Leishmaniasis is one of the most neglected diseases in the world. Its most severe clinical form, called visceral, if left untreated, can be fatal. Conventional therapy is based on the use of pentavalent antimonials and includes amphotericin B (AmB) as a second-choice drug. The micellar formulation of AmB, although effective, is associated with acute and chronic toxicity. Commercially-available lipid formulations emerged to overcome such drawbacks, but their high cost limits their widespread use. Drug delivery systems such as nanoemulsions (NE) have proven ability to solubilize hydrophobic compounds, improve absorption and bioavailability, increase efficacy and reduce toxicity of encapsulated drugs. NE become even more attractive because they are inexpensive and easy to prepare. The aim of this work was to incorporate AmB in NE prepared by sonicating a mixture of surfactants, Kolliphor® HS15 (KHS15) and Brij® 52, and an oil, isopropyl myristate. NE exhibited neutral pH, conductivity values consistent with oil in water systems, spherical structures with negative Zeta potential value, monomodal size distribution and average diameter of drug-containing droplets ranging from 33 to 132 nm. AmB did not modify the thermal behavior of the system, likely due to its dispersion in the internal phase. Statistically similar antileishmanial activity of AmB-loaded NE to that of AmB micellar formulation suggests further exploring them in terms of toxicity and effectiveness against amastigotes, with the aim of offering an alternative to treat visceral leishmaniasis.

Keywords: Amphotericin B, new drug delivery system, physicochemical characterization, visceral leishmaniasis, Kolliphor® HS15, Brij® 52.

Conceição-Silva F, Leite-Silva J, Morgado FN. The binomial parasite-host immunity in the healing process and in reactivation of human tegumentary leishmaniasis. Front Microbiol 2018; 9: 1308. [http://dx.doi.org/10.3389/fmicb.2018.01308]. [PMID: 29971054].
Conceição J, Davis R, Carneiro PP, et al. Characterization of neutrophil function in human cutaneous leishmaniasis caused by Leishmania braziliensis. PLoS Negl Trop Dis 2016; 10(5)e0004715 [http://dx.doi.org/10.1371/journal.pntd.0004715]. [PMID: 27167379].
Hu S, Marshall C, Darby J, Wei W, Lyons AB, Körner H. Absence of tumor necrosis factor supports alternative activation of macrophages in the liver after infection with Leishmania major. Front Immunol 2018; 9: 1-2. [http://dx.doi.org/10.3389/fimmu.2018.00001]. [PMID: 29403488].
Abongomera C, Diro E, Vogt F, et al. The risk and predictors of visceral leishmaniasis relapse in human immunodeficiency virus-coinfected patients in Ethiopia: A retrospective cohort study. Clin Infect Dis 2017; 65(10): 1703-10. [http://dx.doi.org/10.1093/cid/cix607]. [PMID: 29020196].
Dos Santos IB, da Silva DAM, Paz FACR, et al. Leishmanicidal and immunomodulatory activities of the palladacycle complex DPPE 1.1, a potential candidate for treatment of cutaneous leishmaniasis. Front Microbiol 2018; 9: 1427. [http://dx.doi.org/10.3389/fmicb.2018.01427]. [PMID: 30018604].
Mushtaq S, Dogra D, Dogra N. Clinical response with intralesional amphotericin B in the treatment of old world cutaneous leishmaniasis: a preliminary report. Dermatol Ther 2016; 29(6): 398-405. [http://dx.doi.org/10.1111/dth.12377]. [PMID: 27477764].
Damasceno BPGL, Dominici VA, Urbano IA, et al. Amphotericin B microemulsion reduces toxicity and maintains the efficacy as an antifungal product. J Biomed Nanotechnol 2012; 8(2): 290-300. [http://dx.doi.org/10.1166/jbn.2012.1374]. [PMID: 22515080].
Sato MR, Oshiro Junior J.A., Machado RT, et al. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des Devel Ther 2017; 11: 909-21. [http://dx.doi.org/10.2147/DDDT.S127048]. [PMID: 28356717].
Oshiro JA, Nasser NJ, Chiari-Andreó BG, Cuberes MT, Chiavacci LA. Study of triamcinolone release and mucoadhesive properties of macroporous hybrid films for oral disease treatment. Biomed Phys Eng Express 2018; 4: 8-10. [http://dx.doi.org/10.1088/2057-1976/aaa84b].
Manaia EB, Abuçafy MP, Chiari-Andréo BG, Silva BL, Oshiro Junior J.A., Chiavacci LA. Physicochemical characterization of drug nanocarriers. Int J Nanomedicine 2017; 12: 4991-5011. [http://dx.doi.org/10.2147/IJN.S133832]. [PMID: 28761340].
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252: 28-49. [http://dx.doi.org/10.1016/j.jconrel.2017.03.008]. [PMID: 28279798].
Fernandes CP, de Almeida FB, Silveira AN, et al. Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. J Nanobiotechnology 2014; 12: 22. [http://dx.doi.org/10.1186/1477-3155-12-22]. [PMID: 24886215].
Moustafa HZ, Mohamad TGM, Torkey H. Effect of formulated nanoemulsion of eucalyptus oil on the cotton bollworms effect of formulated nanoemulsion of eucalyptus oil on the cotton bollworms. J Biol Chem Res 2015; 32: 478-84.
Pey CM, Maestro A, Solé I, González C, Solans C, Gutiérrez JM. Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study. Colloids Surf A Physicochem Eng Asp 2006; 288: 144-50. [http://dx.doi.org/10.1016/j.colsurfa.2006.02.026].
Setya S, Madaan T, Tariq M, Razdan BK, Talegaonkar S. Appraisal of transdermal water-in-oil nanoemulgel of selegiline HCl for the effective management of Parkinson’s disease: Pharmacodynamic, pharmacokinetic, and biochemical investigations. AAPS PharmSciTech 2018; 19(2): 573-89. [http://dx.doi.org/10.1208/s12249-017-0868-0]. [PMID: 28875405].
Anton N, Vandamme TF. Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharm Res 2011; 28(5): 978-85. [http://dx.doi.org/10.1007/s11095-010-0309-1]. [PMID: 21057856].
Ghosh V, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason Sonochem 2013; 20(1): 338-44. [http://dx.doi.org/10.1016/j.ultsonch.2012.08.010]. [PMID: 22954686].
Nakabayashi K, Amemiya F, Fuchigami T, et al. Highly clear and transparent nanoemulsion preparation under surfactant-free conditions using tandem acoustic emulsification. Chem Commun (Camb) 2011; 47(20): 5765-7. [http://dx.doi.org/10.1039/c1cc10558b]. [PMID: 21499641].
Nasr M, Nawaz S, Elhissi A. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int J Pharm 2012; 436(1-2): 611-6. [http://dx.doi.org/10.1016/j.ijpharm.2012.07.028]. [PMID: 22842623].
Zhang LW, Al-Suwayeh SA, Hung CF, Chen CC, Fang JY. Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions. Int J Nanomedicine 2011; 6: 693-704. [PMID: 21556344].
Hans M, Lowman A. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002; 6: 319-27.http://www.sciencedirect.com/science/article/pii/S1359028602001171 [http://dx.doi.org/10.1016/S1359-0286(02)00117-1].
Vyas SP, Gupta S. Optimizing efficacy of amphotericin B through nanomodification. Int J Nanomedicine 2006; 1(4): 417-32. [http://dx.doi.org/10.2147/nano.2006.1.4.417]. [PMID: 17722276].
Bali V, Ali M, Ali J. Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Colloids Surf B Biointerfaces 2010; 76(2): 410-20. [http://dx.doi.org/10.1016/j.colsurfb.2009.11.021]. [PMID: 20042320].
Klang V, Matsko NB, Valenta C, Hofer F. Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron 2012; 43(2-3): 85-103. [http://dx.doi.org/10.1016/j.micron.2011.07.014]. [PMID: 21839644].
Kaur T, Slavcev R. Solid lipid nanoparticles: Tuneable anti-cancer gene/drug delivery systems. Nov Gene Ther Approaches [Internet] 2013; 53-73.http://www.intechopen.com/books/novel-gene-therapy-approaches/solid-lipid-nanoparticles-tuneable-anti-cancer-gene-drug-delivery-systems
Masmoudi H, Dréau YL, Piccerelle P, Kister J. The evaluation of cosmetic and pharmaceutical emulsions aging process using classical techniques and a new method: FTIR. Int J Pharm 2005; 289(1-2): 117-31. [http://dx.doi.org/10.1016/j.ijpharm.2004.10.020]. [PMID: 15652205].
Boonme P, Krauel K, Graf A, Rades T, Junyaprasert VB. Characterization of microemulsion structures in the pseudoternary phase diagram of isopropyl palmitate/water/Brij 97:1-butanol. AAPS PharmSciTech 2006; 7(2)E45http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2750287&tool=pmcentrez&rendertype=abstract%5Cnhttp://www.springerlink.com/content/01448810n37j6531/ [http://dx.doi.org/10.1208/pt070245]. [PMID: 16796362].
Podlogar F, Gašperlin M, Tomšič M, Jamnik A, Rogač MB. Structural characterisation of water-Tween 40/Imwitor 308-isopropyl myristate microemulsions using different experimental methods. Int J Pharm 2004; 276(1-2): 115-28. [http://dx.doi.org/10.1016/j.ijpharm.2004.02.018]. [PMID: 15113620].
Milović M, Djuriš J, Djekić L, Vasiljević D, Ibrić S. Characterization and evaluation of solid self-microemulsifying drug delivery systems with porous carriers as systems for improved carbamazepine release. Int J Pharm 2012; 436(1-2): 58-65. [http://dx.doi.org/10.1016/j.ijpharm.2012.06.032]. [PMID: 22721847].
Vermeersch M, da Luz RI, Toté K, Timmermans JP, Cos P, Maes L. In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: Practical relevance of stage-specific differences. Antimicrob Agents Chemother 2009; 53(9): 3855-9. [http://dx.doi.org/10.1128/AAC.00548-09]. [PMID: 19546361].
Piñero JE, Martínez S, del Castillo A, Portús M, Valladares B. In vitro susceptibility of Leishmania infantum strains isolated from Spanish HIV-positive patients to Abelcet and Fungizone. J Antimicrob Chemother 2002; 50(2): 304-6.http://www.jac.oupjournals.org/cgi/doi/10.1093/jac/dkf113 [http://dx.doi.org/10.1093/jac/dkf113]. [PMID: 12161420].
Fumarola L, Spinelli R, Brandonisio O. In vitro assays for evaluation of drug activity against Leishmania spp. Res Microbiol 2004; 155(4): 224-30. [http://dx.doi.org/10.1016/j.resmic.2004.01.001]. [PMID: 15142618].
de Morais-Teixeira E, Gallupo MK, Rodrigues LF, Romanha AJ, Rabello A. In vitro interaction between paromomycin sulphate and four drugs with leishmanicidal activity against three New World Leishmania species. J Antimicrob Chemother 2014; 69(1): 150-4. [http://dx.doi.org/10.1093/jac/dkt318]. [PMID: 23970484].

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy