Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry


ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Effects of Resveratrol, Berberine and Their Combinations on Reactive Oxygen Species, Survival and Apoptosis in Human Squamous Carcinoma (SCC-25) Cells

Author(s): Magdalena Skonieczna*, Dorota Hudy, Aleksandra Poterala-Hejmo, Tomasz Hejmo, Rafal J. Buldak and Arkadiusz Dziedzic

Volume 19 , Issue 9 , 2019

Page: [1161 - 1171] Pages: 11

DOI: 10.2174/1871520619666190405111151

Price: $65


Background: Levels of cellular Reactive Oxygen Species (ROS) influence the oxidized/reduced states of cellular proteins, and create redox-signaling pathways that can activate transcription factors, kinases, and phosphatases. ROS levels can be increased radically by external factors, including ionizing and UV radiation or exposure to chemical compounds. These increased ROS levels can, in turn, lead to oxidative damage of DNA. Natural plant treatments against cancer can modulate these processes by inducing or decreasing ROS production.

Methods: Here we report new observations that squamous carcinoma (SCC-25) cells, exposed to 24 hours of combined resveratrol and berberine treatment, contain increased ROS levels. Using flow cytometry, for drug activity characteristics, an accumulation of ROS was observed. A combination of different dyes, CellROX Green (Life Technologies) and DCFH-DA (Sigma), allowed for flow cytometric estimation of levels of cellular ROS as well as cellular localization.

Results: Live staining and microscopic observations confirmed the accumulation of ROS in SCC-25 cells following a combination treatment at concentrations of 10μg/ml. Additionally, the cytotoxicity of the compounds was significantly improved after their combined application. Additive effects were observed for doses lower than the calculated IC50 of berberine [IC50=23µg/ml] and resveratrol [IC50=9µg/ml]. Viability (MTS) assays and analysis of isobolograms revealed a significant impact on cell viability upon combination treatment.

Conclusion: These results suggest that administration of berberine, in the presence of resveratrol, could be decreased even to 50% (half the IC50 for berberine) for cancer treatment.

Keywords: SCC-25 cells, combined treatment, plant-derived anticancer biomolecules, berberine, resveratrol, reactive oxygen species.

Graphical Abstract
Kensler, T.W.; Wakabayash, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol., 2007, 47, 89-116.
Wright, V.P.; Reiser, P.J.; Clanton, T.L. Redox modulation of global phosphatase activity and protein phosphorylation in intact skeletal muscle. J. Physiol., 2009, 587(23), 5767-5781.
Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol., 2011, 194, 7-15.
Gajewski, E.; Rao, G.; Nackerdien, Z.; Dizdaroglu, M. Modification of DNA bases in mammalian chromatin by radiation-generated free radicals. Biochemistry, 1990, 29, 7876-7882.
Brown, D.I.; Griendling, K.K. Nox proteins in signal transduction. Free Radic. Biol. Med., 2009, 47, 1239-1253.
Aguirre, J.; Lambeth, J.D. Nox enzymes from fungus to fly to fish and what they tell us about nox function in mammals. Free Radic. Biol. Med., 2010, 49, 1342-1353.
Dziedzic, A.; Kubina, R.; Bułdak, R.J.; Skonieczna, M.; Cholewa, K. Silver nanoparticles exhibit the dose-dependent anti-proliferative effect against human squamous carcinoma cells attenuated in the presence of berberine. Molecules, 2016, 21(3), 365.
Ho, Y.T.; Lu, C.C.; Yang, J.S.; Chiang, J.H.; Li, T.C.; Ip, S.W.; Hsia, T.C.; Liao, C.L.; Lin, J.G.; Wood, W.G.; Chung, J.G. Berberine induced apoptosis via promoting the expression of caspase-8, -9 and -3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cells. Anticancer Res., 2009, 29(10), 4063-4070.
Ho, Y.T.; Yang, J.S.; Li, T.C.; Lin, J.J.; Lin, J.G.; Lai, K.C.; Ma, C.Y.; Wood, W.G.; Chung, J.G. Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-κB, u-PA and MMP-2 and -9. Cancer Lett., 2009, 279(2), 155-162.
Seo, Y.S.; Yim, M.J.; Kim, B.H.; Kang, K.R.; Lee, S.Y.; Oh, J.S.; You, J.S.; Kim, S.G.; Yu, S.J.; Lee, G.J.; Kim, D.K.; Kim, C.S.; Kim, J.S.; Kim, J.S. Berberine-induced anticancer activities in FaDu head and neck squamous cell carcinoma cells. Oncol. Rep., 2015, 25, 3025-3034.
Xie, J.; Xu, Y.; Huang, X.; Chen, Y.; Fu, J.; Xi, M.; Wang, L. Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway. Tumour Biol., 2015, 36, 1279-1288.
Tan, W.; Zhong, Z.; Wang, S.; Suo, Z.; Yang, X.; Hu, X.; Wang, Y. Berberine regulated lipid metabolism in the presence of C75, compound C, and TOFA in breast cancer cell line MCF-7.Evid.- Based Compl. Alt. Med; , 2015, p. Article ID 396035, 10 pages.
Rello-Varona, S.; Kepp, O.; Vitale, I.; Michaud, M.; Senovilla, L.; Jemaa, M.; Joza, N.; Galluzzi, L.; Castedo, M.; Kroemer, G. An automated fluorescence videomicroscopy assay for the detection of mitotic catastrophe. Cell Death Dis., 2010, 1e25
Xia, N.; Daiber, A.; Habermeier, A.; Closs, E.I.; Thum, T.; Spanier, G.; Lu, Q.; Oelze, M.; Torzewski, M.; Lackner, K.J.; Munzel, T.; Forstermann, U.; Li, H. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in Apolipoprotein E knockout mice. J. Pharmacol. Exp. Ther., 2010, 335(1), 149-154.
Flores-Pérez, A.; Elizondo, G. Apoptosis induction and inhibition of HeLa cell proliferation by alpha-naphthoflavone and resveratrol are aryl hydrocarbon receptor-independent. Chem. Biol. Interact., 2018, 281, 98-105.
Tomas-Hernández, S.; Blanco, J.; Rojas, C.; Roca Martínez, J.; Ojeda Montes, M.J.; Beltrán Debón, R.; Garcia Vallvé, S.; Pujadas, G.; Arola, L.; Mulero, M. Resveratrol potently counteracts quercetin starvation induced autophagy and sensitizes HepG2 cancer cells to apoptosis. Mol. Nutr. Food Res., 2018, 62, 1-13.
Truong, V.L.; Jun, M.; Jeong, W.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors, 2017, 44(1), 36-49.
Zhou, X.; Chen, M.; Zeng, X.; Yang, J.; Deng, H.; Yi, L.; Mi, M.T. Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells. Cell Death Dis., 2014, 5e1576
Zheng, X.; Jia, B.; Tian, X.T.; Song, X.; Wu, M.L.; Kong, Q.Y.; Li, H.; Liu, J. Correlation of reactive oxygen species levels with resveratrol sensitivities of anaplastic thyroid cancer cells. Oxid. Med. Cell. Longev., 2018. Article ID 6235417
Molavian, H.R.; Goldman, A.; Phipps, C.J.; Kohandel, M.; Wouters, B.G.; Sengupta, S.; Sivaloganathan, S. Drug-induced reactive oxygen species (ROS) rely on cell membrane properties to exert anticancer effects. Sci. Rep., 2016, 6, 27439.
Peng, L.; Kang, S.; Yin, Z.; Jia, R.; Song, X.; Li, L.; Li, Z.; Zou, Y.; Liang, X.; Li, L.; He, C.; Ye, G.; Yin, L.; Shi, F.; Lv, C.; Jing, B. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5217-5223.
Hwang, D.; Lim, Y.H. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Sci. Rep., 2015, 5, 2-11.
Paulo, L.; Oleastro, M.; Gallardo, E.; Queiroz, J.A.; Domingues, F. Antimicrobial properties of resveratrol: A review In:Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Mendez-Vilas A., Ed.; Formatex: Sain,. , 2011, Vol. 2, pp. 1225-1235.
Falchetti, R.; Fuggetta, M.P.; Lanzilli, G.; Tricarico, M.; Ravagnan, G. Effect of resveratrol on human immune cell function. Life Sci., 2001, 70(1), 81-96.
Leischner, C.; Burkard, M.; Pfeiffer, M.M.; Lauer, U.M.; Busch, C.; Venturelli, S. Nutritional immunology: Function of natural killer cells and their modulation by resveratrol for cancer prevention and treatment. Nutr. J., 2016, 15(1), 47.
Zou, K.; Li, Z.; Zhang, Y.; Zhang, H.Y.; Li, B.; Zhu, W.L.; Shi, J.Y.; Jia, Q.; Li, Y.M. Advances in the study of berberine and its derivatives: A focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacol. Sin., 2017, 38(2), 157-167.
Jones, D.P.; Sies, H. The redox code. Antioxid. Redox Signal., 2015, 23(9), 734-746.
Collet, J-F.; Messens, J. Structure, function, and mechanism of thioredoxin proteins. Antioxid. Redox Signal., 2010, 13(8), 1205-1216.
Roh, J.L.; Jang, H.; Kim, E.H.; Shin, D. Targeting of the glutathione, thioredoxin, and Nrf2 antioxidant systems in head and neck cancer. Antioxid. Redox Signal., 2017, 27(2), 106-114.
Jun, S.; Dory, L. Allele-specific effects on extracellular superoxide dismutase synthesis and secretion. J. Biomed. Sci. Eng., 2017, 10(4), 135-148.
Saenko, Y.; Cieślar-Pobuda, A.; Skonieczna, M.; Rzeszowska-Wolny, J. Changes of reactive oxygen and nitrogen species and mitochondrial functioning in human K562 and HL60 cells exposed to ionizing radiation. Radiat. Res., 2013, 180(4), 360-366.
Muzza, M.; Fugazzola, L. Disorders of H2O2 generation. Best Pract. Res. Clin. Endocrinol. Metab., 2017, 31(2), 225-240.
Lennicke, C.; Rahn, J.; Lichtenfels, R.; Wessjohann, L.A.; Seliger, B. Hydrogen peroxide - Production, fate and role in redox signaling of tumor cells. Cell Commun. Signal., 2015, 13(1), 1-19.
Altenhöfer, S.; Radermacher, K.A.; Kleikers, P.W.M.; Wingler, K.; Schmidt, H.H. Evolution of NADPH oxidase inhibitors: Selectivity and mechanisms for target engagement. Antioxid. Redox Signal., 2015, 23(5), 406-427.
Boncel, S.B.; Pluta, A.; Skonieczna, M.; Gondela, A.; Maciejewska, B.; Herman, A.P.; Jędrysiak, R.G.; Budniok, S.; Komedera, K.; Blachowski, A.; Walczak, K.Z. Hybrids of iron-filled multiwall carbon nanotubes and anticancer agents as potential magnetic drug delivery systems: In vitro studies against human melanoma, colon carcinoma, and colon adenocarcinoma. J. Nanomater., 2017.Article ID 1262309
Griner, L.A.M.; Guha, R.; Shinn, P.; Young, R.M.; Keller, J.M.; Liu, D.; Goldlust, I.S.; Yasgar, A.; McKnight, C.; Boxer, M.B.; Duveau, D.Y.; Jiang, J.K.; Michael, S.; Mierzwa, T.; Huang, W.; Walsh, M.J.; Mott, B.T.; Patel, P.; Leister, W.; Maloney, D.J.; Leclair, C.A.; Rai, G.; Jadhav, A.; Peyser, B.D.; Austin, C.P.; Martin, S.E.; Simeonov, A.; Ferrer, M.; Staudt, L.M.; Thomas, C.J. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell–like diffuse large B-cell lymphoma cells. Proc. Natl. Acad. Sci. USA, 2014, 111(6), 2349-2354.
Tallarida, R.J. Drug synergism: Its detection and applications. J. Pharmacol. Exp. The., 2001, 298(3), 865-872.
Tallarida, R.J. An overview of drug combination analysis with isobolograms. J. Pharmacol. Exp. The., 2006, 319(1), 1-7.
Bishayee, A.; Block, K. A broad-spectrum integrative design for cancer prevention and therapy. Semin. Cancer Biol., 2015, 35, S276-S304.
Wang, K.; Zhang, C.; Bao, J.; Jia, X.; Liang, Y.; Wang, X.; Chen, M.; Su, H.; Li, P.; Wan, J.B.; He, C. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci. Rep., 2016, 6, 26064.
Zhao, Y.; Jing, Z.; Li, Y.; Mao, W. Berberine in combination with cisplatin suppresses breast cancer cell growth through induction of DNA breaks and caspase-3-dependent apoptosis. Oncol. Rep., 2016, 36, 567-572.
Pan, Y.; Zhang, F.; Zhao, Y.; Shao, D.; Zheng, X.; Chen, Y.; He, K.; Li, J.; Chen, L. Berberine enhances chemosensitivity and induces apoptosis through dose-orchestrated AMPK signaling in breast cancer. J. Cancer, 2017, 8(9), 1679-1689.
Langcake, P.; Pryce, R. The production of resveratrol by Vitis vinifera and other members of the vitaceae as a response to infection or injury. Physiol. Plant Pathol., 1976, 9, 77-86.
Meng, J.; Guo, F.; Xu, H.; Liang, W.; Wang, C.; Yang, X.D. Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo. Sci. Rep., 2016, 6, 22390.
Wang, G.; Guo, X.; Chen, H.; Lin, T.; Xu, Y.; Chen, Q.; Liu, J.; Zeng, J.; Zhang, X.K.; Yao, X. A resveratrol analog, Phoyunbene B, induces G2/M cell cycle arrest and apoptosis in HepG2 liver cancer cells. Bioorg. Med. Chem. Lett., 2012, 22(5), 2114-2118.
Yu, X.D.; Yang, J.L.; Zhang, W.L.; Liu, D.X. Resveratrol inhibits oral squamous cell carcinoma through induction of apoptosis and G2/M phase cell cycle arrest. Tumour Biol., 2016, 37(3), 2871-2877.
Wang, B.; Liu, J.; Gong, Z. Resveratrol induces apoptosis in K562 cells via the regulation of mitochondrial signaling pathways. Int. J. Clin. Exp. Med., 2015, 8(9), 16926-16933.
da Costa Araldi, I.C.; Bordin, F.P.R.; Cadoná, F.C.; Barbisan, F.; Azzolin, V.F.; Teixeira, C.F.; da Cruz, I.B.M.; Baumhardt, T.; Duarte, M.M.M.F.; Bauermann, L.D.F. The in vitro radiosensitizer potential of resveratrol on MCF-7 breast cancer cells. Chem. Biol. Interact., 2018, 282, 85-92.
Flores-Pérez, A.; Elizondo, G. Apoptosis induction and inhibition of HeLa cell proliferation by alpha-naphthoflavone and resveratrol are aryl hydrocarbon receptor-independent. Chem. Biol. Interact., 2018, 281, 98-105.
Wang, W.; Li, P.; Xu, J.; Wu, X.; Guo, Z.; Fan, F.; Song, R.; Wang, J.; Wei, L.; Teng, H. Resveratrol attenuates high glucose-induced nucleus pulposus cell apoptosis and senescence through activating the ROS-mediated PI3K/Akt pathway. Biosci. Rep., 2018, 38(2)BSR20171454
Jara, P.; Spies, J.; Cárcamo, C.; Arancibia, Y.; Vargas, G.; Martin, C.; Salas, M.; Otth, C.; Zambrano, A. The effect of resveratrol on cell viability in the Burkitt’s lymphoma cell line Ramos. Molecules, 2017, 23(1), 14.
Frendo-Cumbo, S.; Macpherson, R.; Wright, D. Beneficial effects of combined resveratrol and metformin therapy in treating diet-induced insulin resistance. Physiol. Rep., 2016, 4(15), 1-12.
Almajdoob, S.; Hossain, E.; Anand-Srivastava, M. Resveratrol attenuates hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats: Role of ROS and ROS-mediated cell signaling. Vascul. Pharmacol., 2017, 101, 48-56.
Calabrese, E.J.; Mattson, M.P.; Calabrese, V. Resveratrol commonly displays hormesis: occurrence and biomedical significance. Hum. Exp. Toxicol., 2010, 29(12), 980-1015.
Borriello, A.; Bencivenga, D.; Caldarelli, I.; Tramontano, A.; Borgia, A.; Prozzi, A.V.; Oliva, A.; DellaRagione, F. Resveratrol and cancer treatment: Is hormesis a yet unsolved matter. Curr. Pharm. Des., 2013, 19(30), 5384-5393.
Bao, J.; Huang, B.; Zou, L.; Chen, S.; Zhang, C.; Zhang, Y.; Chen, M.; Wan, J.B.; Su, H.; Wang, Y.; He, C. Hormetic effect of berberine attenuates the anticancer activity of chemotherapeutic agents. PLoS One, 2015, 10(9)e0139298
Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; Borras, C. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015.837042
Sun, Y.; Jin, C.; Zhang, X.; Jia, W.; Le, J.; Ye, J. Restoration of GLP-1 secretion by Berberine is associated with protection of colon enterocytes from mitochondrial overheating in diet-induced obese mice. Nutr. Diabetes, 2018, 8, 53.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy