

Page: [112 - 121] Pages: 10

DOI: 10.2174/1876402911666190719111104

Abstract

Background: Research on harvesting solar energy through an artificial photosynthetic device is gaining momentum in the present era. The device is a promising solution to the energy crisis by overcoming the crunch in fossil fuel and low efficiency of heat engine. Reports are available on design of isolated parts of the photosynthetic device, for example, only sensitizer or only redox unit containing metallo-peptides.

Objective: An attempt has been made to design an in silico photoreaction center in a single chain protein matrix containing all the three basic units: sensitizer, electron donor, and acceptor mimicking the photosynthetic reaction center II.

Methods: A single chain of a protein containing a closely packed transmembrane four-helix bundle (PDB ID 2bl2 A) is selected for the purpose. The protein is suitably mutated in silico to accommodate the basic elements of a reaction center: Mn-Ca binding site as water oxidizing moiety, Fe-binding site as quinine reducing moiety, and MgDPP as photosensitizer to achieve the desired function of photoredox reaction.

Results: A photoelectron transport protein has been designed, which may incorporate into the bilayer membrane system. It has the potential to photo-oxidize water to oxygen on one side and reduce quinone on the other side of the membrane. The stability and transmembrane orientation of the molecular device in an artificial membrane system has been validated theoretically by molecular dynamics study.

Conclusion: An attempt to incorporate in silico all the elements essential for a photoelectron transport device into a single chain transmembrane protein model is the first of its kind. Donor and acceptor moieties are separated on the inner and outer side of a membrane bilayer. These features make the model unique and novel. The design of the model is the first step towards the study of experimental viability of the model, which remains to be validated in future.

Keywords: Artificial photosystem, photoredox reactions, in silico design of protein, rotor from Na+-K+ ATPase (2bl2), transmembrane protein, photoelectron transport.

Graphical Abstract
[1]
Ciamician, G. The photochemistry of the future. Science, 1912, 36(926), 385-394.
[http://dx.doi.org/10.1126/science.36.926.385] [PMID: 17836492]
[2]
Fujishima, A.; Honda, K.; Kikuchi, S. Photosensitized electrolytic oxidation on semiconducting n-type TiO2 electrode. Kogyo Kagaku Zasshi, 1969, 72, 108-113.
[http://dx.doi.org/10.1246/nikkashi1898.72.108]
[3]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358), 37-38.
[http://dx.doi.org/10.1038/238037a0] [PMID: 12635268]
[4]
Fujishima, A.; Kobayakawa, K.; Honda, K. Hydrogen production under sunlight with an electrochemical photocell. J. Electrochem. Soc., 1975, 122, 1487-1489.
[http://dx.doi.org/10.1149/1.2134048]
[5]
Raval, M.K.; Biswal, B.; Biswal, U.C. The mystery of oxygen evolution: Analysis of structure and function of photosystem II, the water-plastoquinone oxido-reductase. Photosynth. Res., 2005, 85(3), 267-293.
[http://dx.doi.org/10.1007/s11120-005-8163-4] [PMID: 16170631]
[6]
Zhou, H.; Yan, R.; Zhang, D.; Fan, T. Challenges and perspectives in designing artificial photosynthetic systems. Chemistry, 2016, 22(29), 9870-9885.
[http://dx.doi.org/10.1002/chem.201600289] [PMID: 27138858]
[7]
Gibney, B.R.; Mulholland, S.E.; Rabanal, F.; Dutton, P.L. Ferredoxin and ferredoxin-heme maquettes. Proc. Natl. Acad. Sci. USA, 1996, 93(26), 15041-15046.
[http://dx.doi.org/10.1073/pnas.93.26.15041] [PMID: 8986760]
[8]
Lombardi, A.; Summa, C.M.; Geremia, S.; Randaccio, L.; Pavone, V.; DeGrado, W.F. Retrostructural analysis of metalloproteins: Application to the design of a minimal model for diiron proteins. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6298-6305.
[http://dx.doi.org/10.1073/pnas.97.12.6298] [PMID: 10841536]
[9]
Di Costanzo, L.; Wade, H.; Geremia, S.; Randaccio, L.; Pavone, V.; DeGrado, W.F.; Lombardi, A. Toward the de novo design of a catalytically active helix bundle: A substrate-accessible carboxylate-bridged dinuclear metal center. J. Am. Chem. Soc., 2001, 123(51), 12749-12757.
[http://dx.doi.org/10.1021/ja010506x] [PMID: 11749531]
[10]
Calhoun, J.R.; Kono, H.; Lahr, S.; Wang, W.; DeGrado, W.F.; Saven, J.G. Computational design and characterization of a monomeric helical dinuclear metalloprotein. J. Mol. Biol., 2003, 334(5), 1101-1115.
[http://dx.doi.org/10.1016/j.jmb.2003.10.004] [PMID: 14643669]
[11]
Cochran, F.V.; Wu, S.P.; Wang, W.; Nanda, V.; Saven, J.G.; Therien, M.J.; DeGrado, W.F. Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor. J. Am. Chem. Soc., 2005, 127(5), 1346-1347.
[http://dx.doi.org/10.1021/ja044129a] [PMID: 15686346]
[12]
Zou, H.; Strzalka, J.; Xu, T.; Tronin, A.; Blasie, J.K. Three dimensional structure and dynamics of a de novo designed, amphiphilic, metallo-porphyrin-binding protein maquette at soft interfaces by molecular dynamics simulations. J. Phys. Chem. B, 2007, 111(7), 1823-1833.
[http://dx.doi.org/10.1021/jp0666378] [PMID: 17256981]
[13]
Wydrzynski, T.; Hillier, W.; Conlan, B. Engineering model proteins for photosystem II function. Photosynth. Res., 2007, 94(2-3), 225-233.
[http://dx.doi.org/10.1007/s11120-007-9271-0] [PMID: 17955341]
[14]
Grzyb, J.; Xu, F.; Weiner, L.; Reijerse, E.J.; Lubitz, W.; Nanda, V.; Noy, D. De novo design of a non-natural fold for an iron-sulfur protein: alpha-helical coiled-coil with a four-iron four-sulfur cluster binding site in its central core. Biochim. Biophys. Acta, 2010, 1797(3), 406-413.
[http://dx.doi.org/10.1016/j.bbabio.2009.12.012] [PMID: 20035711]
[15]
Nam, Y.S.; Magyar, A.P.; Lee, D.; Kim, J-W.; Yun, D.S.; Park, H.; Pollom, T.S., Jr; Weitz, D.A.; Belcher, A.M.; Belcher, A.M. Biologically templated photocatalytic nanostructures for sustained light driven water oxidation. Nat. Nanotechnol., 2010, 5(5), 340-344.
[http://dx.doi.org/10.1038/nnano.2010.57] [PMID: 20383127]
[16]
Olson, T.L.; Espiritu, E.; Edwardraja, S.; Simmons, C.R.; Williams, J.C.; Ghirlanda, G.; Allen, J.P. Design of dinuclear manganese cofactors for bacterial reaction centers. Biochim. Biophys. Acta, 2016, 1857(5), 539-547.
[http://dx.doi.org/10.1016/j.bbabio.2015.09.003] [PMID: 26392146]
[17]
Chino, M.; Leone, L.; Maglio, O.; D’Alonzo, D.; Pirro, F.; Pavone, V.; Nastri, F.; Lombardi, A. A de novo heterodimeric due ferri protein minimizes the release of reactive intermediates in dioxygen dependent oxidation. Angew. Chem. Int. Ed. Engl., 2017, 56(49), 15580-15583.
[http://dx.doi.org/10.1002/anie.201707637] [PMID: 29053213]
[18]
Zhang, S-Q.; Chino, M.; Liu, L.; Tang, Y.; Hu, X.; DeGrado, W.F.; Lombardi, A. De novo design of tetranuclear transition metal clusters stabilized by hydrogen-bonded networks in helical bundles. J. Am. Chem. Soc., 2018, 140(4), 1294-1304.
[http://dx.doi.org/10.1021/jacs.7b08261] [PMID: 29249157]
[19]
Chen, C.; Chen, Y.; Yao, R.; Li, Y.; Zhang, C. Artificial Mn4Ca-cluster with exchangeable solvent molecules mimicking the oxygen-evolving center in photosynthesis. Angew. Chem., 2019.
[20]
Rath, L.S.; Raval, M.K. Modelling a binuclear metal binding site in the photosynthetic reaction centre II. Indian J. Biochem. Biophys., 2001, 38(1-2), 75-77.
[PMID: 11563336]
[21]
Mishra, N.; Mohapatra, P.K.; Raval, M.K.; Biswal, B.; Biswal, U.C. A molecular model of artificial photosynthesis: Mn-Ca binuclear complex for photosynthetic oxidation of water. Indian J. Biochem. Biophys., 2012, 49(4), 246-249.
[PMID: 23077785]
[22]
Fry, H.C.; Lehmann, A.; Saven, J.G.; DeGrado, W.F.; Therien, M.J. Computational design and elaboration of a de novo heterotetrameric alpha-helical protein that selectively binds an emissive abiological (porphinato)zinc chromophore. J. Am. Chem. Soc., 2010, 132(11), 3997-4005.
[http://dx.doi.org/10.1021/ja907407m] [PMID: 20192195]
[23]
Rodrigues, J.P.; Levitt, M.; Chopra, G. KoBaMIN: A knowledge based minimization web server for protein structure refinement. Nucleic Acids Res., 2012, 40(Web Server issue), W323-8.
[http://dx.doi.org/10.1093/nar/gks376]
[24]
Parthiban, V.; Gromiha, M.M.; Schomburg, D. CUPSAT: Prediction of protein stability upon point mutations Nucleic Acids Res., 2006, 34(Web Server issue), W239.
[http://dx.doi.org/10.1093/nar/gkl190]
[25]
Chopra, G.; Summa, C.M.; Levitt, M. Solvent dramatically affects protein structure refinement. Proc. Natl. Acad. Sci. USA, 2008, 105(51), 20239-20244.
[http://dx.doi.org/10.1073/pnas.0810818105] [PMID: 19073921]
[26]
Chopra, G.; Kalisman, N.; Levitt, M. Consistent refinement of submitted models at CASP using a knowledge-based potential. Proteins, 2010, 78(12), 2668-2678.
[http://dx.doi.org/10.1002/prot.22781] [PMID: 20589633]
[27]
Krieger, E.; Koraimann, G.; Vriend, G. Increasing the precision of comparative models with YASARA NOVA-A self-parameterizing force field. Proteins, 2002, 47(3), 393-402.
[http://dx.doi.org/10.1002/prot.10104] [PMID: 11948792]
[28]
Laskowski, R.A.; MacArther, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26, 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[29]
Korendovych, I.V.; Senes, A.; Kim, Y.H.; Lear, J.D.; Fry, H.C.; Therien, M.J.; Blasie, J.K.; Walker, F.A.; Degrado, W.F. De novo design and molecular assembly of a transmembrane diporphyrin binding protein complex. J. Am. Chem. Soc., 2010, 132(44), 15516-15518.
[http://dx.doi.org/10.1021/ja107487b] [PMID: 20945900]
[30]
Gunasekaran, K.; Nagarajaram, H.A.; Ramakrishnan, C.; Balaram, P. Stereochemical punctuation marks in protein structures: Glycine and proline containing helix stop signals. J. Mol. Biol., 1998, 275(5), 917-932.
[http://dx.doi.org/10.1006/jmbi.1997.1505] [PMID: 9480777]
[31]
Lovell, S.C.; Davis, I.W.; Arendall, W.B., III; de Bakker, P.I.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C.; Richardson, D.C. Structure validation by Calpha geometry: Phi, psi and C beta deviation. Proteins, 2003, 50(3), 437-450.
[http://dx.doi.org/10.1002/prot.10286] [PMID: 12557186]
[32]
Kusunoki, M. Mono-manganese mechanism of the photosystem II water splitting reaction by a unique Mn4Ca cluster. Biochim. Biophys. Acta, 2007, 1767(6), 484-492.
[http://dx.doi.org/10.1016/j.bbabio.2007.03.012] [PMID: 17490604]
[33]
Sauer, K.; Yachandra, V.K. A possible evolutionary origin for the Mn4 cluster of the photosynthetic water oxidation complex from natural MnOS precipitates in the early ocean. Proc. Natl. Acad. Sci. USA, 2002, 99(13), 8631-8636.
[http://dx.doi.org/10.1073/pnas.132266199] [PMID: 12077302]
[34]
Raymond, J.; Blankenship, R.E. The origin of the oxygen-evolving complex. Coord. Chem. Rev., 2008, 252, 377-383.
[http://dx.doi.org/10.1016/j.ccr.2007.08.026]
[35]
Najafpour, M.M. Amorphous manganese-calcium oxides as a possible evolutionary origin for the CaMn4 cluster in photosystem II. Orig. Life Evol. Biosph., 2011, 41(3), 237-247.
[http://dx.doi.org/10.1007/s11084-010-9224-z] [PMID: 20814743]
[36]
Pushkar, Y.; Yano, J.; Sauer, K.; Boussac, A.; Yachandra, V.K. Structural changes in the Mn4Ca cluster and the mechanism of photosynthetic water splitting. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 1879-1884.
[http://dx.doi.org/10.1073/pnas.0707092105] [PMID: 18250316]
[37]
Su, J.H.; Messinger, J. Is Mn-bound substrate water protonated in the S2 state of photosystem II? Appl. Magn. Reson., 2010, 37(1-4), 123-136.
[http://dx.doi.org/10.1007/s00723-009-0051-1] [PMID: 19960065]

© 2024 Bentham Science Publishers | Privacy Policy