Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Update on Autoimmune Diseases Pathogenesis

Author(s): Melek Kechida*

Volume 25 , Issue 27 , 2019

Page: [2947 - 2952] Pages: 6

DOI: 10.2174/1381612825666190709205421

Price: $65

Abstract

Background: Autoimmune diseases result from the interplay of cellular effectors like T and B cells, regulatory cells in addition to molecular factors like cytokines and regulatory molecules.

Methods: Different electronic databases were searched in a non-systematic way to find out the literature of interest.

Results: Pathogenesis of autoimmune diseases involves typical factors such as genetic background including HLA and non HLA system genes, environmental factors such as infectious agents and inflammatory cells mainly T and B lymphocytes abnormally activated leading to immune dysfunction. Other recently reported less typical factors such as micro-RNAs, circular RNAs, myeloperoxidase, vimentine and microbiome dysbiosis seem to be potential target therapies.

Conclusion: We aimed in this manuscript to review common factors in the pathogenesis of autoimmune diseases.

Keywords: Autoimmune diseases, inflammation, pathogenesis, infectious agents, micro-RNAs, myeloperoxidase.

[1]
Yang SH, Gao CY, Li L, et al. The molecular basis of immune regulation in autoimmunity. Clin Sci 2018; 132(1): 43-67.
[http://dx.doi.org/10.1042/CS20171154]
[2]
Floreani A, Leung PS, Gershwin ME. Environmental basis of autoimmunity. Clin Rev Allergy Immunol 2016; 50(3): 287-300.
[http://dx.doi.org/10.1007/s12016-015-8493-8] [PMID: 25998909]
[3]
Wu H, Zhao M, Yoshimura A, Chang C, Lu Q. Critical link between epigenetics and transcription factors in the induction of autoimmunity: A comprehensive review. Clin Rev Allergy Immunol 2016; 50(3): 333-44.
[http://dx.doi.org/10.1007/s12016-016-8534-y] [PMID: 26969025]
[4]
Barbeau WE. What is the key environmental trigger in type 1 diabetes--is it viruses, or wheat gluten, or both? Autoimmun Rev 2012; 12(2): 295-9.
[http://dx.doi.org/10.1016/j.autrev.2012.05.003] [PMID: 22633932]
[5]
Lindoso L, Mondal K, Venkateswaran S, et al. The effect of early-life environmental exposures on disease phenotype and clinical course of Crohn’s disease in children. Am J Gastroenterol 2018; 113(10): 1524-9.
[http://dx.doi.org/10.1038/s41395-018-0239-9] [PMID: 30267029]
[6]
Pollard KM. Environment, autoantibodies, and autoimmunity. Front Immunol 2015; 6: 60.
[http://dx.doi.org/10.3389/fimmu.2015.00060] [PMID: 25717329]
[7]
Vojdani A. A potential link between environmental triggers and autoimmunity. Autoimmune Dis 2014; 2014437231
[http://dx.doi.org/10.1155/2014/437231] [PMID: 24688790]
[8]
Generali E, Ceribelli A, Stazi MA, Selmi C. Lessons learned from twins in autoimmune and chronic inflammatory diseases. J Autoimmun 2017; 83: 51-61.
[http://dx.doi.org/10.1016/j.jaut.2017.04.005] [PMID: 28431796]
[9]
Rosser EC, Mauri C. A clinical update on the significance of the gut microbiota in systemic autoimmunity. J Autoimmun 2016; 74: 85-93.
[http://dx.doi.org/10.1016/j.jaut.2016.06.009] [PMID: 27481556]
[10]
Gianchecchi E, Fierabracci A. Recent advances on microbiota involvement in the pathogenesis of autoimmunity. Int J Mol Sci 2019; 20(2)E283
[http://dx.doi.org/10.3390/ijms20020283] [PMID: 30642013]
[11]
Ajayi TA, Innes CL, Grimm SA, et al. Crohn’s disease IRGM risk alleles are associated with altered gene expression in human tissues. Am J Physiol Gastrointest Liver Physiol 2019; 316(1): G95-G105.
[http://dx.doi.org/10.1152/ajpgi.00196.2018] [PMID: 30335469]
[12]
Batura V, Muise AM. Very early onset IBD: Novel genetic aetiologies. Curr Opin Allergy Clin Immunol 2018; 18(6): 470-80.
[http://dx.doi.org/10.1097/ACI.0000000000000486] [PMID: 30299396]
[13]
Zhang J, Meng Y, Wu H, Wu Y, Yang B, Wang L. Association between PPP2CA polymorphisms and clinical features in southwest Chinese systemic lupus erythematosus patients. Medicine (Baltimore) 2018; 97(27)e11451
[http://dx.doi.org/10.1097/MD.0000000000011451] [PMID: 29979448]
[14]
Bodis G, Toth V, Schwarting A. Role of Human Leukocyte Antigens (HLA) in autoimmune diseases. Rheumatol Ther 2018; 5(1): 5-20.
[http://dx.doi.org/10.1007/s40744-018-0100-z] [PMID: 29516402]
[15]
Reveille JD. Epidemiology of spondyloarthritis in North America. Am J Med Sci 2011; 341(4): 284-6.
[http://dx.doi.org/10.1097/MAJ.0b013e31820f8c99] [PMID: 21430444]
[16]
Stolwijk C, Boonen A, van Tubergen A, Reveille JD. Epidemiology of spondyloarthritis. Rheum Dis Clin North Am 2012; 38(3): 441-76.
[http://dx.doi.org/10.1016/j.rdc.2012.09.003] [PMID: 23083748]
[17]
Farrugia M, Baron B. The role of toll-like receptors in autoimmune diseases through failure of the self-recognition mechanism. Int J Inflamm 2017; 20178391230
[http://dx.doi.org/10.1155/2017/8391230] [PMID: 28553556]
[18]
Hampe CS. B Cell in Autoimmune Diseases. Int J Inflamm 2012; 2012215308
[19]
Liu C, Yang H, Shi W, Wang T, Ruan Q. MicroRNA-mediated regulation of T helper type 17/regulatory T-cell balance in autoimmune disease. Immunology 2018; 155(4): 427-34.
[http://dx.doi.org/10.1111/imm.12994] [PMID: 30133700]
[20]
Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol 2018; 19(7): 665-73.
[http://dx.doi.org/10.1038/s41590-018-0120-4] [PMID: 29925983]
[21]
Bluestone JA, Buckner JH, Fitch M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med 2015; 7(315)315ra189
[http://dx.doi.org/10.1126/scitranslmed.aad4134] [PMID: 26606968]
[22]
Desreumaux P, Foussat A, Allez M, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology 2012; 143(5): 1207-1217.e2.
[http://dx.doi.org/10.1053/j.gastro.2012.07.116] [PMID: 22885333]
[23]
Marek-Trzonkowska N, Myśliwiec M, Dobyszuk A, et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin Immunol 2014; 153(1): 23-30.
[http://dx.doi.org/10.1016/j.clim.2014.03.016] [PMID: 24704576]
[24]
Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, et al. Administration of CD4+CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 2012; 35(9): 1817-20.
[http://dx.doi.org/10.2337/dc12-0038] [PMID: 22723342]
[25]
Maddur MS, Miossec P, Kaveri SV, Bayry J. Th17 cells: Biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol 2012; 181(1): 8-18.
[http://dx.doi.org/10.1016/j.ajpath.2012.03.044] [PMID: 22640807]
[26]
Yan L, Liang M, Hou X, et al. The role of microRNA-16 in the pathogenesis of autoimmune diseases: A comprehensive review. Biomed Pharmacother 2019; 112108583
[http://dx.doi.org/10.1016/j.biopha.2019.01.044]
[27]
Uddin A, Chakraborty S. Role of miRNAs in lung cancer. J Cell Physiol 2018.
[http://dx.doi.org/10.1002/jcp.26607] [PMID: 29676470]
[28]
O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol 2012; 30: 295-312.
[http://dx.doi.org/10.1146/annurev-immunol-020711-075013] [PMID: 22224773]
[29]
Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303(5654): 83-6.
[http://dx.doi.org/10.1126/science.1091903] [PMID: 14657504]
[30]
Baumjohann D, Ansel KM. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol 2013; 13(9): 666-78.
[http://dx.doi.org/10.1038/nri3494] [PMID: 23907446]
[31]
Xia X, Tang X, Wang S. Roles of CircRNAs in Autoimmune Diseases. Front Immunol 2019; 10: 639.
[http://dx.doi.org/10.3389/fimmu.2019.00639] [PMID: 31001261]
[32]
Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol 2015; 12(4): 381-8.
[http://dx.doi.org/10.1080/15476286.2015.1020271] [PMID: 25746834]
[33]
Zheng F, Yu X, Huang J, Dai Y. Circular RNA expression profiles of peripheral blood mononuclear cells in rheumatoid arthritis patients, based on microarray chip technology. Mol Med Rep 2017; 16(6): 8029-36.
[http://dx.doi.org/10.3892/mmr.2017.7638] [PMID: 28983619]
[34]
Luo Q, Zhang L, Li X, et al. Identification of circular RNAs hsa_circ_0044235 in peripheral blood as novel biomarkers for rheumatoid arthritis. Clin Exp Immunol 2018; 194(1): 118-24.
[http://dx.doi.org/10.1111/cei.13181] [PMID: 30216431]
[35]
Tang X, Wang J, Xia X, et al. Elevated expression of ciRS-7 in peripheral blood mononuclear cells from rheumatoid arthritis patients. Diagn Pathol 2019; 14(1): 11.
[http://dx.doi.org/10.1186/s13000-019-0783-7] [PMID: 30711014]
[36]
Li H, Li K, Lai W, et al. Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta 2018; 480: 17-25.
[http://dx.doi.org/10.1016/j.cca.2018.01.026]
[37]
Li LJ, Zhu ZW, Zhao W, et al. Circular RNA expression profile and potential function of hsa_circ_0045272 in systemic lupus erythematosus. Immunology 2018; 155(1): 137-49.
[http://dx.doi.org/10.1111/imm.12940] [PMID: 29700819]
[38]
Wang X, Zhang C, Wu Z, Chen Y, Shi W. CircIBTK inhibits DNA demethylation and activation of AKT signaling pathway via miR-29b in peripheral blood mononuclear cells in systemic lupus erythematosus. Arthritis Res Ther 2018; 20(1): 118.
[http://dx.doi.org/10.1186/s13075-018-1618-8] [PMID: 29884225]
[39]
Luan J, Jiao C, Kong W, et al. circHLA-C plays an important role in lupus nephritis by sponging miR-150. Mol Ther Nucleic Acids 2018; 10: 245-53.
[http://dx.doi.org/10.1016/j.omtn.2017.12.006] [PMID: 29499937]
[40]
Ouyang Q, Huang Q, Jiang Z, Zhao J, Shi GP, Yang M. Using plasma circRNA_002453 as a novel biomarker in the diagnosis of lupus nephritis. Mol Immunol 2018; 101: 531-8.
[http://dx.doi.org/10.1016/j.molimm.2018.07.029] [PMID: 30172209]
[41]
Selmi C. Autoimmunity in 2017. Clin Rev Allergy Immunol 2018; 55(3): 239-53.
[http://dx.doi.org/10.1007/s12016-018-8699-7] [PMID: 30051260]
[42]
Crowe W, Allsopp PJ, Watson GE, et al. Mercury as an environmental stimulus in the development of autoimmunity - A systematic review. Autoimmun Rev 2017; 16(1): 72-80.
[http://dx.doi.org/10.1016/j.autrev.2016.09.020] [PMID: 27666813]
[43]
Watad A, Azrielant S, Bragazzi NL, et al. Seasonality and autoimmune diseases: The contribution of the four seasons to the mosaic of autoimmunity. J Autoimmun 2017; 82: 13-30.
[http://dx.doi.org/10.1016/j.jaut.2017.06.001] [PMID: 28624334]
[44]
Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med 2016; 375(24): 2369-79.
[http://dx.doi.org/10.1056/NEJMra1600266] [PMID: 27974040]
[45]
Zhang P, Minardi LM, Kuenstner JT, Zekan SM, Kruzelock R. Anti-microbial antibodies, host immunity, and autoimmune disease. Front Med (Lausanne) 2018; 5: 153.
[http://dx.doi.org/10.3389/fmed.2018.00153] [PMID: 29876352]
[46]
Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 2013; 8(6)e66019
[http://dx.doi.org/10.1371/journal.pone.0066019] [PMID: 23799070]
[47]
Tomkovich S, Jobin C. Microbiota and host immune responses: A love-hate relationship. Immunology 2016; 147(1): 1-10.
[http://dx.doi.org/10.1111/imm.12538] [PMID: 26439191]
[48]
Glennon-Alty L, Hackett AP, Chapman EA, Wright HL. Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic Biol Med 2018; 125: 25-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.049] [PMID: 29605448]
[49]
Desgeorges A, Gabay C, Silacci P, et al. Concentrations and origins of soluble interleukin 6 receptor-alpha in serum and synovial fluid. J Rheumatol 1997; 24(8): 1510-6.
[PMID: 9263143]
[50]
Hurst SM, Wilkinson TS, McLoughlin RM, et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001; 14(6): 705-14.
[http://dx.doi.org/10.1016/S1074-7613(01)00151-0] [PMID: 11420041]
[51]
Kaplan MJ. Neutrophils in the pathogenesis and manifestations of SLE. Nat Rev Rheumatol 2011; 7(12): 691-9.
[http://dx.doi.org/10.1038/nrrheum.2011.132] [PMID: 21947176]
[52]
Wright HL, Moots RJ, Edwards SW. The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol 2014; 10(10): 593-601.
[http://dx.doi.org/10.1038/nrrheum.2014.80] [PMID: 24914698]
[53]
Thieblemont N, Wright HL, Edwards SW, Witko-Sarsat V. Human neutrophils in auto-immunity. Semin Immunol 2016; 28(2): 159-73.
[http://dx.doi.org/10.1016/j.smim.2016.03.004] [PMID: 27036091]
[54]
Strzepa A, Pritchard KA, Dittel BN. Myeloperoxidase: A new player in autoimmunity. Cell Immunol 2017; 317: 1-8.
[http://dx.doi.org/10.1016/j.cellimm.2017.05.002] [PMID: 28511921]
[55]
Musaelyan A, Lapin S, Nazarov V, et al. Vimentin as antigenic target in autoimmunity: A comprehensive review. Autoimmun Rev 2018; 17(9): 926-34.
[http://dx.doi.org/10.1016/j.autrev.2018.04.004] [PMID: 30009963]
[56]
Fernandes-Cerqueira C, Ossipova E, Gunasekera S, et al. Targeting of anti-citrullinated protein/peptide antibodies in rheumatoid arthritis using peptides mimicking endogenously citrullinated fibrinogen antigens. Arthritis Res Ther 2015; 17: 155.
[http://dx.doi.org/10.1186/s13075-015-0666-6] [PMID: 26059223]
[57]
Fuchs E, Weber K. Intermediate filaments: Structure, dynamics, function, and disease. Annu Rev Biochem 1994; 63: 345-82.
[http://dx.doi.org/10.1146/annurev.bi.63.070194.002021] [PMID: 7979242]
[58]
Eriksson JE, He T, Trejo-Skalli AV, et al. Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci 2004; 117(Pt 6): 919-32.
[http://dx.doi.org/10.1242/jcs.00906] [PMID: 14762106]
[59]
Goto H, Tanabe K, Manser E, Lim L, Yasui Y, Inagaki M. Phosphorylation and reorganization of vimentin by p21-activated kinase (PAK). Genes to cells: Devoted to molecular & cellular mechanisms 2002; 7(2): 91-7.
[60]
Scally SW, Petersen J, Law SC, et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med 2013; 210(12): 2569-82.
[http://dx.doi.org/10.1084/jem.20131241] [PMID: 24190431]
[61]
Van Steendam K, Tilleman K, Deforce D. The relevance of citrullinated vimentin in the production of antibodies against citrullinated proteins and the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 2011; 50(5): 830-7.
[http://dx.doi.org/10.1093/rheumatology/keq419] [PMID: 21278075]
[62]
Chang A, Henderson SG, Brandt D, et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J Immunol 2011; 186(3): 1849-60.
[http://dx.doi.org/10.4049/jimmunol.1001983]
[63]
Thebault S, Gilbert D, Hubert M, et al. Orderly pattern of development of the autoantibody response in (New Zealand White x BXSB)F1 lupus mice: Characterization of target antigens and antigen spreading by two-dimensional gel electrophoresis and mass spectrometry. J Immunol 2002; 169(7): 4046-53.
[64]
Mor-Vaknin N, Legendre M, Yu Y, et al. Murine colitis is mediated by vimentin. Sci Rep 2013; 3: 1045.
[http://dx.doi.org/10.1038/srep01045] [PMID: 23304436]
[65]
Xue J, Kass DJ, Bon J, et al. Plasma B lymphocyte stimulator and B cell differentiation in idiopathic pulmonary fibrosis patients. J Immunol 2013; 191(5): 2089-95.
[66]
Bay-Jensen AC, Karsdal MA, Vassiliadis E, et al. Circulating citrullinated vimentin fragments reflect disease burden in ankylosing spondylitis and have prognostic capacity for radiographic progression. Arthritis Rheum 2013; 65(4): 972-80.
[http://dx.doi.org/10.1002/art.37843] [PMID: 23280360]
[67]
Häggmark A, Hamsten C, Wiklundh E, et al. Proteomic profiling reveals autoimmune targets in sarcoidosis. Am J Respir Crit Care Med 2015; 191(5): 574-83.
[http://dx.doi.org/10.1164/rccm.201407-1341OC] [PMID: 25608002]
[68]
Brooks WH. A review of autoimmune disease hypotheses with introduction of the “Nucleolus” hypothesis. Clin Rev Allergy Immunol 2017; 52(3): 333-50.
[http://dx.doi.org/10.1007/s12016-016-8567-2] [PMID: 27324247]
[69]
Dahan S, Segal Y, Watad A, et al. Novelties in the field of autoimmunity - 1st Saint Petersburg congress of autoimmunity, the bridge between east and west. Autoimmun Rev 2017; 16(12): 1175-84.
[http://dx.doi.org/10.1016/j.autrev.2017.10.001] [PMID: 29037903]
[70]
Doria A, Gatto M, Iaccarino L, Sarzi-Puttini P. Unresolved and critical issues in autoimmune rheumatic diseases. Autoimmun Rev 2017; 16(11): 1093-5.
[http://dx.doi.org/10.1016/j.autrev.2017.09.001] [PMID: 28919456]
[71]
Elieh Ali Komi D, Grauwet K. Role of mast cells in regulation of t cell responses in experimental and clinical settings. Clin Rev Allergy Immunol 2018; 54(3): 432-45.
[http://dx.doi.org/10.1007/s12016-017-8646-z] [PMID: 28929455]
[72]
Ferreira RC, Simons HZ, Thompson WS, et al. Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity. J Autoimmun 2017; 84: 75-86.
[http://dx.doi.org/10.1016/j.jaut.2017.07.009] [PMID: 28747257]
[73]
Fortner KA, Bond JP, Austin JW, Boss JM, Budd RC. The molecular signature of murine T cell homeostatic proliferation reveals both inflammatory and immune inhibition patterns. J Autoimmun 2017; 82: 47-61.
[http://dx.doi.org/10.1016/j.jaut.2017.05.003] [PMID: 28551033]
[74]
Gattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and disease. Nat Med 2017; 23(1): 18-27.
[http://dx.doi.org/10.1038/nm.4241] [PMID: 28060797]
[75]
Geng J, Yu S, Zhao H, et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat Immunol 2017; 18(7): 800-12.
[http://dx.doi.org/10.1038/ni.3748] [PMID: 28504697]
[76]
Gravina G, Wasén C, Garcia-Bonete MJ, et al. Survivin in autoimmune diseases. Autoimmun Rev 2017; 16(8): 845-55.
[http://dx.doi.org/10.1016/j.autrev.2017.05.016] [PMID: 28564620]
[77]
Heink S, Yogev N, Garbers C, et al. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat Immunol 2017; 18(1): 74-85.
[http://dx.doi.org/10.1038/ni.3632] [PMID: 27893700]
[78]
Hemon P, Renaudineau Y, Debant M, et al. Calcium signaling: From normal B cell development to tolerance breakdown and autoimmunity. Clin Rev Allergy Immunol 2017; 53(2): 141-65.
[http://dx.doi.org/10.1007/s12016-017-8607-6] [PMID: 28500564]
[79]
Iizuka-Koga M, Nakatsukasa H, Ito M, Akanuma T, Lu Q, Yoshimura A. Induction and maintenance of regulatory T cells by transcription factors and epigenetic modifications. J Autoimmun 2017; 83: 113-21.
[http://dx.doi.org/10.1016/j.jaut.2017.07.002] [PMID: 28709726]
[80]
Jamilloux Y, Belot A, Magnotti F, et al. Geoepidemiology and immunologic features of autoinflammatory diseases: A comprehensive review. Clin Rev Allergy Immunol 2018; 54(3): 454-79.
[http://dx.doi.org/10.1007/s12016-017-8613-8] [PMID: 28578473]
[81]
Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 2017; 23(3): 279-87.
[http://dx.doi.org/10.1038/nm.4294] [PMID: 28267716]
[82]
Kaur G, Mohindra K, Singla S. Autoimmunity-Basics and link with periodontal disease. Autoimmun Rev 2017; 16(1): 64-71.
[http://dx.doi.org/10.1016/j.autrev.2016.09.013] [PMID: 27664383]
[83]
Lee KH, Kronbichler A, Park DD, et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun Rev 2017; 16(11): 1160-73.
[http://dx.doi.org/10.1016/j.autrev.2017.09.012] [PMID: 28899799]
[84]
Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat Immunol 2017; 18(8): 832-42.
[http://dx.doi.org/10.1038/ni.3777] [PMID: 28722725]
[85]
Mantovani A. Wandering pathways in the regulation of innate immunity and inflammation. J Autoimmun 2017; 85: 1-5.
[http://dx.doi.org/10.1016/j.jaut.2017.10.007] [PMID: 29079064]
[86]
Morell M, Varela N, Marañón C. Myeloid populations in systemic autoimmune diseases. Clin Rev Allergy Immunol 2017; 53(2): 198-218.
[http://dx.doi.org/10.1007/s12016-017-8606-7] [PMID: 28528521]
[87]
Oftedal BE, Ardesjö Lundgren B, Hamm D, et al. T cell receptor assessment in autoimmune disease requires access to the most adjacent immunologically active organ. J Autoimmun 2017; 81: 24-33.
[http://dx.doi.org/10.1016/j.jaut.2017.03.002] [PMID: 28318808]
[88]
Papp G, Boros P, Nakken B, Szodoray P, Zeher M. Regulatory immune cells and functions in autoimmunity and transplantation immunology. Autoimmun Rev 2017; 16(5): 435-44.
[http://dx.doi.org/10.1016/j.autrev.2017.03.011] [PMID: 28286106]
[89]
Park SH, Kang K, Giannopoulou E, et al. Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. Nat Immunol 2017; 18(10): 1104-16.
[http://dx.doi.org/10.1038/ni.3818] [PMID: 28825701]
[90]
Petersen F, Yue X, Riemekasten G, Yu X. Dysregulated homeostasis of target tissues or autoantigens - A novel principle in autoimmunity. Autoimmun Rev 2017; 16(6): 602-11.
[http://dx.doi.org/10.1016/j.autrev.2017.04.006] [PMID: 28411168]
[91]
Picard C, Belot A. Does type-I interferon drive systemic autoimmunity? Autoimmun Rev 2017; 16(9): 897-902.
[http://dx.doi.org/10.1016/j.autrev.2017.07.001] [PMID: 28694138]
[92]
Renaudineau Y. Immunophenotyping as a new tool for classification and monitoring of systemic autoimmune diseases. Clin Rev Allergy Immunol 2017; 53(2): 177-80.
[http://dx.doi.org/10.1007/s12016-017-8604-9] [PMID: 28477077]
[93]
Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol 2017; 18(7): 716-24.
[http://dx.doi.org/10.1038/ni.3731] [PMID: 28632714]
[94]
Adorisio S, Fierabracci A, Muscari I, et al. SUMO proteins: Guardians of immune system. J Autoimmun 2017; 84: 21-8.
[http://dx.doi.org/10.1016/j.jaut.2017.09.001] [PMID: 28919255]
[95]
Al-Soudi A, Kaaij MH, Tas SW. Endothelial cells: From innocent bystanders to active participants in immune responses. Autoimmun Rev 2017; 16(9): 951-62.
[http://dx.doi.org/10.1016/j.autrev.2017.07.008] [PMID: 28698091]
[96]
Coronel-Restrepo N, Posso-Osorio I, Naranjo-Escobar J, Tobón GJ. Autoimmune diseases and their relation with immunological, neurological and endocrinological axes. Autoimmun Rev 2017; 16(7): 684-92.
[http://dx.doi.org/10.1016/j.autrev.2017.05.002] [PMID: 28479489]
[97]
Torres-Ruiz J, Sulli A, Cutolo M, Shoenfeld Y. Air travel, circadian rhythms/hormones, and autoimmunity. Clin Rev Allergy Immunol 2017; 53(1): 117-25.
[http://dx.doi.org/10.1007/s12016-017-8599-2] [PMID: 28244020]
[98]
Efstathiadou ZA, Sykja A, Anagnostis P, Panagiotou A, Kita M. Occurrence of De Quervain’s thyroiditis after resolution of hypercortisolism following pasireotide treatment for Cushing’s disease and surgery for an adrenocortical adenoma: report of two cases. Eur Thyroid J 2014; 3: 69-72.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy