Review Article

Phytochemical Information and Biological Activities of Quinolizidine Alkaloids in Sophora: A Comprehensive Review

Author(s): Hanqing Wang*, Changbo Xia, Li Chen, Jianjun Zhao, Weiwei Tao, Xia Zhang, Jianhuan Wang, Xiaojuan Gao, Jingjiao Yong and Jin-ao Duan

Volume 20, Issue 15, 2019

Page: [1572 - 1586] Pages: 15

DOI: 10.2174/1389450120666190618125816

Price: $65

Abstract

Quinolizidine alkaloids, a main form of alkaloids found in the genus Sophora, have been shown to have many pharmacological effects. This review aims to summarize the photochemical reports and biological activities of quinolizidine alkaloids in Sophora. The collected information suggested that a total of 99 quinolizidine alkaloids were isolated and detected from different parts of Sophora plants, represented by lupinine-type, cytisine-type, sparteine-type, and matrine-type. However, quality control needs to be monitored because it could provide basic information for the reasonable and efficient use of quinolizidine alkaloids as medicines and raw materials. The nonmedicinal parts may be promising to be used as a source of quinolizidine alkaloid raw materials and to reduce the waste of resources and environmental pollution. In addition, the diversity of chemical compounds based on the alkaloid scaffold to make a biological compound library needs to be extended, which may reduce toxicity and find new bioactivities of quinolizidine alkaloids. The bioactivities most reported are in the fields of antitumor activity along with the effects on the cardiovascular system. However, those studies rely on theoretical research, and novel drugs based on quinolizidine alkaloids are expected.

Keywords: Quinolizidine alkaloids, Sophora, biological activities, phytochemicals, pharmacological, resources.

Graphical Abstract
[1]
Krishna PM. KNV RSS, Banji D. A review on phytochemical, ethnomedical and pharmacological studies on genus Sophora, Fabaceae. Rev Bras Farmacogn 2012; 22(5): 1145-54.
[http://dx.doi.org/10.1590/S0102-695X2012005000043]
[2]
Wang XK, Li JS, Wei LX, Yan YN. Summary of the study on chemical compounds in genus Sophora. Foreign Med Sci 1996; 18: 7-11.
[3]
Ohyama M, Tanaka T, Yokoyama J, Iinuma M. Occurrence of prenylated flavonoids and oligostilbenes and its significance for chemotaxonomy of genus Sophora. Biochem Syst Ecol 1996; 23: 669-77.
[http://dx.doi.org/10.1016/0305-1978(95)00056-9]
[4]
Wu Y, Guo R, Cao N, Sun X, Sui Z, Guo Q. A systematical rheological study of polysaccharide from Sophora alopecuroides L. seeds. Carbohydr Polym 2018; 180: 63-71.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.007] [PMID: 29103522]
[5]
Chen Y, Wu Y, Xian L, et al. Effects of bush sophora root polysaccharide and its sulfate on immuno-enhancing of the therapeutic DVH. Int J Biol Macromol 2015; 80: 217-24.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.029] [PMID: 26118485]
[6]
Wu L, Xiong W, Hu W, Li XH, Fu JP, Si CL. Chemical constituents of xylem of Sophora japonica roots. Chem Nat Compd 2018; 54(3): 610-2.
[http://dx.doi.org/10.1007/s10600-018-2425-9]
[7]
Weng Z, Zeng F, Zhu Z, et al. Comparative analysis of sixteen flavonoids from different parts of Sophora flavescens Ait. by ultra high-performance liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2018; 156: 214-20.
[http://dx.doi.org/10.1016/j.jpba.2018.04.046] [PMID: 29727783]
[8]
Weng Z, Guo S, Qian D, Zhu Z, Zhang S, Li A. Sophora flavescens seed as a promising high potential by-product: phytochemical characterization and bioactivity evaluation. Ind Crops Prod 2017; 109: 19-26.
[http://dx.doi.org/10.1016/j.indcrop.2017.08.005]
[9]
Lee ST, Cook D, Molyneux RJ. Identification of the quinolizidine alkaloids in Sophora leachiana. Biochem Syst Ecol 2014; 54: 1-4.
[http://dx.doi.org/10.1016/j.bse.2013.12.020]
[10]
Wang L, You Y, Wang S, et al. Synthesis, characterization and in vitro anti-tumor activities of matrine derivatives. Bioorg Med Chem Lett 2012; 22(12): 4100-2.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.069] [PMID: 22578453]
[11]
Liu G, Dong J, Wang H, Hashi Y, Chen S. Characterization of alkaloids in Sophora flavescens Ait. by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 2011; 54(5): 1065-72.
[http://dx.doi.org/10.1016/j.jpba.2010.12.024] [PMID: 21227622]
[12]
Lee ST, Cook D, Molyneux RJ, Marcolongo PC, Stonecipher CA, Gardner DR. The alkaloid profiles of Sophora nuttalliana and Sophora stenophylla. Biochem Syst Ecol 2013; 48: 58-64.
[http://dx.doi.org/10.1016/j.bse.2012.11.022]
[13]
Atta- ur-Rahman, Choudhary MI, Parvez K, et al. Quinolizidine alkaloids from Sophora alopecuroides. J Nat Prod 2000; 63: 190-2.
[http://dx.doi.org/10.1021/np990351v]
[14]
Matsuda K, Yamada K, Kimura M, Hamada M. Nematicidal activity of matrine and its derivatives against pine wood nematodes. J Agric Food Chem 1991; 39: 189-91.
[http://dx.doi.org/10.1021/jf00001a038]
[15]
Sun PH, Wen Yao W, Yuan CS, Li YJ, Zheng QS, Wang ZH. Study on the alkaloids from the stalks of Sophora alopecuroides. Shihezi Daxue Xuebao Ziran Kexue Ban 2014; 32: 472-5.
[16]
Yu Y, Ding P, Chen D. Determination of quinolizidine alkaloids in Sophora medicinal plants by capillary electrophoresis. Anal Chim Acta 2004; 523: 15-20.
[http://dx.doi.org/10.1016/j.aca.2004.06.070]
[17]
Yang N, Han F, Cui H, et al. Matrine suppresses proliferation and induces apoptosis in human cholangiocarcinoma cells through suppression of JAK2/STAT3 signaling. Pharmacol Rep 2015; 67(2): 388-93.
[http://dx.doi.org/10.1016/j.pharep.2014.10.016] [PMID: 25712669]
[18]
Zhang LP, Jiang JK, Tam JW, et al. Effects of Matrine on proliferation and differentiation in K-562 cells. Leuk Res 2001; 25(9): 793-800.
[http://dx.doi.org/10.1016/S0145-2126(00)00145-4] [PMID: 11489473]
[19]
Xu YQ, Jin SJ, Liu N, et al. Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway. Biochem Biophys Res Commun 2014; 451(4): 568-73.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.025] [PMID: 25128276]
[20]
Gao HY, Li GY, Wang JH. A new alkaloid from the seeds of Sophora alopecuroides L. Helv Chim Acta 2012; 95: 1108-13.
[http://dx.doi.org/10.1002/hlca.201100454]
[21]
Li YF, Lacroix C, Freeling J. Cytisine induces autonomic cardiovascular responses via activations of different nicotinic receptors. Auton Neurosci 2010; 154(1-2): 14-9.
[http://dx.doi.org/10.1016/j.autneu.2009.09.023] [PMID: 19887306]
[22]
Yifeng M, Bin W, Weiqiao Z, Yongming Q, Bing L, Xiaojie L. Neuroprotective effect of sophocarpine against transient focal cerebral ischemia via down-regulation of the acid-sensing ion channel 1 in rats. Brain Res 2011; 1382: 245-51.
[http://dx.doi.org/10.1016/j.brainres.2011.01.004] [PMID: 21232529]
[23]
Kan QC, Zhang S, Xu YM, Zhang GX, Zhu L. Matrine regulates glutamate-related excitotoxic factors in experimental autoimmune encephalomyelitis. Neurosci Lett 2014; 560: 92-7.
[http://dx.doi.org/10.1016/j.neulet.2013.12.031] [PMID: 24368216]
[24]
Xu GL, Yao L, Rao SY, Gong ZN, Zhang SQ, Yu SQ. Attenuation of acute lung injury in mice by oxymatrine is associated with inhibition of phosphorylated p38 mitogen-activated protein kinase. J Ethnopharmacol 2005; 98(1-2): 177-83.
[http://dx.doi.org/10.1016/j.jep.2005.01.026] [PMID: 15763380]
[25]
Murakoshi I, Kubo H, Ikram M, et al. (+)-11-Oxocytisine, a lupin alkaloid from leaves of Sophora secundiflora. Phytochemistry 1986; 25: 2000-2.
[http://dx.doi.org/10.1016/S0031-9422(00)81198-X]
[26]
Xiao P, Kubo H, Komiya H, Higashiyama K. Lupin alkaloids from seeds of Sophora viciifolia. Phytochemistry 1999; 50: 189-93.
[http://dx.doi.org/10.1016/S0031-9422(98)00486-5]
[27]
Kadooka MM, Chang MDY, Fukami H, Scheuer PJ. Mamanine and pohakuline, two unprecedented quinolizidine alkaloid from Sophora chrysophylla. Tetrahedron 1976; 32: 919-24.
[http://dx.doi.org/10.1016/0040-4020(76)85049-1]
[28]
Murakoshi I, Kidoguchi E, Haginiwa J, Ohmiya S, Higashiyama IK, Otomasu H. Isokuraramine and (-)-7,11-dehydromatrine, lupin alkaloids from flowers of Sophora flavescens. Phytochemistry 1982; 21: 2379-84.
[http://dx.doi.org/10.1016/0031-9422(82)85210-2]
[29]
Keller WJ, Hatfield M. 11-Allylcytisine and other minor alkaloid from unripe Sophora secundiflora fruits. Phytochemistry 1979; 18: 2068-9.
[http://dx.doi.org/10.1016/S0031-9422(00)82754-5]
[30]
Murakoshi I, Ito M, Haginiwa J, Ohmiya S, Otomasu H, Hirano RT. Lupin alkaloids from Sophora chrysophylla. Phytochemistry 1984; 23: 887-91.
[http://dx.doi.org/10.1016/S0031-9422(00)85050-5]
[31]
Asres K, Gibbons WA, Phillipson JD, Mascagni P. The alkaloids of Sophora velutina. J Nat Prod 1986; 49: 117-21.
[http://dx.doi.org/10.1021/np50043a014]
[32]
Murakoshi I, Kidoguchi E, Haginiwa J, Ohmiya S, Higashiyama K, Otomasu H. (+)-Kuraramine, a possible metabolite of (-)-N-methylcytisine inflowers of Sophora flavescens. Phytochemistry 1981; 20: 1407-9.
[http://dx.doi.org/10.1016/0031-9422(81)80049-0]
[33]
Takamatsu S, Saito K, Ohmiya S, Ruangrungsi N, Murakoshi I. Lupin alkaloids from Sophora exigua. Phytochemistry 1991; 30: 3793-5.
[http://dx.doi.org/10.1016/0031-9422(91)80112-E]
[34]
Atta- ur-Rahman, Pervin A, Perveen- S, Nasir- H, Hasan N. Two lupin alkaloids from Sophora griffithii. Phytochemistry 1991; 30: 1001-3.
[http://dx.doi.org/10.1016/0031-9422(91)85295-B]
[35]
Ohmiya S, Higashiyama K, Otomatu H, Haginiwa J, Murakoshi I. Two cage-type lupin alkaloid from Sophora franchetiana. Phytochemistry 1981; 20: 1997-2001.
[http://dx.doi.org/10.1016/0031-9422(81)84052-6]
[36]
Ohmiya S, Higashiyama K, Otomasu H, Haginiwa J, Murakoshi I. The structur of tsukushinamine, a new type of lupin alkaloid in Sophora franchetiana. Chem Pharm Bull (Tokyo) 1979; 27: 1055-7.
[http://dx.doi.org/10.1248/cpb.27.1055]
[37]
Li XN, Lu ZQ, Qin S, et al. Tonkinensines A and B, two novel alkaloids from Sophora tonkinensis. Tetrahedron Lett 2008; 49: 3797-801.
[http://dx.doi.org/10.1016/j.tetlet.2008.04.003]
[38]
Pan QM, Zhang GJ, Huang RZ, Pan YM, Wang HS, Liang D. Cytisine-type alkaloids and flavonoids from the rhizomes of Sophora tonkinensis. J Asian Nat Prod Res 2016; 18(5): 429-35.
[http://dx.doi.org/10.1080/10286020.2015.1131680] [PMID: 26757778]
[39]
Ding PL, Liao ZX, Huang H, Zhou P, Chen DF. (+)-12α-Hydroxysophocarpine, a new quinolizidine alkaloid and related anti-HBV alkaloids from Sophora flavescens. Bioorg Med Chem Lett 2006; 16(5): 1231-5.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.073] [PMID: 16364643]
[40]
Atta- ur-Rahman, Pervin A, Choudhary MI. Sophazrina-A novel quinolizidine alkaloid from Sophora griffithii. J Nat Prod 1991; 54: 929-35.
[http://dx.doi.org/10.1021/np50076a001]
[41]
Zhang L, Zheng Y, Deng H, Liang L, Peng J. Aloperine induces G2/M phase cell cycle arrest and apoptosis in HCT116 human colon cancer cells. Int J Mol Med 2014; 33(6): 1613-20.
[http://dx.doi.org/10.3892/ijmm.2014.1718] [PMID: 24682388]
[42]
Chuang CY, Chen CF, Lin MT, Teh GW, Yeh PH, Han PW. Pharmacological studies on the hypothermic constituents of the root of Sophora subprostrata (Leguminosae). P Natl A Sci B 1983; 7: 356-61.
[43]
Guo Z, Song C, Zhang L, Tian S. Extraction matrine from Radix Sopheorae tonkinensis by non-supported liquid membrane extraction technology. Arab J Chem 2016; 9: 144-9.
[http://dx.doi.org/10.1016/j.arabjc.2011.02.028]
[44]
Wang H, Guo S, Qian D, Qian Y, Duan JA. Comparative analysis of quinolizidine alkaloids from different parts of Sophora alopecuroides seeds by UPLC-MS/MS. J Pharm Biomed Anal 2012; 67-68: 16-21.
[http://dx.doi.org/10.1016/j.jpba.2012.04.024] [PMID: 22613581]
[45]
Liu XJ, Cao MA, Li WH, Shen CS, Yan SQ, Yuan CS. Alkaloids from sophora flavescens aition. Fitoterapia 2010; 81(6): 524-7.
[http://dx.doi.org/10.1016/j.fitote.2010.01.008] [PMID: 20079811]
[46]
Ding PL, Huang H, Zhou P, Chen DF. Quinolizidine alkaloids with anti-HBV activity from Sophora tonkinensis. Planta Med 2006; 72(9): 854-6.
[http://dx.doi.org/10.1055/s-2006-946639] [PMID: 16783704]
[47]
Ueno A, Morinaga K, Fukushima S, Iitaka Y, Koiso Y, Okuda S. Studies on lupine alkaloids VI isolation and structure of (+)-isomatrine. Chem Pharm Bull (Tokyo) 1975; 23: 2560-6.
[http://dx.doi.org/10.1248/cpb.23.2560]
[48]
Kim JS, Han SJ, Byun JH, et al. Minor constituents from the roots of Sophora flavescens. Nat Prod Sci 2001; 7: 5-8.
[49]
Negrete R, Cassels BK, Eckhardt G. (+)-9α-Hydroxymatrine from Sophora macrocarpa. Phytochemistry 1983; 22: 2069-72.
[http://dx.doi.org/10.1016/0031-9422(83)80047-8]
[50]
Gao H, Li G, Wang J. Advance in study on alkaloids in seeds of Sophora alopecuroides. J Nongken Med 2010; 32: 340-3.
[51]
Ueno A, Morinaga K, Fukushima S, Okuda S. Studies on the lupin alkaloids VII isolation and structure of (-)-△7-Dehydrosophoramine. Chem Pharm Bull (Tokyo) 1978; 26: 1832-6.
[http://dx.doi.org/10.1248/cpb.26.1832]
[52]
Saito K, Arai N, Sekine T, et al. (-)-5α-Hydroxysophocarpine, a New Lupin Alkaloid from the Seeds of Sophora flavescens var. angustifolia1. Planta Med 1990; 56(5): 487-8.
[http://dx.doi.org/10.1055/s-2006-961018] [PMID: 17221455]
[53]
Pan QM, Li YH, Hua J, Huang FP, Wang HS, Liang D. Antiviral matrine-type alkaloids from the rhizomes of Sophora tonkinensis. J Nat Prod 2015; 78(7): 1683-8.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00325] [PMID: 26132528]
[54]
Wang L, Wu XD, He J, Li CT, Peng LY, Song LD, et al. A new quinolizidine alkaloid from Sophora flavescens. Chem Nat Compd 2014; 50: 876-9.
[http://dx.doi.org/10.1007/s10600-014-1104-8]
[55]
Khan MA, Burrows GE, Holt EM. (5α,6α,7α,11β)-Δ13,14-Sophocarpine monohydrate. Acta Crystallogr 1992; 2051-3.
[56]
Hoeneisen M, Silva M, Wink M, Crawford DJ, Stuessy T. Alkaloids of Sophora of juan fernandez islands and related taxa. Bol Soc Chil Quím 1993; 38: 167-71.
[57]
Atta -ur-Rahman, Pervin A, Feroz M, Perveen S, Choudhary MI. Isolation and structural elucidation of griffithine by 1D and 2D NMR techniques. Magn Reson Chem 1991; 29: 1077-83.
[http://dx.doi.org/10.1002/mrc.1260291102]
[58]
Jiang H, Hou C, Zhang S, et al. Matrine upregulates the cell cycle protein E2F-1 and triggers apoptosis via the mitochondrial pathway in K562 cells. Eur J Pharmacol 2007; 559(2-3): 98-108.
[http://dx.doi.org/10.1016/j.ejphar.2006.12.017] [PMID: 17291488]
[59]
Xie M, Yi X, Wang R, et al. 14-Thienyl methylene matrine (YYJ18), the derivative from matrine, induces apoptosis of human nasopharyngeal carcinoma cells by targeting MAPK and PI3K/Akt pathways in vitro. Cell Physiol Biochem 2014; 33(5): 1475-83.
[http://dx.doi.org/10.1159/000358712] [PMID: 24854624]
[60]
Zhang L, Wang T, Wen X, et al. Effect of matrine on HeLa cell adhesion and migration. Eur J Pharmacol 2007; 563(1-3): 69-76.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.073] [PMID: 17343841]
[61]
Dai ZJ, Gao J, Ji ZZ, et al. Matrine induces apoptosis in gastric carcinoma cells via alteration of Fas/FasL and activation of caspase-3. J Ethnopharmacol 2009; 123(1): 91-6.
[http://dx.doi.org/10.1016/j.jep.2009.02.022] [PMID: 19429345]
[62]
Luo C, Zhu Y, Jiang T, et al. Matrine induced gastric cancer MKN45 cells apoptosis via increasing pro-apoptotic molecules of Bcl-2 family. Toxicology 2007; 229(3): 245-52.
[http://dx.doi.org/10.1016/j.tox.2006.10.020] [PMID: 17134813]
[63]
He LQ, Liu J, Yin DK, Zhang YH, Wang XS. Synthesis and biological evaluation of nitric oxide-releasing matrine derivatives as anticancer agents. Chin Chem Lett 2010; 21: 381-4.
[http://dx.doi.org/10.1016/j.cclet.2009.11.033]
[64]
Wang H, Li Y, Dun L, et al. Antinociceptive effects of oxymatrine from Sophora flavescens, through regulation of NR2B-containing NMDA receptor-ERK/CREB signaling in a mice model of neuropathic pain. Phytomedicine 2013; 20(11): 1039-45.
[http://dx.doi.org/10.1016/j.phymed.2013.04.012] [PMID: 23746756]
[65]
Lin Z, Huang CF, Liu XS, Jiang J. In vitro anti-tumour activities of quinolizidine alkaloids derived from Sophora flavescens Ait. Basic Clin Pharmacol Toxicol 2011; 108(5): 304-9.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00653.x] [PMID: 21159130]
[66]
Merghoub N, Benbacer L, Btaouri HE, Benhassou HA, Terryn C. MAttaleb, Madoulet C, Amzazi S. In vitro antiproliferative effect and induction of apoptosis by Retama monosperma L extract in human cervical cancer cells. Cell Mol Biol 2011; 57: 1581-91.
[67]
Li LQ, Li XL, Wang L, et al. Matrine inhibits breast cancer growth via miR-21/PTEN/Akt pathway in MCF-7 cells. Cell Physiol Biochem 2012; 30(3): 631-41.
[http://dx.doi.org/10.1159/000341444] [PMID: 22832383]
[68]
Wang Y, Han C, Fang X, et al. Effect of Kushen (Radix Sophorae flavescentis) extract on laryngeal neoplasm Hep2 cells. J Tradit Chin Med 2013; 33(2): 218-22.
[http://dx.doi.org/10.1016/S0254-6272(13)60128-4] [PMID: 23789220]
[69]
Zhang Y, Wang S, Li Y, Xiao Z, Hu Z, Zhang J. Sophocarpine and matrine inhibit the production of TNF-α and IL-6 in murine macrophages and prevent cachexia-related symptoms induced by colon26 adenocarcinoma in mice. Int Immunopharmacol 2008; 8(13-14): 1767-72.
[http://dx.doi.org/10.1016/j.intimp.2008.08.008] [PMID: 18775799]
[70]
Liang L, Wang XY, Zhang XH, et al. Sophoridine exerts an anti-colorectal carcinoma effect through apoptosis induction in vitro and in vivo. Life Sci 2012; 91(25-26): 1295-303.
[http://dx.doi.org/10.1016/j.lfs.2012.09.021] [PMID: 23069582]
[71]
Li JG, Yang XY, Huang W. Total alkaloids of Sophora alopecuroides inhibit growth and induce apoptosis in human cervical tumor hela cells in vitro. Pharmacogn Mag 2016; 12(Suppl. 2): S253-6.
[http://dx.doi.org/10.4103/0973-1296.182157] [PMID: 27279716]
[72]
Ma SC, Du J, But PPH, et al. Antiviral Chinese medicinal herbs against respiratory syncytial virus. J Ethnopharmacol 2002; 79(2): 205-11.
[http://dx.doi.org/10.1016/S0378-8741(01)00389-0] [PMID: 11801383]
[73]
Sun N, Wang ZW, Wu CH, et al. Antiviral activity and underlying molecular mechanisms of Matrine against porcine reproductive and respiratory syndrome virus in vitro. Res Vet Sci 2014; 96(2): 323-7.
[http://dx.doi.org/10.1016/j.rvsc.2013.12.009] [PMID: 24411654]
[74]
Wang YP, Zhao W, Xue R, et al. Oxymatrine inhibits hepatitis B infection with an advantage of overcoming drug-resistance. Antiviral Res 2011; 89(3): 227-31.
[http://dx.doi.org/10.1016/j.antiviral.2011.01.005] [PMID: 21277330]
[75]
Flower A, Lewith G. A prospective case series exploring the role of Chinese herbal medicine in the treatment of recurrent urinary tract infections. Eur J Integr Med 2012; 4: 421-8.
[http://dx.doi.org/10.1016/j.eujim.2012.05.004]
[76]
Hulan U, Bazarragchaa T, Nishimura M, Shimono T. In vitro antibacterial effects of the crude extracts of Sophora alopecuroides against oral microorganisms. Pediatr Dent J 2004; 14: 29-35.
[http://dx.doi.org/10.1016/S0917-2394(04)70005-1]
[77]
Kamei J, Xiao P, Ohsawa M, et al. Antinociceptive effects of (+)-matrine in mice. Eur J Pharmacol 1997; 337(2-3): 223-6.
[http://dx.doi.org/10.1016/S0014-2999(97)01273-9] [PMID: 9430418]
[78]
Yin LL, Zhu XZ. The involvement of central cholinergic system in (+)-matrine-induced antinociception in mice. Pharmacol Biochem Behav 2005; 80(3): 419-25.
[http://dx.doi.org/10.1016/j.pbb.2004.12.008] [PMID: 15740784]
[79]
Fu Q, Wang J, Ma Z, Ma S. Anti-asthmatic effects of matrine in a mouse model of allergic asthma. Fitoterapia 2014; 94: 183-9.
[http://dx.doi.org/10.1016/j.fitote.2013.12.014] [PMID: 24368304]
[80]
Zhang B, Liu ZY, Li YY, et al. Antiinflammatory effects of matrine in LPS-induced acute lung injury in mice. Eur J Pharm Sci 2011; 44(5): 573-9.
[http://dx.doi.org/10.1016/j.ejps.2011.09.020] [PMID: 22019524]
[81]
Gao Y, Jiang W, Dong C, et al. Anti-inflammatory effects of sophocarpine in LPS-induced RAW 264.7 cells via NF-κB and MAPKs signaling pathways. Toxicol In Vitro 2012; 26(1): 1-6.
[http://dx.doi.org/10.1016/j.tiv.2011.09.019] [PMID: 21978812]
[82]
Gao Y, Li G, Li C, et al. Anti-nociceptive and anti-inflammatory activity of sophocarpine. J Ethnopharmacol 2009; 125(2): 324-9.
[http://dx.doi.org/10.1016/j.jep.2009.06.036] [PMID: 19607897]
[83]
Yuan XY, Liu W, Zhang P, Wang RY, Guo JY. Effects and mechanisms of aloperine on 2, 4-dinitrofluorobenzene-induced allergic contact dermatitis in BALB/c mice. Eur J Pharmacol 2010; 629(1-3): 147-52.
[http://dx.doi.org/10.1016/j.ejphar.2009.12.007] [PMID: 20006963]
[84]
Suo Z, Liu Y, Ferreri M, et al. Impact of matrine on inflammation related factors in rat intestinal microvascular endothelial cells. J Ethnopharmacol 2009; 125(3): 404-9.
[http://dx.doi.org/10.1016/j.jep.2009.07.023] [PMID: 19635549]
[85]
Li S, Zhao WC, Hong D. Inhibition of aloperine on dextran sulphate sodium-induced chronic colitis C57Bl/6 mice. Chin Herb Med 2012; 4(3): 218-23.
[86]
Zhao WC, Song LJ, Deng HZ. Effect of sophoridine on dextran sulfate sodium-induced colitis in C57BL/6 mice. J Asian Nat Prod Res 2010; 12(11): 925-33.
[http://dx.doi.org/10.1080/10286020.2010.505188] [PMID: 21061213]
[87]
Cheng H, Xia B, Zhang L, et al. Matrine improves 2,4,6-trinitrobenzene sulfonic acid-induced colitis in mice. Pharmacol Res 2006; 53(3): 202-8.
[http://dx.doi.org/10.1016/j.phrs.2005.11.001] [PMID: 16332442]
[88]
Hu H, Wang S, Zhang C, et al. Synthesis and in vitro inhibitory activity of matrine derivatives towards pro-inflammatory cytokines. Bioorg Med Chem Lett 2010; 20(24): 7537-9.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.075] [PMID: 21036613]
[89]
Pu J, Fang FF, Li XQ, et al. Matrine exerts a strong anti-arthritic effect on type II collagen-induced arthritis in rats by inhibiting inflammatory responses. Int J Mol Sci 2016; 17(9): 1410.
[http://dx.doi.org/10.3390/ijms17091410] [PMID: 27571073]
[90]
Park KW, Lee JE, Park KM. Diets containing Sophora japonica L. prevent weight gain in high-fat diet-induced obese mice. Nutr Res 2009; 29(11): 819-24.
[http://dx.doi.org/10.1016/j.nutres.2009.09.014] [PMID: 19932871]
[91]
Xing Y, Yan F, Liu Y, Liu Y, Zhao Y. Matrine inhibits 3T3-L1 preadipocyte differentiation associated with suppression of ERK1/2 phosphorylation. Biochem Biophys Res Commun 2010; 396(3): 691-5.
[http://dx.doi.org/10.1016/j.bbrc.2010.04.163] [PMID: 20451501]
[92]
Guo C, Zhang C, Li L, Wang Z, Xiao W, Yang Z. Hypoglycemic and hypolipidemic effects of oxymatrine in high-fat diet and streptozotocin-induced diabetic rats. Phytomedicine 2014; 21(6): 807-14.
[http://dx.doi.org/10.1016/j.phymed.2014.02.007] [PMID: 24680614]
[93]
Zhou Y, Wu Y, Deng L, et al. The alkaloid matrine of the root of Sophora flavescens prevents arrhythmogenic effect of ouabain. Phytomedicine 2014; 21(7): 931-5.
[http://dx.doi.org/10.1016/j.phymed.2014.02.008] [PMID: 24680622]
[94]
Cai B, Gong D, Chen N, et al. The negative inotropic effects of homocysteine were prevented by matrine via the regulating intracellular calcium level. Int J Cardiol 2011; 150(1): 113-5.
[http://dx.doi.org/10.1016/j.ijcard.2011.04.031] [PMID: 21596451]
[95]
Huang XY, Chen CX. Effect of oxymatrine, the active component from Radix Sophorae flavescentis (Kushen), on ventricular remodeling in spontaneously hypertensive rats. Phytomedicine 2013; 20(3-4): 202-12.
[http://dx.doi.org/10.1016/j.phymed.2012.10.012] [PMID: 23211799]
[96]
Zhang B, Niu W, Xu D, et al. Oxymatrine prevents hypoxia- and monocrotaline-induced pulmonary hypertension in rats. Free Radic Biol Med 2014; 69: 198-207.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.013] [PMID: 24440469]
[97]
Li G, Liu S, Yang Y, et al. Effects of oxymatrine on sympathoexcitatory reflex induced by myocardial ischemic signaling mediated by P2X3 receptors in rat SCG and DRG. Brain Res Bull 2011; 84(6): 419-24.
[http://dx.doi.org/10.1016/j.brainresbull.2011.01.011] [PMID: 21272621]
[98]
Zhang W, Zhang J, Liu YK, et al. Cardioprotective effects of oxymatrine on isoproterenol-induced heart failure via regulation of DDAH/ADMA metabolism pathway in rats. Eur J Pharmacol 2014; 745: 29-35.
[http://dx.doi.org/10.1016/j.ejphar.2014.10.001] [PMID: 25310909]
[99]
Zhang HF, Shi LJ, Song GY, Cai ZG, Wang C, An RJ. Protective effects of matrine against progression of high-fructose diet-induced steatohepatitis by enhancing antioxidant and anti-inflammatory defences involving Nrf2 translocation. Food Chem Toxicol 2013; 55: 70-7.
[http://dx.doi.org/10.1016/j.fct.2012.12.043] [PMID: 23295629]
[100]
Zhao XL, Gu DF, Qi ZP, et al. Comparative effects of sophocarpine and sophoridine on hERG K+ channel. Eur J Pharmacol 2009; 607(1-3): 15-22.
[http://dx.doi.org/10.1016/j.ejphar.2009.02.013] [PMID: 19224706]
[101]
Jong-Min H, Jin YY, Hoi Young KIM, Hun Parw K. Woo Song Lee, Jeong TS. Lavandulyl flavonoids from Sophora flavescens suppress lipopolysaccharide-induced activation of nuclear factor-kB and mitogen-activated protein kinases in RAW2647 Cells. Biol Pharm Bull 2010; 33: 1019-23.
[http://dx.doi.org/10.1248/bpb.33.1019] [PMID: 20522970]
[102]
Lee SW, Lee HS, Nam JY, et al. Kurarinone isolated from Sophora flavescens Ait inhibited MCP-1-induced chemotaxis. J Ethnopharmacol 2005; 97(3): 515-9.
[http://dx.doi.org/10.1016/j.jep.2004.12.006] [PMID: 15740889]
[103]
Li YF, Lacroix C, Freeling J. Cytisine induces autonomic cardiovascular responses via activations of different nicotinic receptors. Auton Neurosci 2010; 154(1-2): 14-9.
[http://dx.doi.org/10.1016/j.autneu.2009.09.023] [PMID: 19887306]
[104]
Li YJ, Yang Q, Zhang K, et al. Cytisine confers neuronal protection against excitotoxic injury by down-regulating GluN2B-containing NMDA receptors. Neurotoxicology 2013; 34: 219-25.
[http://dx.doi.org/10.1016/j.neuro.2012.09.009] [PMID: 23022271]
[105]
Tutka P, Mróz T, Bednarski J, et al. Cytisine inhibits the anticonvulsant activity of phenytoin and lamotrigine in mice. Pharmacol Rep 2013; 65(1): 195-200.
[http://dx.doi.org/10.1016/S1734-1140(13)70978-2] [PMID: 23563038]
[106]
Sajja RK, Rahman S. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice. Alcohol 2013; 47(4): 299-307.
[http://dx.doi.org/10.1016/j.alcohol.2013.02.003] [PMID: 23601929]
[107]
Ferger B, Spratt C, Teismann P, Seitz G, Kuschinsky K. Effects of cytisine on hydroxyl radicals in vitro and MPTP-induced dopamine depletion in vivo. Eur J Pharmacol 1998; 360(2-3): 155-63.
[http://dx.doi.org/10.1016/S0014-2999(98)00696-7] [PMID: 9851582]
[108]
Kan QC, Lv P, Zhang XJ, Xu YM, Zhang GX, Zhu L. Matrine protects neuro-axon from CNS inflammation-induced injury. Exp Mol Pathol 2015; 98(1): 124-30.
[http://dx.doi.org/10.1016/j.yexmp.2015.01.001] [PMID: 25576296]
[109]
Liu Z, He D, Zhang X, et al. Neuroprotective effect of early and short-time applying sophoridine in pMCAO rat brain: down-regulated TRAF6 and up-regulated p-ERK1/2 expression, ameliorated brain infaction and edema. Brain Res Bull 2012; 88(4): 379-84.
[http://dx.doi.org/10.1016/j.brainresbull.2012.04.003] [PMID: 22521762]
[110]
Zhang K, Li YJ, Yang Q, et al. Neuroprotective effects of oxymatrine against excitotoxicity partially through down-regulation of NR2B-containing NMDA receptors. Phytomedicine 2013; 20(3-4): 343-50.
[http://dx.doi.org/10.1016/j.phymed.2012.10.018] [PMID: 23219339]
[111]
Kianbakht S, Hashem Dabaghian F. Sophora alopecuroides L. var. alopecuroides alleviates morphine withdrawal syndrome in mice: involvement of alkaloid fraction and matrine. Iran J Basic Med Sci 2016; 19(10): 1090-5.
[PMID: 27872705]
[112]
Boido CC, Tasso B, Boido V, Sparatore F. Cytisine derivatives as ligands for neuronal nicotine receptors and with various pharmacological activities. Farmaco 2003; 58(3): 265-77.
[http://dx.doi.org/10.1016/S0014-827X(03)00017-X] [PMID: 12620422]
[113]
Carbonnelle E, Sparatore F, Canu-Boido C, et al. Nitrogen substitution modifies the activity of cytisine on neuronal nicotinic receptor subtypes. Eur J Pharmacol 2003; 471(2): 85-96.
[http://dx.doi.org/10.1016/S0014-2999(03)01817-X] [PMID: 12818695]
[114]
Lu ZG, Li MH, Wang JS, Wei DD, Liu QW, Kong LY. Developmental toxicity and neurotoxicity of two matrine-type alkaloids, matrine and sophocarpine, in zebrafish (Danio rerio) embryos/larvae. Reprod Toxicol 2014; 47: 33-41.
[http://dx.doi.org/10.1016/j.reprotox.2014.05.015] [PMID: 24911943]
[115]
Wu YR, Gong QF, Fang H, Liang WW, Chen M, He RJ. Effect of Sophora flavescens on non-specific immune response of tilapia (GIFT Oreochromis niloticus) and disease resistance against Streptococcus agalactiae. Fish Shellfish Immunol 2013; 34(1): 220-7.
[http://dx.doi.org/10.1016/j.fsi.2012.10.020] [PMID: 23092731]
[116]
Huang WC, Chan CC, Wu SJ, et al. Matrine attenuates allergic airway inflammation and eosinophil infiltration by suppressing eotaxin and Th2 cytokine production in asthmatic mice. J Ethnopharmacol 2014; 151(1): 470-7.
[http://dx.doi.org/10.1016/j.jep.2013.10.065] [PMID: 24231072]
[117]
Song CY, Zeng X, Chen SW, et al. Sophocarpine alleviates non-alcoholic steatohepatitis in rats. J Gastroenterol Hepatol 2011; 26(4): 765-74.
[http://dx.doi.org/10.1111/j.1440-1746.2010.06561.x] [PMID: 21054517]
[118]
Song CY, Shi J, Zeng X, Zhang Y, Xie WF, Chen YX. Sophocarpine alleviates hepatocyte steatosis through activating AMPK signaling pathway. Toxicol In Vitro 2013; 27(3): 1065-71.
[http://dx.doi.org/10.1016/j.tiv.2013.01.020] [PMID: 23395669]
[119]
Zhang Y, Dong Z, Jin L, et al. Arsenic trioxide-induced hERG K(+) channel deficiency can be rescued by matrine and oxymatrine through up-regulating transcription factor Sp1 expression. Biochem Pharmacol 2013; 85(1): 59-68.
[http://dx.doi.org/10.1016/j.bcp.2012.09.002] [PMID: 23103450]
[120]
Shi LJ, Shi L, Song GY, et al. Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparα). Eur J Pharmacol 2013; 714(1-3): 89-95.
[http://dx.doi.org/10.1016/j.ejphar.2013.06.013] [PMID: 23791610]
[121]
Pei X, Wang W, Miao N, et al. The protective effects of the combination of sodium ferulate and oxymatrine on ethanol-induced liver damage in mice. Environ Toxicol Pharmacol 2014; 37(1): 423-30.
[http://dx.doi.org/10.1016/j.etap.2013.12.005] [PMID: 24441025]
[122]
Yu JL, Li JH, Chengz RG, Ma YM, Wang XJ, Liu JC. Effect of matrine on transforming growth factor β1 and hepatocyte growth factor in rat liver fibrosis model. Asian Pac J Trop Med 2014; 7(5): 390-3.
[http://dx.doi.org/10.1016/S1995-7645(14)60062-6] [PMID: 25063067]
[123]
Goto T, Hirazawa N, Takaishi Y, Kashiwada Y. Antiparasitic effect of matrine and oxymatrine (quinolizidine alkaloids) on the ciliate Cryptocaryon irritans in the red sea bream Pagrus major. Aquaculture 2015; 437: 339-43.
[http://dx.doi.org/10.1016/j.aquaculture.2014.12.026]
[124]
Goto T, Hirazawa N, Takaishi Y, Kashiwada Y. Antiparasitic effects of Sophora flavescens root extracts on the ciliate, Cryptocaryon irritans. Aquaculture 2015; 435: 173-7.
[http://dx.doi.org/10.1016/j.aquaculture.2014.09.007]
[125]
Zanardi OZ. Ribeiro LdP, Ansante TF, Santos MS, Bordini GP, Yamamoto PT, Vendramim JD. Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Prot 2015; 67: 160-7.
[http://dx.doi.org/10.1016/j.cropro.2014.10.010]
[126]
Wanchun L, Yunshou L, Liyi M, Shin-Foon C. Toxicity of cytisine against the mustard aphid Lipaphis erysimi Kaltenbach (Homoptera: Aphididae) and its effect on esterases. Pestic Biochem Physiol 1999; 65: 1-5.
[http://dx.doi.org/10.1006/pest.1999.2400]
[127]
Song JZ, Xu HX, Tian SJ, But PP-H. Determination of quinolizidine alkaloids in traditional Chinese herbal drugs by nonaqueous capillary electrophoresis. J Chromatogr A 1999; 857(1-2): 303-11.
[http://dx.doi.org/10.1016/S0021-9673(99)00758-X] [PMID: 10536849]
[128]
Zhang X, Cui Z, Wang D, Zhou HY. High performance liquid chromatographic fingerprint evaluation of the quinolizidine alkaloids from commercial Radix Sophorae Flavescentis. J Asian Nat Prod Res 2003; 5(3): 171-82.
[http://dx.doi.org/10.1080/1028602031000082043] [PMID: 12931849]
[129]
Ding PL, Yu YQ, Chen DF. Determination of quinolizidine alkaloids in Sophora tonkinensis by HPCE. Phytochem Anal 2005; 16(4): 257-63.
[http://dx.doi.org/10.1002/pca.829] [PMID: 16042151]
[130]
Yu L, Xu X, Huang L, Lin J, Chen G. Microemulsion electrokinetic chromatography coupling with field amplified sample injection and electroosmotic flow suppressant for analysis of some quinolizidine alkaloids. J Chromatogr A 2008; 1198-1199: 220-5.
[http://dx.doi.org/10.1016/j.chroma.2008.05.024] [PMID: 18533172]
[131]
Rask-Andersen M, Almén MS, Schiöth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 2011; 10(8): 579-90.
[http://dx.doi.org/10.1038/nrd3478] [PMID: 21804595]
[132]
Tang J, Aittokallio T. Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles. Curr Pharm Des 2014; 20(1): 23-36.
[http://dx.doi.org/10.2174/13816128113199990470] [PMID: 23530504]
[133]
Li W, Yuan G, Pan Y, Wang C, Chen H. Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: a review. Front Pharmacol 2017; 23(8): 74.
[http://dx.doi.org/10.3389/fphar.2017.00074]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy