Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

The Effect of Dihydroartemisinin on the Malignancy and Epithelial-Mesenchymal Transition of Gastric Cancer Cells

Author(s): Nan Li, Suyun Zhang, Qiong Luo, Fang Yuan, Rui Feng, Xiangqi Chen* and Sheng Yang*

Volume 20, Issue 9, 2019

Page: [719 - 726] Pages: 8

DOI: 10.2174/1389201020666190611124644

Price: $65

Abstract

Objective: This study aimed to observe the effects of dihydroartemisinin (DHA) on the proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT) of the human gastric cancer cell line SGC7901 cultured in vitro.

Methods: We applied varying concentrations of DHA to SGC7901 cells. Cell proliferation was measured using the cell counting kit-8 (CCK-8). Flow cytometry, Transwell invasion assay, and cell scratch assay were used to investigate the cells’ apoptosis, invasion, and migration. Western blot was used to assess the expression levels of EMT markers E-cadhein and Vimentin, protein kinases Akt and phosphorylated AKT (p-AKT), and the cell transcription factor Snail.

Results: DHA can effectively inhibit the malignant proliferation of gastric cancer cells in a time- and dose-dependent manner. In this study, with longer incubation times and increased drug concentrations, the antiproliferation effect of DHA on SGC7901 cells increased gradually (P<0.05). In addition, with the increase of drug concentration, the expression levels of E-cadhein, an epithelial-mesenchymal transition marker, remarkably increased, whereas the protein expression levels of the mesenchymal markers Vimentin, Akt, p-Akt, and Snail significantly decreased (P<0.05).

Conclusion: DHA can effectively inhibit the proliferation, invasion, and metastasis of the gastric cancer cell line SGC7901 and induce cancer cell apoptosis. DHA can also downregulate PI3K/AKT and Snail activities and inhibit the epithelial-mesenchymal transition of gastric cancer cells. The potential anticancer effects of DHA deserve further investigation.

Keywords: Dihydroartemisinin, gastric cancer cells, malignant behavior, epithelial-mesenchymal transition, cell counting kit-8 (CCK-8), cell invasion assay.

Graphical Abstract
[1]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[2]
Ansieau, S.; Bastid, J.; Doreau, A.; Morel, A.P.; Bouchet, B.P.; Thomas, C.; Fauvet, F.; Puisieux, I.; Doglioni, C.; Piccinin, S.; Maestro, R.; Voeltzel, T.; Selmi, A.; Valsesia-Wittmann, S.; Caron de Fromentel, C.; Puisieux, A. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 2008, 14(1), 79-89.
[http://dx.doi.org/10.1016/j.ccr.2008.06.005] [PMID: 18598946]
[3]
Hwang, Y.P.; Yun, H.J.; Kim, H.G.; Han, E.H.; Lee, G.W.; Jeong, H.G. Suppression of PMA-induced tumor cell invasion by dihydroartemisinin via inhibition of PKCalpha/Raf/MAPKs and NF-kappaB/AP-1-dependent mechanisms. Biochem. Pharmacol., 2010, 79(12), 1714-1726.
[http://dx.doi.org/10.1016/j.bcp.2010.02.003] [PMID: 20152819]
[4]
Degiuli, M.; De Manzoni, G.; Di Leo, A.; D’Ugo, D.; Galasso, E.; Marrelli, D.; Petrioli, R.; Polom, K.; Roviello, F.; Santullo, F.; Morino, M. Gastric cancer: Current status of lymph node dissection. World J. Gastroenterol., 2016, 22(10), 2875-2893.
[http://dx.doi.org/10.3748/wjg.v22.i10.2875] [PMID: 26973384]
[5]
Santamaria, P.G.; Moreno-Bueno, G.; Portillo, F.; Cano, A. EMT: Present and future in clinical oncology. Mol. Oncol., 2017, 11(7), 718-738.
[http://dx.doi.org/10.1002/1878-0261.12091] [PMID: 28590039]
[6]
Li, Y. Qinghaosu (artemisinin): Chemistry and pharmacology. Acta Pharmacol. Sin., 2012, 33(9), 1141-1146.
[http://dx.doi.org/10.1038/aps.2012.104] [PMID: 22922345]
[7]
Dong, F.; Zhou, X.; Li, C.; Yan, S.; Deng, X.; Cao, Z.; Li, L.; Tang, B.; Allen, T.D.; Liu, J. Dihydroartemisinin targets VEGFR2 via the NF-κB pathway in endothelial cells to inhibit angiogenesis. Cancer Biol. Ther., 2014, 15(11), 1479-1488.
[http://dx.doi.org/10.4161/15384047.2014.955728] [PMID: 25482945]
[8]
Lai, H.; Singh, N.P. Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett., 1995, 91(1), 41-46.
[http://dx.doi.org/10.1016/0304-3835(94)03716-V] [PMID: 7750093]
[9]
Moore, J.C.; Lai, H.; Li, J.R.; Ren, R.L.; McDougall, J.A.; Singh, N.P.; Chou, C.K. Oral administration of dihydroartemisinin and ferrous sulfate retarded implanted fibrosarcoma growth in the rat. Cancer Lett., 1995, 98(1), 83-87.
[http://dx.doi.org/10.1016/S0304-3835(06)80014-5] [PMID: 8529210]
[10]
Lin, F.; Qian, Z.; Ding, J.; Lin, L. Effect of dihydroartemisinin on the proliferation of MCF-7 cell. Zhongguo Xin Yao Zazhi, 2002.
[11]
Lee, J.; Zhou, H.J.; Wu, X.H. Dihydroartemisinin downregulates vascular endothelial growth factor expression and induces apoptosis in chronic myeloid leukemia K562 cells. Cancer Chemother. Pharmacol., 2006, 57(2), 213-220.
[http://dx.doi.org/10.1007/s00280-005-0002-y] [PMID: 16075280]
[12]
Chen, H.; Sun, B.; Pan, S.; Jiang, H.; Sun, X. Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo. Anticancer Drugs, 2009, 20(2), 131-140.
[http://dx.doi.org/10.1097/CAD.0b013e3283212ade] [PMID: 19209030]
[13]
Hwang, Y.P.; Yun, H.J.; Kim, H.G.; Han, E.H.; Lee, G.W.; Jeong, H.G. Suppression of PMA-induced tumor cell invasion by dihydroartemisinin via inhibition of PKCalpha/Raf/MAPKs and NF-kappaB/AP-1-dependent mechanisms. Biochem. Pharmacol., 2010, 79(12), 1714-1726.
[http://dx.doi.org/10.1016/j.bcp.2010.02.003] [PMID: 20152819]
[14]
Wu, B.; Hu, K.; Li, S.; Zhu, J.; Gu, L.; Shen, H.; Hambly, B.D.; Bao, S.; Di, W. Dihydroartiminisin inhibits the growth and metastasis of epithelial ovarian cancer. Oncol. Rep., 2012, 27(1), 101-108.
[PMID: 22025319]
[15]
Odaka, Y.; Xu, B.; Luo, Y.; Shen, T.; Shang, C.; Wu, Y.; Zhou, H.; Huang, S. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells. Carcinogenesis, 2014, 35(1), 192-200.
[http://dx.doi.org/10.1093/carcin/bgt277] [PMID: 23929438]
[16]
Sun, H.; Meng, X.; Han, J.; Zhang, Z.; Wang, B.; Bai, X.; Zhang, X. Anti-cancer activity of DHA on gastric cancer--an in vitro and in vivo study. Tumour Biol., 2013, 34(6), 3791-3800.
[http://dx.doi.org/10.1007/s13277-013-0963-0] [PMID: 23907579]
[17]
Greenburg, G.; Hay, E.D. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J. Cell Biol., 1982, 95(1), 333-339.
[http://dx.doi.org/10.1083/jcb.95.1.333] [PMID: 7142291]
[18]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[19]
Bedi, U.; Mishra, V.K.; Wasilewski, D.; Scheel, C.; Johnsen, S.A. Epigenetic plasticity: A central regulator of epithelial-to-mesenchymal transition in cancer. Oncotarget, 2014, 5(8), 2016-2029.
[http://dx.doi.org/10.18632/oncotarget.1875] [PMID: 24840099]
[20]
Kang, M.H.; Kim, J.S.; Seo, J.E.; Oh, S.C.; Yoo, Y.A. BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Exp. Cell Res., 2010, 316(1), 24-37.
[http://dx.doi.org/10.1016/j.yexcr.2009.10.010] [PMID: 19835871]
[21]
Hong, K.O.; Kim, J.H.; Hong, J.S.; Yoon, H.J.; Lee, J.I.; Hong, S.P.; Hong, S.D. Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells. J. Exp. Clin. Cancer Res., 2009, 28(1), 28.
[http://dx.doi.org/10.1186/1756-9966-28-28] [PMID: 19243631]
[22]
Robbins, H.L.; Hague, A. The PI3K/Akt pathway in tumors of endocrine tissues. Front. Endocrinol. (Lausanne), 2016, 6(6), 188.
[http://dx.doi.org/10.3389/fendo.2015.00188] [PMID: 26793165]
[23]
Palma, Cde.; Grassi, M.L.; Thomé, C.H. Ferreira, G.A.; Albuquerque, D.; Pinto, M.T.; Ferreira Melo, F.U.; Kashima, S.; Covas, D.T.; Pitteri, S.J.; Faça, V.M. Proteomic analysis of Epithelial to Mesenchymal Transition (EMT) reveals cross-talk between SNAIL and HDAC1 proteins in breast cancer cells. Mol. Cell. Proteomics, 2016, 15(3), 906-917.
[http://dx.doi.org/10.1074/mcp.M115.052910] [PMID: 26764010]
[24]
Wang, Y.; Shi, J.; Chai, K.; Ying, X.; Zhou, B.P. The role of snail in EMT and tumorigenesis. Curr. Cancer Drug Targets, 2013, 13(9), 963-972.
[http://dx.doi.org/10.2174/15680096113136660102] [PMID: 24168186]
[25]
Zhang, T.; Hu, Y.; Wang, T.; Cai, P. Dihydroartemisinin inhibits the viability of cervical cancer cells by upregulating caveolin 1 and mitochondrial carrier homolog 2: Involvement of p53 activation and NAD(P)H: Quinone oxidoreductase 1 downregulation. Int. J. Mol. Med., 2017, 40(1), 21-30.
[http://dx.doi.org/10.3892/ijmm.2017.2980] [PMID: 28498397]
[26]
Lu, Z.H.; Peng, J.H.; Zhang, R.X.; Wang, F.; Sun, H.P.; Fang, Y.J.; Wan, D.S.; Pan, Z.Z. Dihydroartemisinin inhibits colon cancer cell viability by inducing apoptosis through up-regulation of PPARγ expression. Saudi J. Biol. Sci., 2018, 25(2), 372-376.
[http://dx.doi.org/10.1016/j.sjbs.2017.02.002] [PMID: 29472793]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy