Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Plant Extracts Loaded in Nanostructured Drug Delivery Systems for Treating Parasitic and Antimicrobial Diseases

Author(s): Brenna L.C. Gondim, João A. Oshiro-Júnior, Felipe H.A. Fernanandes, Fernanda P. Nóbrega, Lúcio R.C. Castellano and Ana C.D. Medeiros*

Volume 25 , Issue 14 , 2019

Page: [1604 - 1615] Pages: 12

DOI: 10.2174/1381612825666190628153755

Price: $65

Abstract

Background: Plant extracts loaded in nanostructured drug delivery systems (NDDSs) have been reported as an alternative to current therapies for treating parasitic and antimicrobial diseases. Among their advantages, plant extracts in NDSSs increase the stability of the drugs against environmental factors by promoting protection against oxygen, humidity, and light, among other factors; improve the solubility of hydrophobic compounds; enhance the low absorption of the active components of the extracts (i.e., biopharmaceutical classification II), which results in greater bioavailability; and control the release rate of the substances, which is fundamental to improving the therapeutic effectiveness. In this review, we present the most recent data on NDDSs using plant extracts and report results obtained from studies related to in vitro and in vivo biological activities.

Keywords: Parasitic and antimicrobial resistance, plant extracts, nanostructured drug delivery systems, environmental factors, in vitro, in vivo.

[1]
Copeland NK, Aronson NE. Leishmaniasis: treatment updates and clinical practice guidelines review. Curr Opin Infect Dis 2015; 28(5): 426-37. [http://dx.doi.org/10.1097/QCO.0000000000000194]. [PMID: 26312442].
[2]
Tagliabue A, Rappuoli R. Changing Priorities in Vaccinology: Antibiotic Resistance Moving to the Top. Front Immunol 2018; 9: 1068. [http://dx.doi.org/10.3389/fimmu.2018.01068]. [PMID: 29910799].
[3]
Laxminarayan R, Matsoso P, Pant S, et al. Access to effective antimicrobials: A worldwide challenge. Lancet 2016; 387(10014): 168-75. [http://dx.doi.org/10.1016/S0140-6736(15)00474-2]. [PMID: 26603918].
[4]
Carr AL, Daley MJ, Givens Merkel K, Rose DT. Clinical Utility of Methicillin-Resistant Staphylococcus aureus Nasal Screening for Antimicrobial Stewardship: A Review of Current Literature. Pharmacotherapy 2018; 38(12): 1216-28. [http://dx.doi.org/10.1002/phar.2188]. [PMID: 30300441].
[5]
Ferket PR. Alternatives to antibiotics in poultry production: Responses, practical experience and recommendations. In: Lyons TP, Jacques KA, Eds. Proceedings of Alltech’s 20th Annual Symposium. UK. Nottingham: University Press 2004; pp. 57-67.
[6]
Ku TSN, Walraven CJ, Lee SA. Candida auris: Disinfectants and Implications for Infection Control. Front Microbiol 2018; 9: 726. [http://dx.doi.org/10.3389/fmicb.2018.00726]. [PMID: 29706945].
[7]
Vanaerschot M, Huijben S, Van den Broeck F, Dujardin JC. Drug resistance in vectorborne parasites: Multiple actors and scenarios for an evolutionary arms race. FEMS Microbiol Rev 2014; 38(1): 41-55. [http://dx.doi.org/10.1111/1574-6976.12032]. [PMID: 23815683].
[8]
Costa CSR, Costa AEIS, Santos AMM, Pereira JWL, Carvalho RRC, Carvalho-Filho JLS. Current Status of the Occurrence and Reaction Root-knot Nematodes in the Main Botanical Families of Medicinal Plants. J Exp Agr Int 2019; 32: 1-21.
[9]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75(3): 311-35. [http://dx.doi.org/10.1021/np200906s]. [PMID: 22316239].
[10]
Almeida L, Oshiro Júnior JA, Silva M, et al. Tablet of Ximenia Americana L. Developed from Mucoadhesive Polymers for Future Use in Oral Treatment of Fungal Infections. Polymers (Basel) 2019; 11(2): 1-21. [http://dx.doi.org/10.3390/polym11020379]. [PMID: 30960363].
[11]
Bilia AR, Isacchi B, Righeschi C, Guccione C, Bergonzi MC. Flavonoids Loaded in Nanocarriers: An Opportunity to Increase Oral Bioavailability and Bioefficacy. Food Nutr Sci 2014; 5: 1212-27. [http://dx.doi.org/10.4236/fns.2014.513132].
[12]
Bento da Silva P, Fioramonti Calixto GM, Oshiro Júnior JA, et al. Structural Features and the Anti-Inflammatory Effect of Green Tea Extract-Loaded Liquid Crystalline Systems Intended for Skin Delivery. Polymers (Basel) 2017; 9(1): 1-15. [http://dx.doi.org/10.3390/polym9010030]. [PMID: 30970708].
[13]
Sato MR, Oshiro Junior J.A., Machado RT, et al. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des Devel Ther 2017; 11: 909-21. [http://dx.doi.org/10.2147/DDDT.S127048]. [PMID: 28356717].
[14]
Tung WL, Hu SH, Liu DM. Synthesis of nanocarriers with remote magnetic drug release control and enhanced drug delivery for intracellular targeting of cancer cells. Acta Biomater 2011; 7(7): 2873-82. [http://dx.doi.org/10.1016/j.actbio.2011.03.021]. [PMID: 21439410].
[15]
Oshiro JA, Scardueli CR, José G, et al. Development of ureasil–polyether membranes for guided bone regeneration. Biomed Phys Eng Express 2017; 3: 1-7. [http://dx.doi.org/10.1088/2057-1976/aa56a6].
[16]
Zorzia GK, Carvalho ELS, Posera GLV, Teixeira HF. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Rev Bras Farmacogn 2015; 25: 426-36. [http://dx.doi.org/10.1016/j.bjp.2015.07.015].
[17]
Sangeetha G, Rajeshwari S, Venckatesh R. Green synthesis of zinc oxide nanparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Mater Res Bull 2011; 46: 2560-6. [http://dx.doi.org/10.1016/j.materresbull.2011.07.046].
[18]
Thema JFT, Manikandan E, Dhlamini MS, Maaza M. Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater Lett 2015; 161: 124-7. [http://dx.doi.org/10.1016/j.matlet.2015.08.052].
[19]
Khan MM, Harunsani MH, Adedeji AR. Plant-Assisted Fabrication of SnO2 and SnO2-Based Nanostructures for Various Applications. Nanomaterials and Plant Potential 2019; pp. 285-97. [http://dx.doi.org/10.1007/978-3-030-05569-1_11]
[20]
Escárcega-González CE, Garza-Cervantes JA, Vázquez-Rodríguez A, et al. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. Int J Nanomedicine 2018; 13: 2349-63. [http://dx.doi.org/10.2147/IJN.S160605]. [PMID: 29713166].
[21]
Ahmed M, Douek M. The role of magnetic nanoparticles in the localization and treatment of breast cancer. BioMed Res Int 2013; 2013281230 [http://dx.doi.org/10.1155/2013/281230].
[22]
Bonifácio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int J Nanomedicine 2014; 9: 1-15. [PMID: 24363556].
[23]
Soppimath KSK, Aminabhavi TMTM, Kulkarni ARAR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70(1-2): 1-20. [http://dx.doi.org/10.1016/S0168-3659(00)00339-4]. [PMID: 11166403].
[24]
Schaffazick SR, Pohlmann AR, Dalla-Costa T, Guterres SS. Freeze-drying polymeric colloidal suspensions: Nanocapsules, nanospheres and nanodispersion. A comparative study. Eur J Pharm Biopharm 2003; 56(3): 501-5. [http://dx.doi.org/10.1016/S0939-6411(03)00139-5]. [PMID: 14602195].
[25]
Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin N. Cyclodextrins, from molecules to applications Environ Chem Lett Springer International Publishing 2018 Internet
[27]
Karimi N, Ghanbarzadeh B, Hamishehkar H, Mehramuz B, Kafil HS. Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC). Colloid and Interface Sci Communications 2018; 22: 18-24. [http://dx.doi.org/10.1016/j.colcom.2017.11.006].
[28]
Oshiro JA. Junior, Mortari GR, de Freitas RM, et al Assessment of biocompatibility of ureasil-polyether hybrid membranes for future use in implantodontology. Int J Polym Mater Polym Biomater 2016; 65: 647-52.
[29]
Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine 2005; 1(1): 22-30. [http://dx.doi.org/10.1016/j.nano.2004.11.009]. [PMID: 17292054].
[30]
Yhirayha C, Soontaranon S, Wittaya-Areekul S, Pitaksuteepong T. Formulation of lyotropic liquid crystal containing mulberry stem extract: Influences of formulation ingredients on the formation and the nanostructure. Int J Cosmet Sci 2014; 36(3): 213-20. [http://dx.doi.org/10.1111/ics.12116]. [PMID: 24471700].
[31]
Moraes ARU, Development CAP. Cosmetics 2018; 5: 1-7.
[32]
Wagner AM, Spencer DS, Peppas NA. Advanced architectures in the design of responsive polymers for cancer nanomedicine. J Appl Polym Sci 2018; 135(24): 1-2. [http://dx.doi.org/10.1002/app.46154]. [PMID: 30174339].
[33]
Rafiei P, Haddadi A. Pharmacokinetic Consequences of PLGA Nanoparticles in Docetaxel Drug Delivery. Pharm Nanotechnol 2017; 5(1): 3-23. [http://dx.doi.org/10.2174/2211738505666161230110108]. [PMID: 28948907].
[34]
Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: Size matters. J Nanobiotechnology 2014; 12: 5. [http://dx.doi.org/10.1186/1477-3155-12-5]. [PMID: 24491160].
[35]
Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavalability. Asian J Pharm Sci 2014; 9: 304-16. [http://dx.doi.org/10.1016/j.ajps.2014.05.005].
[36]
Rajendran R, Radhai R, Kotresh TM, Csiszar E. Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydr Polym Elsevier Ltd 2013; 91: 613-7. [http://dx.doi.org/10.1016/j.carbpol.2012.08.064].
[37]
Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ. Antimalarial drug resistance: Literature review and activities and findings of the ICEMR network. Am J Trop Med Hyg 2015; 93(3)(Suppl.): 57-68. [http://dx.doi.org/10.4269/ajtmh.15-0007]. [PMID: 26259943].
[38]
Eltayeb SE, Su Z, Shi Y, Li S, Xiao Y, Ping Q. Preparation and optimization of transferrin-modified-artemether lipid nanospheres based on the orthogonal design of emulsion formulation and physically electrostatic adsorption. Int J Pharm 2013; 452(1-2): 321-32. [http://dx.doi.org/10.1016/j.ijpharm.2013.05.019]. [PMID: 23694805].
[39]
Chadha R, Gupta S, Pathak N. Artesunate-loaded chitosan/lecithin nanoparticles: Preparation, characterization, and in vivo studies. Drug Dev Ind Pharm 2012; 38(12): 1538-46.
[40]
Ritter CS, Baldissera MD, Grando TH, et al. Achyrocline satureioides essential oil-loaded in nanocapsules reduces cytotoxic damage in liver of rats infected by Trypanosoma evansi. Microb Pathog 2017; 103: 149-54. [http://dx.doi.org/10.1016/j.micpath.2016.12.023]. [PMID: 28027942].
[41]
Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. Lancet Infect Dis 2007; 7(9): 581-96. [http://dx.doi.org/10.1016/S1473-3099(07)70209-8]. [PMID: 17714672].
[42]
Moreno E, Schwartz J, Larrea E, et al. Assessment of β-lapachone loaded in lecithin-chitosan nanoparticles for the topical treatment of cutaneous leishmaniasis in L. major infected BALB/c mice. Nanomedicine (Lond) 2015; 11(8): 2003-12. [http://dx.doi.org/10.1016/j.nano.2015.07.011]. [PMID: 26282379].
[43]
Fallon PG, Doenhoff MJ. Drug-resistant schistosomiasis: Resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am J Trop Med Hyg 1994; 51(1): 83-8. [http://dx.doi.org/10.4269/ajtmh.1994.51.83]. [PMID: 8059919].
[44]
Omobhude ME, Morenikeji OA, Oyeyemi OT. Molluscicidal activities of curcumin-nisin polylactic acid nanoparticle on Biomphalaria pfeifferi. PLoS Negl Trop Dis 2017; 11(8)e0005855 [http://dx.doi.org/10.1371/journal.pntd.0005855]. [PMID: 28832617].
[45]
Saleheen D, Ali SA, Ashfaq K, Siddiqui AA, Agha A, Yasinzai MM. Latent activity of curcumin against leishmaniasis in vitro. Biol Pharm Bull 2002; 25(3): 386-9. [http://dx.doi.org/10.1248/bpb.25.386]. [PMID: 11913540].
[46]
Luz PP, Magalhães LG, Pereira AC, et al. Curcumin-loaded into PLGA nanoparticles: Preparation and in vitro schistosomicidal activity. Parasitol Res 2012; 110(2): 593-8.
[47]
Righi AA, Alves TR, Negri G, Marques LM, Breyer H, Salatino A. Brazilian red propolis: Unreported substances, antioxidant and antimicrobial activities. J Sci Food Agric 2011; 91(13): 2363-70. [http://dx.doi.org/10.1002/jsfa.4468]. [PMID: 21590778].
[48]
do Nascimento TG, da Silva PF, Azevedo LF, et al. Polymeric Nanoparticles of Brazilian Red Propolis Extract: Preparation, Characterization, Antioxidant and Leishmanicidal Activity. Nanoscale Res Lett 2016; 11(1): 301. [http://dx.doi.org/10.1186/s11671-016-1517-3]. [PMID: 27316742].
[49]
Bitencourt PER, Cargnelutti LO, Stein CS, et al. Nanoparticle formulation increases Syzygium cumini antioxidant activity in Candida albicans-infected diabetic rats. Pharm Biol 2017; 55(1): 1082-8. [http://dx.doi.org/10.1080/13880209.2017.1283338]. [PMID: 28193098].
[50]
Asghar A. Elucidating the therapeutic potential of nutraceuticals A2 - Grumezescu, Alexandru Mihai BT - Nutraceuticals Nanotechnol Agri-Food Ind [Internet] 2016; 231-70.
[51]
Ranasinghe P, Pigera S, Premakumara GA, Galappaththy P, Constantine GR, Katulanda P. Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complement Altern Med 2013; 13: 275. [http://dx.doi.org/10.1186/1472-6882-13-275]. [PMID: 24148965].
[52]
Volpato A, Baretta D, Zortéa T, et al. Larvicidal and insecticidal effect of Cinnamomum zeylanicum oil (pure and nanostructured) against mealworm (Alphitobius diaperinus) and its possible environmental effects. J Asia Pac Entomol 2016; 19: 1159-65.
[53]
Dos Santos DS, Boito JP, Santos RCV, et al. Nanostructured cinnamon oil has the potential to control Rhipicephalus microplus ticks on cattle. Exp Appl Acarol 2017; 73(1): 129-38. [http://dx.doi.org/10.1007/s10493-017-0171-5]. [PMID: 28852887].
[54]
González P, González FA, Ueno K. Ivermectin in human medicine, an overview of the current status of its clinical applications. Curr Pharm Biotechnol 2012; 13(6): 1103-9. [http://dx.doi.org/10.2174/138920112800399248]. [PMID: 22039800].
[55]
Gamboa GVU, Palma SD, Lifschitz A, et al. Ivermectin-loaded lipid nanocapsules: Toward the development of a new antiparasitic delivery system for veterinary applications. Parasitol Res 2016; 115(5): 1945-53. [http://dx.doi.org/10.1007/s00436-016-4937-1]. [PMID: 26852126].
[56]
Pinto N de OF, Rodrigues THS, Pereira R de CA. Production and physico-chemical characterization of nanocapsules of the essential oil from Lippia sidoides Cham. Ind Crops Prod 2016; 86: 279-88.
[57]
Paula HCB, Oliveira EF, Carneiro MJM, de Paula RCM. Matrix Effect on the Spray Drying Nanoencapsulation of Lippia sidoides Essential Oil in Chitosan-Native Gum Blends. Planta Med 2017; 83(5): 392-7. [PMID: 27224269].
[58]
Kazemi M. Chemical Composition and Antimicrobial Activity of Essential Oil of Matricaria recutita. Int J Food Prop 2014; 18(8): 1784-92.
[59]
Ghayempour S, Montazer M. Tragacanth nanocapsules containing Chamomile extract prepared through sono-assisted W/O/W microemulsion and UV cured on cotton fabric. Carbohydr Polym 2017; 170: 234-40. [http://dx.doi.org/10.1016/j.carbpol.2017.04.088]. [PMID: 28521992].
[60]
Hammer KA, Carson CF, Riley TV. Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob Agents Chemother 2012; 56(2): 909-15. [http://dx.doi.org/10.1128/AAC.05741-11]. [PMID: 22083482].
[61]
Flores FC, de Lima JA, Ribeiro RF, et al. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia 2013; 175(3-4): 281-6. [http://dx.doi.org/10.1007/s11046-013-9622-7]. [PMID: 23392821].
[62]
Tanbour R, Martins AM, Pitt WG, Husseini GA. Drug Delivery Systems Based on Polymeric Micelles and Ultrasound: A Review. Curr Pharm Des 2016; 22(19): 2796-807. [http://dx.doi.org/10.2174/1381612822666160217125215]. [PMID: 26898742].
[63]
Nishiyama N, Kato Y, Sugiyama Y, Kataoka K. Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm Res 2001; 18(7): 1035-41. [http://dx.doi.org/10.1023/A:1010908916184]. [PMID: 11496942].
[64]
Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles: Preparation, characterization and application in drug delivery. J Control Release 2005; 109(1-3): 169-88. [http://dx.doi.org/10.1016/j.jconrel.2005.09.034]. [PMID: 16289422].
[65]
Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci 2016; 83: 184-202. [http://dx.doi.org/10.1016/j.ejps.2015.12.031]. [PMID: 26747018].
[66]
Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv 2010; 7(2): 145-58. [http://dx.doi.org/10.1517/17425240903436479]. [PMID: 20095939].
[67]
Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 2013; 453(1): 198-214. [http://dx.doi.org/10.1016/j.ijpharm.2012.08.042]. [PMID: 22944304].
[68]
Hu X, Han R, Quan LH, Liu CY, Liao YH. Stabilization and sustained release of zeylenone, a soft cytotoxic drug, within polymeric micelles for local antitumor drug delivery. Int J Pharm 2013; 450(1-2): 331-7. [http://dx.doi.org/10.1016/j.ijpharm.2013.04.007]. [PMID: 23587966].
[69]
Wei Z, Hao J, Yuan S, et al. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: Formulation, optimization and in vitro characterization. Int J Pharm 2009; 376(1-2): 176-85. [http://dx.doi.org/10.1016/j.ijpharm.2009.04.030]. [PMID: 19409463].
[70]
Blanco E, Kessinger CW, Sumer BD, Gao J. Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med (Maywood) 2009; 234(2): 123-31. [http://dx.doi.org/10.3181/0808-MR-250]. [PMID: 19064945].
[71]
Glisoni RJ, Sosnik A. Encapsulation of the Antimicrobial and Immunomodulator Agent Nitazoxanide Within Polymeric Micelles. Nanosci Nanotechnol 2013; 13: 1-13.
[72]
Kunnumakkara AB, Bordoloi D, Padmavathi G, et al. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br J Pharmacol 2017; 174(11): 1325-48. [http://dx.doi.org/10.1111/bph.13621]. [PMID: 27638428].
[73]
Sharma RA, Gescher AJ, Steward WP. Curcumin: The story so far. Eur J Cancer 2005; 41(13): 1955-68. [http://dx.doi.org/10.1016/j.ejca.2005.05.009]. [PMID: 16081279].
[74]
Chen LC, Chen YC, Su CY, Wong WP, Sheu MT, Ho HO. Development and Characterization of Lecithin-based Self-assembling Mixed Polymeric Micellar (saMPMs) Drug Delivery Systems for Curcumin. Sci Rep 2016; 6: 37122.
[75]
Naksuriya O, Shi Y, van Nostrum CF, Anuchapreeda S, Hennink WE, Okonogi S. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth. Eur J Pharm Biopharm 2015; 94: 501-12. [http://dx.doi.org/10.1016/j.ejpb.2015.06.010]. [PMID: 26134273].
[76]
Anantaworasakul P, Okonogi S. Encapsulation of Sesbania grandiflora extract in polymeric micelles to enhance its solubility, stability, and antibacterial activity. J Microencapsul 2017; 34(1): 73-81. [http://dx.doi.org/10.1080/02652048.2017.1284277]. [PMID: 28097930].
[77]
Duarte MC, Lage LM dos R, Lage DP, et al. Treatment of murine visceral leishmaniasis using an 8-hydroxyquinoline-containing polymeric micelle system. Parasitol Int 2016; 65(6 Pt A): 728-36. [http://dx.doi.org/10.1016/j.parint.2016.07.005]. [PMID: 27425599].
[78]
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252: 28-49. [http://dx.doi.org/10.1016/j.jconrel.2017.03.008]. [PMID: 28279798].
[79]
Campana R, Casettari L, Fagioli L, Cespi M, Bonacucina G, Baffone W. Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions. Int J Food Microbiol 2017; 241: 132-40. [http://dx.doi.org/10.1016/j.ijfoodmicro.2016.10.021]. [PMID: 27770682].
[80]
Vaidya VR, Mahendrakumar CB, Bhise KS. Formulation Development and Evaluation of Microemulsion Gel System of Extract of Quercus Infectoria Oliv. for Topical Use. Int J Res Ayurveda Pharm 2016; 7: 128-32. [http://dx.doi.org/10.7897/2277-4343.07143].
[81]
Xu J, Fan QJ, Yin ZQ, et al. The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro. Vet Parasitol 2010; 169(3-4): 399-403. [http://dx.doi.org/10.1016/j.vetpar.2010.01.016]. [PMID: 20304561].
[82]
Pant M, Dubey S, Patanjali PK, Naik SN, Sharma S. Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int Biodeterior Biodegradation 2014; 91: 119-27. [http://dx.doi.org/10.1016/j.ibiod.2013.11.019].
[83]
Moustafa HZ, Mohamad TGM, Torkey H. Effect of Formulated Nanoemulsion of Eucalyptus Oil on the Cotton Bollworms Effect of Formulated Nanoemulsion of Eucalyptus Oil on the Cotton Bollworms. J Biol Chem Res 2015; 32: 478-84.
[84]
Fernandes CP, de Almeida FB, Silveira AN, et al. Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. J Nanobiotechnology 2014; 12: 22. [http://dx.doi.org/10.1186/1477-3155-12-22]. [PMID: 24886215].
[85]
Otto A, du Plessis J, Wiechers JW. Formulation effects of topical emulsions on transdermal and dermal delivery. Int J Cosmet Sci 2009; 31(1): 1-19. [http://dx.doi.org/10.1111/j.1468-2494.2008.00467.x]. [PMID: 19134123].
[86]
Patravale VB, Mandawgade SD. Novel cosmetic delivery systems: An application update. Int J Cosmet Sci 2008; 30(1): 19-33. [http://dx.doi.org/10.1111/j.1468-2494.2008.00416.x]. [PMID: 18377627].
[87]
Oshiro JA, Nasser NJ, Chiari-andréo BG, Cuberes T, Chiavacci LA. Study of triamcinolone release and mucoadhesive properties of macroporous hybrid films for oral disease treatment. Biomed Phys Eng Express 2018; 4(3): 8-10. [http://dx.doi.org/10.1088/2057-1976/aaa84b].
[88]
dos Santos Ramos MA, Calixto G, de Toledo LG, et al. Liquid crystal precursor mucoadhesive system as a strategy to improve the prophylactic action of Syngonanthus nitens (Bong.) Ruhland against infection by Candida krusei. Int J Nanomedicine 2015; 10: 7455-66. [http://dx.doi.org/10.2147/IJN.S92638]. [PMID: 26719688].
[89]
Bento P, Maria G, Calixto F, et al. Correlation Between Rheological Properties and Anti- inflammatory Efficacy of Green Tea Extract- loaded Nanostructured Systems Intended For Skin Delivey. 1- 16
[90]
Dos Santos Ramos MA, de Toledo LG, Calixto GM, et al. Syngonanthus nitens Bong. (Rhul.)-loaded nanostructured system for Vulvovaginal candidiasis treatment. Int J Mol Sci 2016; 17(8): 17. [http://dx.doi.org/10.3390/ijms17081368]. [PMID: 27556451].
[91]
Choi JH, Cho CW, Kim JH, Park SH, Chang S, Yu YB. Liquid Crystal Formulation and Optimization of Anti-Microbial Polyherbal Ointment. J Nanosci Nanotechnol 2015; 15(8): 5656-9. [http://dx.doi.org/10.1166/jnn.2015.10461]. [PMID: 26369133].
[92]
Santos ODH, Morais JM, Andrade FF, Filho PAR, Aguiar TA. Development of Vegetable Oil Emulsions with Lamellar Liquid-Crystalline. J Dispers Sci Technol 2011; 32(3): 433-8.
[93]
Morais GG, Santos ODH, Masson DS, Oliveira WP, Rocha Filho PA. Development of O/W emulsions with annato oil (Bixa orellana) containing liquid crystal. J Dispers Sci Technol 2005; 26: 591-6. [http://dx.doi.org/10.1081/DIS-200057647].
[94]
Silva SAM, Valarini MFC, Chorilli M, Friberg SE, Leonardi GR. Minimum Evaporation Model of Dermatological Delivery Systems. Lamellar Liquid Crystal Formulations Containing Brazilian Nut (Bertholletia excelsa HBK) Vegetable Oil and Guarana Glycolic Extract. J Dispers Sci Technol 2014; 35: 1191-9. [http://dx.doi.org/10.1080/01932691.2013.826586].
[95]
Kenry CTL. Nanofiber technology: Current status and emerging developments. Prog Polym Sci 2017; 70: 1-17. [http://dx.doi.org/10.1016/j.progpolymsci.2017.03.002].
[96]
Teixeira E de M, de Oliveira CR, Mattoso LHC, Corrêa AC, Paladin PD. Nanofibras de algodão obtidas sob diferentes condições de hidrólise ácida. Polímeros 2010; 20: 264-8. [http://dx.doi.org/10.1590/S0104-14282010005000046].
[97]
Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospining and their applications in nanocomposites. Compos Sci Technol 2003; 63: 2223-53. [http://dx.doi.org/10.1016/S0266-3538(03)00178-7].
[98]
Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 2010; 21: 77-95.
[99]
Suganya S, Senthil Ram T, Lakshmi BS, Giridev VR. Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: An excellent matrix for wound dressings. J Appl Polym Sci 2011; 121: 2893-9. [http://dx.doi.org/10.1002/app.33915].
[100]
Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P. Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 2013; 452(1-2): 333-43. [http://dx.doi.org/10.1016/j.ijpharm.2013.05.012]. [PMID: 23680732].
[101]
Bonan RF, Bonan PRF, Batista AUD, et al. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Mater Sci Eng C 2015; 48: 372-7. [http://dx.doi.org/10.1016/j.msec.2014.12.021]. [PMID: 25579936].
[102]
Yan F, Li L, Deng Z, et al. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J Control Release 2013; 166(3): 246-55. [http://dx.doi.org/10.1016/j.jconrel.2012.12.025]. [PMID: 23306023].
[103]
Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A New Temperature-sensitive Liposome for Use with Mild Hyperthermia : Characterization and Testing in a Human Tumor Xenograft Model. Cancer Res 2000; 60(5): 1197-201.
[104]
Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: An update review. Curr Drug Deliv 2007; 4(4): 297-305. [http://dx.doi.org/10.2174/156720107782151269]. [PMID: 17979650].
[105]
Amaral ACF, Gomes LA, Silva JRDA, et al. Liposomal formulation of turmerone-rich hexane fractions from Curcuma longa enhances their antileishmanial activity. BioMed Res Int 2014; 2014694934
[106]
Aditya NP, Chimote G, Gunalan K, Banerjee R, Patankar S, Madhusudhan B. Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Exp Parasitol 2012; 131(3): 292-9. [http://dx.doi.org/10.1016/j.exppara.2012.04.010]. [PMID: 22561991].
[107]
Barros NB, Migliaccio V, Facundo VA, et al. Liposomal-lupane system as alternative chemotherapy against cutaneous leishmaniasis: Macrophage as target cell. Exp Parasitol 2013; 135(2): 337-43. [http://dx.doi.org/10.1016/j.exppara.2013.07.022]. [PMID: 23933281].
[108]
Aisha AFA, Majid AMSA, Ismail Z. Preparation and characterization of nano liposomes of Orthosiphon stamineus ethanolic extract in soybean phospholipids. BMC Biotechnol 2014; 14: 23. [http://dx.doi.org/10.1186/1472-6750-14-23]. [PMID: 24674107].
[109]
Chorachoo J, Amnuaikit T, Voravuthikunchai SP. Liposomal encapsulated rhodomyrtone: A novel antiacne drug. Evid Based Complement Alternat Med 2013; 2013157635 [http://dx.doi.org/10.1155/2013/157635]. [PMID: 23762104].
[110]
Gortzi O, Lalas S, Chinou I, Tsaknis J. Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur Food Res Technol 2008; 226: 583-90. [http://dx.doi.org/10.1007/s00217-007-0592-1].
[111]
Krettli AU, Andrade-Neto VF, Brandão MG, Ferrari WM. The search for new antimalarial drugs from plants used to treat fever and malaria or plants ramdomly selected: A review. Mem Inst Oswaldo Cruz 2001; 96(8): 1033-42. [http://dx.doi.org/10.1590/S0074-02762001000800002]. [PMID: 11784919].
[112]
Lundstrom K. Unlocking the therapeutic potential of plant extracts. Future Med Chem 2016; 8(3): 245-8. [http://dx.doi.org/10.4155/fmc-2015-0012]. [PMID: 26900018].
[113]
Gibbons S. An overview of plant extracts as potential therapeutics. Expert Opin Ther Pat 2003; 13: 489-97. [http://dx.doi.org/10.1517/13543776.13.4.489].
[114]
Kim JH, Park SM, Ha HJ, et al. Opuntia ficus-indica attenuates neuronal injury in in vitro and in vivo models of cerebral ischemia. J Ethnopharmacol 2006; 104(1-2): 257-62. [http://dx.doi.org/10.1016/j.jep.2005.09.017]. [PMID: 16243466].
[115]
Groppo FC, Bergamaschi Cde C, Cogo K, Franz-Montan M, Motta RH, de Andrade ED. Use of phytotherapy in dentistry. Phytother Res 2008; 22(8): 993-8. [http://dx.doi.org/10.1002/ptr.2471]. [PMID: 18570269].
[116]
Jeronsia JE, Joseph LA, Vinosha PA, Mary AJ, Das SJ. Camellia sinensis leaf extract mediated synthesis of copper oxide nanostructures for potential biomedical applications. Mater Today Proc 2019; 8: 214-22. [http://dx.doi.org/10.1016/j.matpr.2019.02.103].
[117]
Mashwani ZU, Khan T, Khan MA, Nadhman A. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: Current status and future prospects. Appl Microbiol Biotechnol 2015; 99(23): 9923-34. [http://dx.doi.org/10.1007/s00253-015-6987-1]. [PMID: 26392135].
[118]
Zorzi GK, Carvalho ELS, Von Poser GL, Teixeira HF. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Rev Bras Farmacogn 2015; 25: 426-36. [http://dx.doi.org/10.1016/j.bjp.2015.07.015].
[119]
Ghosh S, Patil S, Ahire M, et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 2012; 7: 483-96. [PMID: 22334779].
[120]
Souza EPSS, Faria RX, Rocha LM. Clinical trials studies of plant extracts with anti-inflammatory activity. J Appl Pharm Sci 2016; 6(12): 224-32. [http://dx.doi.org/10.7324/JAPS.2016.601233].
[121]
Basu P, Dutta S, Begum R, et al. Clearance of cervical human papillomavirus infection by topical application of curcumin and curcumin containing polyherbal cream: A phase II randomized controlled study. Asian Pac J Cancer Prev 2013; 14(10): 5753-9. [http://dx.doi.org/10.7314/APJCP.2013.14.10.5753]. [PMID: 24289574].

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy