Generic placeholder image

Current Environmental Management (Discontinued)


ISSN (Print): 2666-2140
ISSN (Online): 2666-2159

Research Article

MoS2/Tio2 Mixture: A Modification Strategies of Tio2 Nanoparticles to Improve Photocatalytic Activity Under Visible Light

Author(s): Sara Chahid*, Rodrigo Alcantara and Desiree M. de los Santos

Volume 6 , Issue 3 , 2019

Page: [245 - 255] Pages: 11

DOI: 10.2174/2212717806666190424151559


Background: Dyes are used in various sectors, such as the industry, textile, leather, and plastic industries, and part of these dyes is released in the environment via wastewater.

Objective: The present study aimed to investigated the surface-modified TiO2 by MoS2 and Cu.

Method: The effects of surface enhancement on as-prepared adsorbents on adsorption of Methylene Blue (MB) was were studied in a batch system by considering various parameters such as contact time, initial dye concentration and temperature.

Result: The results show that the adsorption process was well fitted with the pseudo-firstorder kinetic model (R2 = 0.99). Further, the equilibrium data for the adsorption process have beenwere evaluated using Langmuir, Freundlich, and Temkin isotherms.

Conclusion: The adsorption isotherm of MB onto as-prepared adsorbents nanoparticles fitted into the Freundlich equation.

Keywords: Synthesis of pure doped and co-doped TiO2, surface analysis, adsorption, methylene blue dye remove from aqueous solutions, dyes, nauoparticles.

Graphical Abstract
Lee C, Lin RH, Yang CY, Lin MH, Wang WY. Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol-gel method. Mater Chem Phys 2008; 109: 275-80.
Weng ZY, Guo H, Liu XM, Wu SL, Yeung KWK, Chu PK. Nanostructured TiO2 for energy conversion and storage. rsc adv 2013; 3: 24758-75.
Ghorai TK, Chakraborty M, Pramanik P. Photocatalytic performance of nano-photocatalyst from TiO2 and Fe2O3 by mechanochemical synthesis. J Alloys Compd 2011; 509: 8158-64.
Cao H, Huang S, Yu Y, Yan Y, Lv Y, Cao Y. Synthesis of TiO2-N/SnO2 heterostructure photocatalyst and its photocatalytic mechanism. J Colloid Interface Sci 2017; 486: 176-83.
[] [PMID: 27701015]
Guo Q, Zhang ZH, Ma XP, et al. Preparation of N,F-codoped TiO2 nanoparticles by three different methods and comparison of visible-light photocatalytic performances. Separ Purif Tech 2017; 175: 305-13.
Ryu SW, Kim EJ, Ko SK, Hahn SH. Effect of calcination on the structural and optical properties of M/TiO2 thin films by RF magnetron co-sputtering. Mater Lett 2004; 58: 582-7.
Chahid S, De los Santos DM, Alcántara R. The effect of Cu-doped TiO2 photoanode on photovoltaic performance of dye-sensitized solar cells. In:Proceedings of the 3rd International Conference on Smart City Applications2018 Oct 10 (p 77) ACM.
Zhou W, et al. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J Am Chem Soc 2014; 136(26): 9280-3.
Krishnakumar V, Boobas S, Jayaprakash J, Rajaboopathi M, Han B, Louhi-Kultanen M. Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light. J Mater Sci Mater Electron 2016; 27: 7438-47.
Zhou L, Wei LG, Yang YL, et al. Improved performance of dye sensitized solar cells using Cu-doped TiO2 as photoanode materials: Band edge movement study by spectroelectrochemistry. Chem Phys 2016; 475: 1-8.
Navas J, Sánchez-Coronilla A, Aguilar T, et al. Thermo-selective Tm(x)Ti(1-x)O(2-x/2) nanoparticles: From Tm-doped anatase TiO2 to a rutile/pyrochlore Tm2Ti2O7 mixture. An experimental and theoretical study with a photocatalytic application. Nanoscale 2014; 6(21): 12740-57.
[] [PMID: 25219888]
Nishiyama N, Kozasa K, Yamazaki S. Photocatalytic degradation of 4-chlorophenol on titanium dioxide modified with Cu(II) or Cr(III) ion under visible light irradiation. Appl Catal A Gen 2016; 527: 109-15.
Wojtaszek K, Tyrala K, Czapla-Masztafiak J, Sa J, Szlachetko J. Cr-doping effects on unoccupied d-band electronic structure of TiO2. Chem Phys Lett 2016; 664: 73-6.
Zhu JL, Xia XF, Zhu SS, Liu X, Li HX. Synthesis and photocatalytic activity of Cr Doped TiO2 nanowires/reduced graphene oxide composites. Chem J Chinese U 2016; 37(10): 1833-9.
Fu YH, Sun L, Yang H, Xu L, Zhang FM, Zhu WD. Visible-light-induced aerobic photocatalytic oxidation of aromatic alcohols to aldehydes over Ni-doped NH2-MIL-125(Ti). Appl Catal B 2016; 187: 212-7.
Haider AJ, Najim AA, Muhi MAH. TiO2/Ni composite as antireflection coating for solar cell application. Opt Commun 2016; 370: 263-6.
Singla P, Pandey OP, Singh K. Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles. Int J Environ Sci Technol 2016; 13: 849-56.
Zhang DR, Jin XZ, Li JH. Effects of Sc and V dopants on the anatase-to-rutile phase transition and crystallite size of TiO2 nanoparticles. Mater Chem Phys 2016; 176: 68-74.
Beauger L, Testut S, Berthon-Fabry S, Georgi F, Guetaz L. Doped TiO2 aerogels as alternative catalyst supports for proton exchange membrane fuel cells: A comparative study of Nb, V and Ta dopants. Microporous Mesoporous Mater 2016; 232: 109-18.
Birben NC, Uyguner-Demirel CS, Sen Kavurmaci S, et al. Application of Fe-doped TiO2 specimens for the solar photocatalytic degradation of humic acid. Catal Today 2017; 281: 78-84.
Wang QY, Jin RC, Zhang M, Gao SM. Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. J Alloys Compd 2017; 690: 139-44.
Di Paola A, Garcıa-López E, Marcì G, et al. Surface characterisation of metal ions loaded TiO2 photocatalysts: Structure-activity relationship. Appl Catal B 2004; 48: 223-33.
Devi LG, Murthy BN. Characterization of Mo doped TiO2 and its enhanced photo-catalytic activity under visible light. Catal Lett 2008; 125: 320-30.
Li C, Zhang D, Jiang Z, Yao Z, Jia F. Mo-doped titania films: Preparation, characterization and application for splitting water. J Chem 2011; 35(2): 423-9.
Munir S, Shah SM, Hussain H. Effect of carrier concentration on the optical band gap of TiO2 nanoparticles. Mater Des 2016; 92: 64-72.
Alcántara R, Navas J, Fernández-Lorenzo C, Martín J, Guillén E, Anta JA. Synthesis and raman spectroscopy study of TiO2 nanoparticles. Phys Status Solidi C 2011; 8: 1970-3.
Cheng L, Kang Y, Tong F. Effect of preparation conditions on characteristics of hollow TiO2 fibers fabricated by chemical deposition and template method. Appl Surf Sci 2012; 263: 223-9.
Wan Q, Duan L, He K, Li J. Removal of gaseous elemental mercury over a CeO2- WO3/TiO2 nanocomposite in simulated coal-fired flue gas. Chem Eng J 2011; 170: 512-7.
Wu Z, Tang N, Xiao L, Liu Y, Wang H. MnO(x)/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation. J Colloid Interface Sci 2010; 352(1): 143-8.
[] [PMID: 20832076]
Shi J, Chen S, Wang S, Ye Z, Wu P, Xu B. Favorable recycling photocatalyst TiO2/CFA: Effects of calcination temperature on the structural property and photocatalytic activity. J Mol Catal Chem 2010; 330: 41-8.
Liu H, Dong X, Liu T, Su X, Zhu Z. Silver-modified colloidal-aggregated TiO2 microstructures with enhanced visible photocatalytic activities. Mater Lett 2014; 115: 219-21.
Zainal ND, Nur H, Lee SL. Synthesis and characterization of nitrogen-doped titania nanomaterials of homogeneous particle size. Malay J Fundamental Appl Sci 2015; 11(3): 13-5.
Rezaei E, Soltan J. Low temperature oxidation of toluene by ozone over MnOx/γ- alumina and MnOx/MCM-41 catalysts. Chem Eng J 2012; 198-199: 482-90.
Landmann M, Rauls E, Schmidt WG. The electronic structure and optical response of rutile, anatase and brookite TiO2. Phys Condens Mat J 2012; 24195503
Maurya A, Chauhan P, Mishra SK, Srivastava RK. Structural, optical and charge transport study of rutile TiO2 nanocrystals at two calcination temperatures. J Alloys Compd 2011; 509: 8433-40.
De los Santos DM, Navas J, Sánchez-Coronilla A, Alcántara R, Fernández-Lorenzo C, Martín-Calleja J. Highly Al-doped TiO2 nanoparticles produced by Ball Mill Method: Structural and electronic characterization. Mater Res Bull 2015; 70: 704-11.
L. Xu, M. P. Garrett, and B. Hu. J Phys Chem C. Nature and light dependence of bulk recombination in co-pi-catolyzed Bivoy photoanodes. 2012; 116: 13020-5.
Aguilar T, Navas J, Alcantara R, et al. A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap. Chem Phys Lett 2013; 571: 49-53.
Weast RC. Handbook of Chemistry & Physics. 59th Edition 1978. CRC Press, Inc. 1979.
Wang SLNB, Sun HM, Jiang Q. J.S. Structure and photocatalytic property of Mo-doped TiO2 nanoparticles. Powder Technol 2013; 244: 9-15.
Richardson PL, Perdigoto MLN, Wang W, Lopes RJG. Heterogeneous photo-enhanced conversion of carbon dioxide to formic acid with copper- and gallium-doped titania nanocomposites. Appl Catal B 2013; 132: 408-15.
Paul KK, Ghosh R, Giri PK. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods. Nanotechnology 2016; 27(31)315703
[] [PMID: 27333816]
Patel SKS, Gajbhiye NS, Date SK. Ferromagnetism of Mn-doped TiO2 nanorods synthesized by hydrothermal method. J Alloys Compd 2011; 509: S427-30.
Mathews NR, Morales ER, Cortes-Jacome MA, Antonio JAT. TiO2 thin films - Influence of annealing temperature on structural, optical and photocatalytic properties. Sol Energy 2009; 83: 1499-508.
Zaki MI, Katrib A, Muftah AI, Jagadale TC, Ikram M, Ogale SB. Exploring anatase-TiO2 doped dilutely with transition metal ions as nano-catalyst for H2O2 decomposition: Spectroscopic and kinetic studies. Appl Catal A Gen 2013; 452: 214-21.
Kang MS. The superhydrophilicity of Al-TiO2 nanometer sized material synthesized using a solvothermal method. Mater Lett 2005; 59: 3122-7.
Zhan C, Chen F, Yang J, Dai D, Cao X, Zhong M. Visible light responsive sulfated rare earth doped TiO2 @fumed SiO(2) composites with mesoporosity: Enhanced photocatalytic activity for methyl orange degradation. J Hazard Mater 2014; 267: 88-97.
[] [PMID: 24418494]
De los Santos DM, Aguilar T, Sánchez-Coronilla A, et al. Electronic and structural properties of highly aluminum ion doped TiO2 nanoparticles: A combined experimental and theoretical study. ChemPhysChem 2014; 15(11): 2267-80.
[] [PMID: 24840394]
Diamandescu L, Vasiliu F, Tarabasanu-Mihaila D, et al. Structural and photocatalytic properties of iron- and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions. Mater Chem Phys 2008; 112: 146.
Murphy AB. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol Energy Mater Sol Cells 2007; 91: 1326.
Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 1995; 99(45): 16646-54.
Sasca V, Popa A. Band-gap energy of heteropoly compounds containing Keggin polyanion-[PVxMo12-xO40]−(3+ x) relates to counter-cations and temperature studied by UV-VIS diffuse reflectance spectroscopy. J Appl Phys 2013; 114(13)133503
N. Serpone, D. Lawless, R. Khairutdinov. J Phys Chem 1995; 99: 16646.
Zaki MI, Mekhemer GA, Fouad NE, Jagadale TC, Ogale SB. Surface texture and specific adsorption sites of sol-gel synthesized anatase TiO2 nanoparticles. Mater Res Bull 2010; 45(10): 1470-5.
Ho W, Yu JC, Lin J, Yu J, Li P. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 2004; 20(14): 5865-9.
[] [PMID: 16459602]
Kam KK, Parkinson BA. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J Phys Chem 1982; 86: 463.
Thurston TR, Wilcoxon JP. Photooxidation of organic chemicals catalyzed by nanoscale MoS2. J Phys Chem B 1999; 103: 11.
Wilcoxon JP. Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters. J Phys Chem B 2000; 104: 7334.
Huang JM, Laitinen RA, Kelley DF. Spectroscopy and trapping dynamics in WS2 Nanoclusters. Phys Rev B Condens Matter Mater Phys 2000; 62: 10995.
Thurston TR, Wilcoxon JP. Photooxidation of organic chemicals catalyzed by nanoscale MoS2. J Phys Chem B 1999; 103: 11.
De los Santos DM, Navas J, Aguilar T, et al. Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: Enhancing the photocatalytic activity of rutile with a pyrochlore phase. Beilstein J Nanotechnol 2015.6605616
Huang LH, Chan QZ, Zhang B, et al. Preparation of sodium tantalate with different tructures and its photocatalytic activity for H2 evolution from water splitting. Chin J Catal 2011; 32: 1822-30.
Chimupala Y, Junploy P, Hardcastle T, et al. Universal synthesis method for mixed phase TiO2 (B)/anatase TiO2 thin films on substrates via a modified Low Pressure Chemical Vapour Deposition (LPCVD) route. J Mater Chem A Mater Energy Sustain 2016; 4: 5685-99.
Scanlon DO, Dunnill CW, Buckeridge J, et al. Band alignment of rutile and anatase TiO2. Nat Mater 2013; 12(9): 798-801.
[] [PMID: 23832124]
Ohtani B, Prieto-Mahaney OO, Li D, Abe R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photoch Photobio A 2010; 216: 179-82.

© 2022 Bentham Science Publishers | Privacy Policy