Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

The Immune Functions of α1 Acid Glycoprotein

Author(s): Fabrizio Ceciliani* and Cristina Lecchi

Volume 20, Issue 6, 2019

Page: [505 - 524] Pages: 20

DOI: 10.2174/1389203720666190405101138

Price: $65

Abstract

α1-acid glycoprotein (orosomucoid, AGP) is an Acute Phase Protein produced by liver and peripheral tissues in response to systemic reaction to inflammation. AGP functions have been studied mostly in human, cattle and fish, although the protein has been also found in many mammalian species and birds. AGP fulfils at least two set of functions, which are apparently different from each other but in fact intimately linked. On one hand, AGP is an immunomodulatory protein. On the other hand, AGP is one of the most important binding proteins in plasma and, beside modulating pharmacokinetics and pharmacodynamics of many drugs, it is also able to bind and transport several endogen ligands related to inflammation. The focus of this review is the immunomodulatory activity of AGP. This protein regulates every single event related to inflammation, including binding of pathogens and modulating white blood cells activity throughout the entire leukocyte attacking sequence. The regulation of AGP activity is complex: the inflammation induces not only an increase in AGP serum concentration, but also a qualitative change in its carbohydrate moiety, generating a multitude of glycoforms, each of them with different, and sometimes opposite and contradictory, activities. We also present the most recent findings about the relationship between AGP and adipose tissue: AGP interacts with leptin receptor and, given its immunomodulatory function, it may be included among the potential players in the field of immunometabolism.

Keywords: Orosomucoid, alpha1-acid glycoprotein, immunomodulation, leukocytes, inflammation, glycoforms.

Graphical Abstract
[1]
Rock, K.L.; Latz, E.; Ontiveros, F.; Kono, H. The sterile inflammatory response. Annu. Rev. Immunol., 2010, 28, 321-342.
[2]
Serhan, C.N.; Chiang, N.; Dalli, J.; Levy, B.D. Lipid mediators in the resolution of inflammation. Cold Spring Harb. Perspect. Biol., 2015, 7, a016311.
[3]
Gabay, C.; Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med., 1999, 340, 448-454.
[4]
Brodsky, I.E.; Medzhitov, R. Targeting of immune signalling networks by bacterial pathogens. Nat. Cell Biol., 2009, 11, 521-526.
[5]
Krysko, D.V.; Agostinis, P.; Krysko, O.; Garg, A.D.; Bachert, C.; Lambrecht, B.N.; Vandenabeele, P. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol., 2011, 32, 157-164.
[6]
Pasare, C.; Medzhitov, R. Toll-like receptors: Linking innate and adaptive immunity. Microbes Infect., 2004, 6, 1382-1387.
[7]
Gauldie, J.; Richards, C.; Harnish, D.; Lansdorp, P.; Baumann, H. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc. Natl. Acad. Sci. USA, 1987, 84, 7251-7255.
[8]
Ceciliani, F.; Giordano, A.; Spagnolo, V. The systemic reaction during inflammation: The acute-phase proteins. Protein Pept. Lett., 2002, 9, 211-223.
[9]
Kann, R.K.C.; Seddon, J.M.; Henning, J.; Meers, J. Acute phase proteins in healthy and sick cats. Res. Vet. Sci., 2012, 93, 649-654.
[10]
Murata, H.; Shimada, N.; Yoshioka, M. Current research on acute phase proteins in veterinary diagnosis: An overview. Vet. J., 2004, 168, 28-40.
[11]
Petersen, H.H.; Nielsen, J.P.; Heegaard, P.M.H. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res., 2004, 35, 163-187.
[12]
Heegaard, P.M.H.; Miller, I.; Sorensen, N.S.; Soerensen, K.E.; Skovgaard, K. Pig α1-acid glycoprotein: Characterization and first description in any species as a negative acute phase protein. PLoS One, 2013, 8, e68110.
[13]
Gambacorti-Passerini, C.; le Coutre, P.; Zucchetti, M.; D’Incalci, M. Binding of imatinib by alpha(1)-acid glycoprotein. Blood, 2002, 100, 367-368.
[14]
Ceciliani, F.; Pocacqua, V. The acute phase protein alpha1-acid glycoprotein: A model for altered glycosylation during diseases. Curr. Protein Pept. Sci., 2007, 8, 91-108.
[15]
Chiu, K.M.; Mortensen, R.F.; Osmand, A.P.; Gewurz, H. Interactions of alpha1-acid glycoprotein with the immune system. I. purification and effects upon lymphocyte responsiveness. Immunology, 1977, 32, 997-1005.
[16]
Ceciliani, F.; Pocacqua, V.; Miranda-Ribera, A.; Bronzo, V.; Lecchi, C.; Sartorelli, P. Alpha(1)-acid glycoprotein modulates apoptosis in bovine monocytes. Vet. Immunol. Immunopathol., 2007, 116, 145-152.
[17]
Åkerstrom, B.; Flower, D.R.; Salier, J.P. Lipocalins: Unity in diversity. Biochim. Biophys. Acta, 2000, 1482, 1-8.
[18]
Lakshmi, B.; Mishra, M.; Srinivasan, N.; Archunan, G. Structure-based phylogenetic analysis of the lipocalin superfamily. PLoS One, 2015, 10, e0135507.
[19]
Lögdberg, L.; Wester, L. Immunocalins: A lipocalin subfamily that modulates immune and inflammatory responses. Biochim. Biophys. Acta, 2000, 1482, 284-297.
[20]
Nakano, M.; Kakehi, K.; Tsai, M.H.; Lee, Y.C. Detailed structural features of glycan chains derived from alpha1-acid glycoproteins of several different animals: The presence of hypersialylated, O-acetylated sialic acids but not disialy1 residues. Glycobiology, 2004, 14, 431-441.
[21]
Schmid, K.; Kaufmann, H.; Isemura, S.; Bauer, F.; Emura, J.; Motoyama, T.; Ishiguro, M.; Nanno, S. Structure of 1 -acid glycoprotein. The complete amino acid sequence, multiple amino acid substitutions, and homology with the immunoglobulins. Biochemistry, 1973, 12, 2711-2724.
[22]
Schmid, K.; Bürgi, W.; Collins, J.H.; Nanno, S. The disulfide bonds of alpha1-acid glycoprotein. Biochemistry, 1974, 13, 2694-2697.
[23]
Colombo, S.; Buclin, T.; Décosterd, L.A.; Telenti, A.; Furrer, H.; Lee, B.L.; Biollaz, J.; Eap, C.B. Orosomucoid (Alpha1-Acid Glycoprotein) plasma concentration and genetic variants: Effects on human immunodeficiency virus protease inhibitor clearance and cellular accumulation. Clin. Pharmacol. Ther., 2006, 80, 307-318.
[24]
Dente, L.; Pizza, M.G.; Metspalu, A.; Cortese, R. Structure and expression of the genes coding for human alpha1-acid glyco-protein. EMBO J., 1987, 6, 2289-2296.
[25]
Eap, C.B.; Baumann, P. The genetic polymorphism of human alpha1-acid glycoprotein. Prog. Clin. Biol. Res., 1989, 300, 111-125.
[26]
Yuasa, I.; Weidinger, S.; Umetsu, K.; Suenaga, K.; Ishimoto, G.; Eap, B.C.; Duche, J.C.; Baumann, P. Orosomucoid system: 17 additional orosomucoid variants and proposal for a new nomenclature. Vox Sang., 1993, 64, 47-55.
[27]
Chang, C.J.; Lai, M.A.; Chen, D.S.; Lee, S.C. Structure and expression of mouse alpha1 -acid glycoprotein gene-3 (AGP-3). DNA Cell Biol., 1992, 11, 315-320.
[28]
Lee, S.C.; Chang, C.J.; Lee, Y.M.; Lei, H.Y.; Lai, M.Y.; Chen, D.S. Molecular cloning of CDNAs corresponding to two genes of alpha1-acid glycoprotein and characterization of two alleles of AGP-1 in the mouse. DNA (Mary Ann Liebert, Inc.), 1989, 8, 245-251.
[29]
Prowse, K.R.; Baumann, H. Molecular characterization and acute phase expression of the multiple mus caroli alpha1-Acid Glycoprotein (AGP) genes: Differences in glucocorticoid stimulation and regulatory elements between the rat and mouse AGP genes. J. Biol. Chem., 1990, 265, 10201-10209.
[30]
Elsik, C.G.; Tellam, R.L.; Worley, K.C.; Gibbs, R.A.; Muzny, D.M.; Weinstock, G.M.; Adelson, D.L.; Eichler, E.E.; Elnitski, L.; Guigo, R.; Hamernik, D.L.; Kappes, S.M.; Lewin, H.A.; Lynn, D.J.; Nicholas, F.W.; Reymond, A.; Rijnkels, M.; Skow, L.C.; Zdobnov, E.M.; Schook, L.; Womack, J.; Alioto, T.; Antonarakis, S.E.; Astashyn, A.; Chapple, C.E.; Chen, H-C.; Chrast, J.; Camara, F.; Ermolaeva, O.; Henrichsen, C.N.; Hlavina, W.; Kapustin, Y.; Kiryutin, B.; Kitts, P.; Kokocinski, F.; Landrum, M.; Maglott, D.; Pruitt, K.; Sapojnikov, V.; Searle, S.M.; Solovyev, V.; Souvorov, A.; Ucla, C.; Wyss, C.; Anzola, J.M.; Gerlach, D.; Elhaik, E.; Graur, D.; Reese, J.T.; Edgar, R.C.; McEwan, J.C.; Payne, G.M.; Raison, J.M.; Junier, T.; Kriventseva, E.V.; Eyras, E.; Plass, M.; Donthu, R.; Larkin, D.M.; Reecy, J.; Yang, M.Q.; Chen, L.; Cheng, Z.; Chitko-McKown, C.G.; Liu, G.E.; Matukumalli, L.K.; Song, J.; Zhu, B.; Bradley, D.G.; Brinkman, F.S.L.; Lau, L.P.L.; Whiteside, M.D.; Walker, A.; Wheeler, T.T.; Casey, T.; German, J.B.; Lemay, D.G.; Maqbool, N.J.; Molenaar, A.J.; Seo, S.; Stothard, P.; Baldwin, C.L.; Baxter, R.; Brinkmeyer-Langford, C.L.; Brown, W.C.; Childers, C.P.; Connelley, T.; Ellis, S.A.; Fritz, K.; Glass, E.J.; Herzig, C.T.A.; Iivanainen, A.; Lahmers, K.K.; Bennett, A.K.; Dickens, C.M.; Gilbert, J.G.R.; Hagen, D.E.; Salih, H.; Aerts, J.; Caetano, A.R.; Dalrymple, B.; Garcia, J.F.; Gill, C.A.; Hiendleder, S.G.; Memili, E.; Spurlock, D.; Williams, J.L.; Alexander, L.; Brownstein, M.J.; Guan, L.; Holt, R.A.; Jones, S.J.M.; Marra, M.A.; Moore, R.; Moore, S.S.; Roberts, A.; Taniguchi, M.; Waterman, R.C.; Chacko, J.; Chandrabose, M.M.; Cree, A.; Dao, M.D.; Dinh, H.H.; Gabisi, R.A.; Hines, S.; Hume, J.; Jhangiani, S.N.; Joshi, V.; Kovar, C.L.; Lewis, L.R.; Liu, Y-s.; Lopez, J.; Morgan, M.B.; Nguyen, N.B.; Okwuonu, G.O.; Ruiz, S.J.; Santibanez, J.; Wright, R.A.; Buhay, C.; Ding, Y.; Dugan-Rocha, S.; Herdandez, J.; Holder, M.; Sabo, A.; Egan, A.; Goodell, J.; Wilczek-Boney, K.; Fowler, G.R.; Hitchens, M.E.; Lozado, R.J.; Moen, C.; Steffen, D.; Warren, J.T.; Zhang, J.; Chiu, R.; Schein, J.E.; Durbin, K.J.; Havlak, P.; Jiang, H.; Liu, Y.; Qin, X.; Ren, Y.; Shen, Y.; Song, H.; Bell, S.N.; Davis, C.; Johnson, A.J.; Lee, S.; Nazareth, L.V.; Patel, B.M.; Pu, L-L.; Vattathil, S.; Williams, R.L.; Curry, S.; Hamilton, C.; Sodergren, E.; Wheeler, D.A.; Barris, W.; Bennett, G.L.; Eggen, A.; Green, R.D.; Harhay, G.P.; Hobbs, M.; Jann, O.; Keele, J.W.; Kent, M.P.; Lien, S.; McKay, S.D.; McWilliam, S.; Ratnakumar, A.; Schnabel, R.D.; Smith, T.; Snelling, W.M.; Sonstegard, T.S.; Stone, R.T.; Sugimoto, Y.; Takasuga, A.; Taylor, J.F.; Van Tassell, C.P.; MacNeil, M.D.; Abatepaulo, A.R.R.; Abbey, C.A.; Ahola, V.; Almeida, I.G.; Amadio, A.F.; Anatriello, E.; Bahadue, S.M.; Biase, F.H.; Boldt, C.R.; Carroll, J.A.; Carvalho, W.A.; Cervelatti, E.P.; Chacko, E.; Chapin, J.E.; Cheng, Y.; Choi, J.; Colley, A.J.; de Campos, T.A.; De Donato, M.; Santos, I.K.F.M.; de Oliveira, C.J.F.; Deobald, H.; Devinoy, E.; Donohue, K.E.; Dovc, P.; Eberlein, A.; Fitzsimmons, C.J.; Franzin, A.M.; Garcia, G.R.; Genini, S.; Gladney, C.J.; Grant, J.R.; Greaser, M.L.; Green, J.A.; Hadsell, D.L.; Hakimov, H.A.; Halgren, R.; Harrow, J.L.; Hart, E.A.; Hastings, N.; Hernandez, M.; Hu, Z-L.; Ingham, A.; Iso-Touru, T.; Jamis, C.; Jensen, K.; Kapetis, D.; Kerr, T.; Khalil, S.S.; Khatib, H.; Kolbehdari, D.; Kumar, C.G.; Kumar, D.; Leach, R.; Lee, J.C-M.; Li, C.; Logan, K.M.; Malinverni, R.; Marques, E.; Martin, W.F.; Martins, N.F.; Maruyama, S.R.; Mazza, R.; McLean, K.L.; Medrano, J.F.; Moreno, B.T.; More, D.D.; Muntean, C.T.; Nandakumar, H.P.; Nogueira, M.F.G.; Olsaker, I.; Pant, S.D.; Panzitta, F.; Pastor, R.C.P.; Poli, M.A.; Poslusny, N.; Rachagani, S.; Ranganathan, S.; Razpet, A.; Riggs, P.K.; Rincon, G.; Rodriguez-Osorio, N.; Rodriguez-Zas, S.L.; Romero, N.E.; Rosenwald, A.; Sando, L.; Schmutz, S.M.; Shen, L.; Sherman, L.; Southey, B.R.; Lutzow, Y.S.; Sweedler, J.V.; Tammen, I.; Telugu, B.P.V.L.; Urbanski, J.M.; Utsunomiya, Y.T.; Verschoor, C.P.; Waardenberg, A.J.; Wang, Z.; Ward, R.; Weikard, R.; Welsh, T.H.; White, S.N.; Wilming, L.G.; Wunderlich, K.R.; Yang, J.; Zhao, F-Q. The genome sequence of taurine cattle: A window to ruminant biology and evolution. Science, 2009, 324, 522-528.
[31]
Ricca, G.A.; Hamilton, R.W.; McLean, J.W.; Conn, A.; Kalinyak, J.E.; Taylor, J.M. Rat alpha1-acid glycoprotein MRNA. cloning of double-stranded CDNA and kinetics of induction of MRNA levels following acute inflammation. J. Biol. Chem., 1981, 256, 10362-10368.
[32]
Ceciliani, F.; Pocacqua, V.; Provasi, E.; Comunian, C.; Bertolini, A.; Bronzo, V.; Moroni, P.; Sartorelli, P. Identification of the bovine alpha1-acid glycoprotein in colostrum and milk. Vet. Res., 2005, 36, 735-746.
[33]
Pocacqua, V.; Provasi, E.; Paltrinieri, S.; Gelain, E.; Comunian, C.; Ceciliani, F. Glycan moiety modifications of feline alpha1-acid glycoprotein in retrovirus (FIV, FeLV) affected cats. Vet. Immunol. Immunopathol., 2005, 107, 17-26.
[34]
Stone, R.T.; Maurer, R.A. Cloning and developmental regulation of alpha1 acid glycoprotein in swine. Dev. Genet., 1987, 8, 295-304.
[35]
Ray, B.K.; Ray, A. Molecular cloning and nucleotide sequence of complementary DNA encoding rabbit alpha1-acid glycoprotein. Biochem. Biophys. Res. Commun., 1991, 178, 507-513.
[36]
Schönfeld, D.L.; Ravelli, R.B.G.; Mueller, U.; Skerra, A. The 1.8-Å crystal structure of α1-acid glycoprotein (orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma lipocalin. J. Mol. Biol., 2008, 384, 393-405.
[37]
Nishi, K.; Ono, T.; Nakamura, T.; Fukunaga, N.; Izumi, M.; Watanabe, H.; Suenaga, A.; Maruyama, T.; Yamagata, Y.; Curry, S.; Otagiri, M. Structural insights into differences in drug-binding selectivity between two forms of human alpha1-acid glycoprotein genetic variants, the A and F1*S forms. J. Biol. Chem., 2011, 286, 14427-14434.
[38]
Matsumoto, K.; Sukimoto, K.; Nishi, K.; Maruyama, T.; Suenaga, A.; Otagiri, M. Characterization of ligand binding sites on the alpha1-acid glycoprotein in humans, bovines and dogs. Drug Metab. Pharmacokinet., 2002, 17, 300-306.
[39]
Nishi, K.; Maruyama, T.; Halsall, H.B.; Handa, T.; Otagiri, M. Binding of alpha1-acid glycoprotein to membrane results in a unique structural change and ligand release. Biochemistry, 2004, 43, 10513-10519.
[40]
Nishi, K.; Sakai, N.; Komine, Y.; Maruyama, T.; Halsall, H.B.; Otagiri, M. Structural and drug-binding properties of alpha(1)-acid glycoprotein in reverse micelles. Biochim. Biophys. Acta, 2002, 1601, 185-191.
[41]
Blom, N.; Gammeltoft, S.; Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol., 1999, 294, 1351-1362.
[42]
Blom, N.; Sicheritz-Pontén, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 2004, 4, 1633-1649.
[43]
Bhide, G.P.; Colley, K.J. Sialylation of N-glycans: Mechanism, cellular compartmentalization and function. Histochem. Cell Biol., 2017, 147, 149-174.
[44]
Budai, L.; Pollreisz, F.; Ozohanics, O.; Ludányi, K.; Drahos, L.; Vékey, K. Letter: Analysis of complex oligosaccharides using graphitized carbon liquid chromatography/mass spectrometry. Eur. J. Mass Spectrom. , 2008, 14, 419-422.
[45]
Ongay, S.; Neususs, C. Isoform differentiation of intact AGP from human serum by capillary electrophoresis-mass spectrometry. Anal. Bioanal. Chem., 2010, 398, 845-855.
[46]
Treuheit, M.J.; Costello, C.E.; Halsall, H.B. Analysis of the five glycosylation sites of human alpha1-acid glycoprotein. Biochem. J., 1992, 283(Pt 1), 105-112.
[47]
Poland, D.C.W.; García Vallejo, J-J.; Niessen, H.W.M.; Nijmeyer, R.; Calafat, J.; Hack, C.E.; Van het Hof, B.; Van Dijk, W. Activated human PMN synthesize and release a strongly fucosylated glycoform of alpha1-acid glycoprotein, which is transiently deposited in human myocardial infarction. J. Leukoc. Biol., 2005, 78, 453-461.
[48]
Rahman, M.M.D.; Miranda-Ribera, A.; Lecchi, C.; Bronzo, V.; Sartorelli, P.; Franciosi, F.; Ceciliani, F. Alpha(1)-acid glycoprotein is contained in bovine neutrophil granules and released after activation. Vet. Immunol. Immunopathol., 2008, 125, 71-81.
[49]
Lecchi, C.; Scarafoni, A.; Bronzo, V.; Martino, P.A.; Cavallini, A.; Sartorelli, P.; Ceciliani, F. Alpha1-acid glycoprotein modulates phagocytosis and killing of Escherichia coli by bovine polymorphonuclear leucocytes and monocytes. Vet. J., 2013, 196, 47-51.
[50]
Baumann, H.; Prowse, K.R.; Marinovic, S.; Won, K.A.; Jhreisa, G.P. Stimulation of hepatic acute phase response by cytokines and glucocorticoids. Ann. N. Y. Acad. Sci., 1989, 557, 280-296.
[51]
Baumann, H.; Gauldie, J. Regulation of hepatic acute phase plasma protein genes by hepatocyte stimulating factors and other mediators of inflammation. Mol. Biol. Med., 1990, 7, 147-159.
[52]
Alam, T.; Papaconstantinou, J. Interaction of acute-phase-inducible and liver-enriched nuclear factors with the promoter region of the mouse alpha1-acid glycoprotein gene-1. Biochemistry, 1992, 31, 1928-1936.
[53]
Wigmore, S.J.; Fearon, K.C.; Maingay, J.P.; Lai, P.B.; Ross, J. Interleukin-8 can mediate acute-phase protein production by isolated human hepatocytes. Am. J. Physiol., 1997, 273, E720-E726.
[54]
Ramsay, T.G.; Stoll, M.J.; Blomberg, L.A.; Caperna, T.J. Regulation of cytokine gene expression by orosomucoid in neonatal swine adipose tissue. J. Anim. Sci. Biotechnol., 2016, 7, 25.
[55]
Koj, A.; Guzdek, A.; Nakamura, T.; Kordula, T. Hepatocyte growth factor and retinoic acid exert opposite effects on synthesis of type 1 and type 2 acute phase proteins in rat hepatoma cells. Int. J. Biochem. Cell Biol., 1995, 27, 39-46.
[56]
Li, X.; Sumi, T.; Matsukawa, T.; Nakanishi, Y.; Ohba, Y. Thyroid hormone, all-trans retinoic acid, and 9-cis retinoic acid functioned as negative modulators of the effect of glucocorticoid on induction of alpha1-acid glycoprotein MRNA in RLN-10 cells. Biochem. Mol. Biol. Int., 1998, 45, 1-10.
[57]
Fournier, T.; Medjoubi-N, N.; Porquet, D. Alpha-1-acid glycoprotein. Biochim. Biophys. Acta, 2000, 1482, 157-171.
[58]
Weisman, S.; Goldsmith, B.; Winzler, R.; Lepper, M. Turnover of plasma orosomucoid in man. J. Lab. Clin. Med., 1961, 57, 7-15.
[59]
Brée, F.; Houin, G.; Barré, J.; Moretti, J.L.; Wirquin, V.; Tillement, J.P. Pharmacokinetics of intravenously administered 125i-labelled human alpha1-acid glycoprotein. Clin. Pharmacokinet., 1986, 11, 336-342.
[60]
Poland, D.C.W.; Kulik, W.; Van Dijk, W.; Hallemeesch, M.M.; Jakobs, C.; De Meer, K. Distinct glycoforms of human α1-acid glycoprotein have comparable synthesis rates: A [13c]valine-labelling study in healthy humans. Glycoconj. J., 2004, 20, 99-105.
[61]
Regoeczi, E.; Debanne, M.T.; Hatton, M.C.; Koj, A. Elimination of asialofetuin and asialoorosomucoid by the intact rat. Quantitative aspects of the hepatic clearance mechanism. Biochim. Biophys. Acta, 1978, 541, 372-384.
[62]
McCurdy, T.R.; Bhakta, V.; Eltringham-Smith, L.J.; Gataiance, S.; Fox-Robichaud, A.E.; Sheffield, W.P. In vivo clearance of alpha-1 acid glycoprotein is influenced by the extent of its N-linked glycosylation and by its interaction with the vessel wall. J. Biomed. Biotechnol., 2012, 2012, 1-11.
[63]
Kuribayashi, T.; Seita, T.; Momotani, E.; Yamazaki, S.; Hagimori, K.; Yamamoto, S. Elimination half-lives of acute phase proteins in rats and beagle dogs during acute inflammation. Inflammation, 2015, 38, 1401-1405.
[64]
Komori, H.; Nishi, K.; Uehara, N.; Watanabe, H.; Shuto, T.; Suenaga, A.; Maruyama, T.; Otagiri, M. Characterization of hepatic cellular uptake of alpha1-acid glycoprotein (AGP), part 2: involvement of hemoglobin beta-chain on plasma membranes in the uptake of human agp by liver parenchymal cells. J. Pharm. Sci., 2012, 101, 1607-1615.
[65]
Nishi, K.; Komori, H.; Kikuchi, M.; Uehara, N.; Fukunaga, N.; Matsumoto, K.; Watanabe, H.; Nakajou, K.; Misumi, S.; Suenaga, A.; Maruyama, T.; Otagiri, M. Characterization of the hepatic cellular uptake of alpha1-acid glycoprotein (AGP), Part 1: A peptide moiety of human AGP is recognized by the hemoglobin beta-chain on mouse liver parenchymal cells. J. Pharm. Sci., 2012, 101, 1599-1606.
[66]
Gendler, S.J.; Dermer, G.B.; Silverman, L.M.; Tökés, Z.A. Synthesis of alpha1-antichymotrypsin and alpha1-acid glycoprotein by human breast epithelial cells. Cancer Res., 1982, 42, 4567-4573.
[67]
Fournier, T.; Bouach, N.; Delafosse, C.; Crestani, B.; Aubier, M. Inducible expression and regulation of the alpha1-acid glycoprotein gene by alveolar macrophages: Prostaglandin E2 and cyclic AMP act as new positive stimuli. J. Immunol., 1999, 163, 2883-2890.
[68]
Sörensson, J.; Matejka, G.L.; Ohlson, M.; Haraldsson, B. Human endothelial cells produce orosomucoid, an important component of the capillary barrier. Am. J. Physiol., 1999, 276, H530-H534.
[69]
Rice, A.; Grimshaw, J.; Trocha-Grimshaw, J.; McCarron, P.; Wisdom, G.B. Identification of alpha1-acid glycoprotein (orosomucoid) in human synovial fluid by capillary electrophoresis. J. Chromatogr. A, 1997, 772, 305-311.
[70]
Poland, D.C.W.; Kratz, E.; Vermeiden, J.P.W.; De Groot, S.M.; Bruyneel, B.; De Vries, T.; Van Dijk, W. High level of alpha1-acid glycoprotein in human seminal plasma is associated with high branching and expression of lewisa groups on its glycans: Supporting evidence for a prostatic origin. Prostate, 2002, 52, 34-42.
[71]
Shibata, Y.; Tamura, K.; Ishida, N. Cultured human monocytes, granulocytes and a monoblastoid cell line (THP-1) synthesize and secrete immunosuppressive acidic protein (a type of alpha1-acid glycoprotein). Microbiol. Immunol., 1984, 28, 99-111.
[72]
Nakamura, T.; Board, P.G.; Matsushita, K.; Tanaka, H.; Matsuyama, T.; Matsuda, T. Alpha1-acid glycoprotein expression in human leukocytes: Possible correlation between alpha1-acid glycoprotein and inflammatory cytokines in rheumatoid arthritis. Inflammation, 1993, 17, 33-45.
[73]
Ceciliani, F.; Rahman, M.M.; Lecchi, C.; Maccalli, M.; Pisoni, G.; Sartorelli, P. Systemic and in vitro expression of goat α1-acid glycoprotein during caprine arthritis-encephalitis virus infection. Vet. Immunol. Immunopathol., 2009, 131, 50-58.
[74]
Gahmberg, C.G.; Andersson, L.C. Leukocyte surface origin of human alpha1-acid glycoprotein (orosomucoid). J. Exp. Med., 1978, 148, 507-521.
[75]
Tsukahara, Y.; Lian, Z.; Zhang, X.; Whitney, C.; Kluger, Y.; Tuck, D.; Yamaga, S.; Nakayama, Y.; Weissman, S.M.; Newburger, P.E. Gene expression in human neutrophils during activation and priming by bacterial lipopolysaccharide. J. Cell. Biochem., 2003, 89, 848-861.
[76]
Theilgaard-Monch, K. Highly glycosylated 1-acid glycoprotein is synthesized in myelocytes, stored in secondary granules, and released by activated neutrophils. J. Leukoc. Biol., 2005, 78, 462-470.
[77]
Thomas, T.; Fletcher, S.; Yeoh, G.C.; Schreiber, G. The expression of alpha(1)-acid glycoprotein MRNA during rat development. high levels of expression in the decidua. J. Biol. Chem., 1989, 264, 5784-5790.
[78]
Thomas, T.; Southwell, B.R.; Schreiber, G.; Jaworowski, A. Plasma protein synthesis and secretion in the visceral yolk sac of the fetal rat: Gene expression, protein synthesis and secretion. Placenta, 1990, 11, 413-430.
[79]
Lecchi, C.; Avallone, G.; Giurovich, M.; Roccabianca, P.; Ceciliani, F. Extra hepatic expression of the acute phase protein alpha1-acid glycoprotein in normal bovine tissues. Vet. J., 2009, 180, 256-258.
[80]
Dilda, F.; Pisani, L.F.; Rahman, M.M.; Modina, S.; Tessaro, I.; Sartorelli, P.; Ceciliani, F.; Lecchi, C. Distribution of acute phase proteins in the bovine forestomachs and abomasum. Vet. J., 2012, 192, 101-105.
[81]
Paltrinieri, S.; Marchini, I.; Gelain, M.E. Flow cytometric detection of alpha-1-acid glycoprotein on feline circulating leucocytes. Aust. Vet. J., 2012, 90, 291-296.
[82]
Guiraudie, G.; Pageat, P.; Cain, A.H.; Madec, I.; Nagnan-Le Meillour, P. Functional characterization of olfactory binding proteins for appeasing compounds and molecular cloning in the vomeronasal organ of pre-pubertal pigs. Chem. Senses, 2003, 28, 609-619.
[83]
Rødgaard, T.; Stagsted, J.; Christoffersen, B.Ø.; Cirera, S.; Moesgaard, S.G.; Sturek, M.; Alloosh, M.; Heegaard, P.M.H. Orosomucoid expression profiles in liver, adipose tissues and serum of lean and obese domestic pigs, göttingen minipigs and ossabaw minipigs. Vet. Immunol. Immunopathol., 2013, 151, 325-330.
[84]
Atemezem, A.; Mbemba, E.; Vassy, R.; Slimani, H.; Saffar, L.; Gattegno, L. Human alpha1-acid glycoprotein binds to CCR5 expressed on the plasma membrane of human primary macrophages. Biochem. J., 2001, 356, 121-128.
[85]
Sun, Y.; Yang, Y.; Qin, Z.; Cai, J.; Guo, X.; Tang, Y.; Wan, J.; Su, D-F.; Liu, X. The acute-phase protein orosomucoid regulates food intake and energy homeostasis via leptin receptor signaling pathway. Diabetes, 2016, 65, 1630-1641.
[86]
Huang, J.X.; Azad, M.A.K.; Yuriev, E.; Baker, M.A.; Nation, R.L.; Li, J.; Cooper, M.A.; Velkov, T. Molecular characterization of lipopolysaccharide binding to human α -1-acid glycoprotein. J. Lipids, 2012, 2012, 1-15.
[87]
Moore, D.F.; Rosenfeld, M.R.; Gribbon, P.M.; Winlove, C.P.; Tsai, C.M. Alpha-1-acid (AAG, orosomucoid) glycoprotein: Interaction with bacterial lipopolysaccharide and protection from sepsis. Inflammation, 1997, 21, 69-82.
[88]
McNamara, P.J.; Brouwer, K.R.; Gillespie, M.N. Autacoid binding to serum proteins. Interaction of Platelet Activating Factor (PAF) with human serum Alpha-1-Acid Glycoprotein (AAG). Biochem. Pharmacol., 1986, 35, 621-624.
[89]
Chachaj, W.; Bartecka, Z.; Małolepszy, J. Histamine binding proteins separated from human sera by the chromatographic method. Arch. Immunol. Ther. Exp. (Warsz.), 1980, 28, 947-951.
[90]
Boncela, J.; Smolarczyk, K.; Wyroba, E.; Cierniewski, C.S. Binding of PAI-1 to endothelial cells stimulated by thymosin beta4 and modulation of their fibrinolytic potential. J. Biol. Chem., 2006, 281, 1066-1072.
[91]
Zsila, F.; Mády, G. Biliverdin is the endogenous ligand of human serum α1-acid glycoprotein. Biochem. Biophys. Res. Commun., 2008, 372, 503-507.
[92]
Overhaus, M. Biliverdin protects against polymicrobial sepsis by modulating inflammatory mediators. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 290, G695-G703.
[93]
Schnitzer, J.E.; Pinney, E. Quantitation of specific binding of orosomucoid to cultured microvascular endothelium: Role in capillary permeability. Am. J. Physiol., 1992, 263, H48-H55.
[94]
Curry, F.E.; Rutledge, J.C.; Lenz, J.F. Modulation of microvessel wall charge by plasma glycoprotein orosomucoid. Am. J. Physiol., 1989, 257, H1354-H1359.
[95]
Muchitsch, E.M.; Teschner, W.; Linnau, Y.; Pichler, L. In vivo effect of alpha1-acid glycoprotein on experimentally enhanced capillary permeability in guinea-pig skin. Arch. Int. Pharmacodyn. Ther., 1996, 331, 313-321.
[96]
Kuebler, J.F.; Toth, B.; Yokoyama, Y.; Bland, K.I.; Rue, L.W.; Chaudry, I.H. Alpha1-acid-glycoprotein protects against trauma-hemorrhagic shock. J. Surg. Res., 2004, 119, 21-28.
[97]
Zhang, S.; Mark, K.S. Alpha1-acid glycoprotein induced effects in rat brain microvessel endothelial cells. Microvasc. Res., 2012, 84, 161-168.
[98]
Sörensson, J.; Ohlson, M.; Björnson, A.; Haraldsson, B. Orosomucoid has a CAMP-dependent effect on human endothelial cells and inhibits the action of histamine. Am. J. Physiol. Heart Circ. Physiol., 2000, 278, H1725-H1731.
[99]
Bogatcheva, N.V.; Zemskova, M.A.; Kovalenkov, Y.; Poirier, C.; Verin, A.D. Molecular mechanisms mediating protective effect of CAMP on Lipopolysaccharide (LPS)-induced Human Lung Microvascular Endothelial Cells (HLMVEC) hyperpermeability. J. Cell. Physiol., 2009, 221, 750-759.
[100]
Matsumoto, K.; Nishi, K.; Kikuchi, M.; Kadowaki, D.; Tokutomi, Y.; Tokutomi, N.; Nishi, K.; Suenaga, A.; Otagiri, M. Alpha1-acid glycoprotein suppresses rat acute inflammatory paw edema through the inhibition of neutrophils activation and prostaglandin E2 generation. Biol. Pharm. Bull., 2007, 30, 1226-1230.
[101]
Costello, M.J.; Gewurz, H.; Siegel, J.N. Inhibition of neutrophil activation by alpha1-acid glycoprotein. Clin. Exp. Immunol., 1984, 55, 465-472.
[102]
Lainé, E.; Couderc, R.; Roch-Arveiller, M.; Vasson, M.P.; Giroud, J.P.; Raichvarg, D. Modulation of human polymorphonuclear neutrophil functions by alpha1-acid glycoprotein. Inflammation, 1990, 14, 1-9.
[103]
Vasson, M.P.; Roch-Arveiller, M.; Couderc, R.; Baguet, J.C.; Raichvarg, D. Effects of alpha-1 acid glycoprotein on human polymorphonuclear neutrophils: Influence of glycan microheterogeneity. Clin. Chim. Acta, 1994, 224, 65-71.
[104]
Mestriner, F.L.C.; Spiller, F.; Laure, H.J.; Souto, F.O.; Tavares-Murta, B.M.; Rosa, J.C.; Basile-Filho, A.; Ferreira, S.H.; Greene, L.J.; Cunha, F.Q. Acute-phase protein alpha-1-acid glycoprotein mediates neutrophil migration failure in sepsis by a nitric oxide-dependent mechanism. Proc. Natl. Acad. Sci. USA, 2007, 104, 19595-19600.
[105]
Spiller, F.; Carlos, D.; Souto, F.O.; de Freitas, A.; Soares, F.S.; Vieira, S.M.; Paula, F.J.A.; Alves-Filho, J.C.; Cunha, F.Q. Alpha1-acid glycoprotein decreases neutrophil migration and increases susceptibility to sepsis in diabetic mice. Diabetes, 2012, 61, 1584-1591.
[106]
Mccurdy, T.R.; Patrick, A.L.; Eltringham-Smith, L.J.; Bhakta, V.; Sheffield, W.P.; Fox-Robichaud, A.E. Alpha-1 acid glycoprotein reduces hepatic leukocyte recruitment in murine models of either early endotoxemia or early sepsis. Microcirculation, 2014, 21, 74-83.
[107]
Lecchi, C.; Ceciliani, F.; Bernasconi, S.; Franciosi, F.; Bronzo, V.; Sartorelli, P. Bovine alpha-1 acid glycoprotein can reduce the chemotaxis of bovine monocytes and modulate CD18 expression. Vet. Res., 2008, 39, 50.
[108]
Gunnarsson, P.; Levander, L.; Pahlsson, P.; Grenegard, M. The acute-phase protein 1-acid glycoprotein (AGP) induces rises in cytosolic Ca2+ in neutrophil granulocytes via sialic acid binding immunoglobulin-like lectins (Siglecs). FASEB J., 2007, 21, 4059-4069.
[109]
Hampton, M.B.; Kettle, A.J.; Winterbourn, C.C. Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing. Blood, 1998, 92, 3007-3017.
[110]
Komori, H.; Watanabe, H.; Shuto, T.; Kodama, A.; Maeda, H.; Watanabe, K.; Kai, H.; Otagiri, M.; Maruyama, T. Alpha1-acid glycoprotein up-regulates CD163 via TLR4/CD14 protein pathway: Possible protection against hemolysis-induced oxidative stress. J. Biol. Chem., 2012, 287, 30688-30700.
[111]
Beckmann, S.; Long, T.; Scheld, C.; Geyer, R.; Caffrey, C.R.; Grevelding, C.G. Serum albumin and α-1 acid glycoprotein impede the killing of schistosoma mansoni by the tyrosine kinase inhibitor imatinib. Int. J. Parasitol. Drugs Drug Resist., 2014, 4, 287-295.
[112]
Liu, J.; Marey, M.A.; Kowsar, R.; Hambruch, N.; Shimizu, T.; Haneda, S.; Matsui, M.; Sasaki, M.; Hayakawa, H.; Pfarrer, C.; Miyamoto, A. An acute-phase protein as a regulator of sperm survival in the bovine oviduct: Alpha1-acid-glycoprotein impairs neutrophil phagocytosis of sperm in vitro. J. Reprod. Dev., 2014, 60, 342-348.
[113]
Miranda-Ribera, A.; Lecchi, C.; Bronzo, V.; Scaccabarozzi, L.; Sartorelli, P.; Franciosi, F.; Ceciliani, F. Down-regulatory effect of alpha1-acid glycoprotein on bovine neutrophil degranulation. Comp. Immunol. Microbiol. Infect. Dis., 2010, 33, 291-306.
[114]
Rinaldi, M.; Ceciliani, F.; Lecchi, C.; Moroni, P.; Bannerman, D.D. Differential effects of alpha1-acid glycoprotein on bovine neutrophil respiratory burst activity and IL-8 production. Vet. Immunol. Immunopathol., 2008, 126, 199-210.
[115]
Bories, P.N.; Feger, J.; Benbernou, N.; Rouzeau, J.D.; Agneray, J.; Durand, G. Prevalence of tri- and tetraantennary glycans of human alpha1-acid glycoprotein in release of macrophage inhibitor of interleukin-1 activity. Inflammation, 1990, 14, 315-323.
[116]
Tilg, H.; Vannier, E.; Vachino, G.; Dinarello, C.A.; Mier, J.W. Antiinflammatory properties of hepatic acute phase proteins: Preferential induction of interleukin 1 (IL-1) receptor antagonist over IL-1 beta synthesis by human peripheral blood mononuclear cells. J. Exp. Med., 1993, 178, 1629-1636.
[117]
Elg, S.A.; Mayer, A.R.; Carson, L.F.; Twiggs, L.B.; Hill, R.B.; Ramakrishnan, S. Alpha-1 acid glycoprotein is an immunosuppressive factor found in ascites from ovarian carcinoma. Cancer, 1997, 80, 1448-1456.
[118]
Aso, H.; Tamura, K.; Rose, M.T.; Tomioka, Y.; Mizugaki, M.; Ishida, N. Effect of alpha1-acidic glycoprotein in the ascitic fluid of cancer patients on human nk cells: Selective suppression of interferon-induced NK activation. Inflammation, 1999, 23, 117-129.
[119]
Su, S.J.; Yang, B.C.; Wang, Y.S.; Yeh, T.M. Alpha1-acid glycoprotein-induced tumor necrosis factor-alpha secretion of human monocytes is enhanced by serum binding proteins and depends on protein tyrosine kinase activation. Immunopharmacology, 1999, 41, 21-29.
[120]
Su, S.J.; Yeh, T.M. Effects of alpha1-acid glycoprotein on tissue factor expression and tumor necrosis factor secretion in human monocytes. Immunopharmacology, 1996, 34, 139-145.
[121]
Boutten, A.; Dehoux, M.; Deschenes, M.; Rouzeau, J.D.; Bories, P.N.; Durand, G. Alpha1-acid glycoprotein potentiates lipopolysaccharide-induced secretion of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha by human monocytes and alveolar and peritoneal macrophages. Eur. J. Immunol., 1992, 22, 2687-2695.
[122]
Shiyan, S.D.; Bovin, N.V. Carbohydrate composition and immunomodulatory activity of different glycoforms of alpha1-acid glycoprotein. Glycoconj. J., 1997, 14, 631-638.
[123]
Shemyakin, I.G.; Pukhalsky, A.L.; Stepanshina, V.N.; Shmarina, G.V.; Aleshkin, V.A.; Afanas’ev, S.S. Preventive and therapeutic effects of alpha-acid glycoprotein in mice infected with B. anthracis. Bull. Exp. Biol. Med., 2005, 140, 439-444.
[124]
Declerck, P.J.; De Mol, M.; Alessi, M.C.; Baudner, S.; Paques, E.P.; Preissner, K.T.; Muller-Berghaus, G.; Collen, D. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. identification as a multimeric form of S protein (vitronectin). J. Biol. Chem., 1988, 263, 15454-15461.
[125]
Berk, B.C.; Taubman, M.B.; Cragoe, E.J.; Fenton, J.W.; Griendling, K.K. Thrombin signal transduction mechanisms in rat vascular smooth muscle cells. Calcium and protein kinase C-dependent and -independent pathways. J. Biol. Chem., 1990, 265, 17334-17340.
[126]
Rocanin-Arjo, A.; Cohen, W.; Carcaillon, L.; Frère, C.; Saut, N.; Letenneur, L.; Alhenc-Gelas, M.; Dupuy, A.M.; Bertrand, M.; Alessi, M.C.; Germain, M.; Wild, P.S.; Zeller, T.; Cambien, F.; Goodall, A.H.; Amouyel, P.; Scarabin, P.Y.; Trégouët, D.A.; Morange, P.E. A meta-analysis of genome-wide association studies identifies ORM1 as a novel gene controlling thrombin generation potential. Blood, 2014, 123, 777-785.
[127]
Costello, M.; Fiedel, B.A.; Gewurz, H. Inhibition of platelet aggregation by native and desialised alpha-1 acid glycoprotein. Nature, 1979, 281, 677-678.
[128]
Snyder, S.; Coodley, E.L. Inhibition of platelet aggregation by alpha1-acid glycoprotein. Arch. Intern. Med., 1976, 136, 778-781.
[129]
Gunnarsson, P.; Levander, L.; Påhlsson, P.; Grenegård, M. A1-Acid Glycoprotein (AGP)-induced platelet shape change involves the rho/rho kinase signalling pathway. Thromb. Haemost., 2009, 102, 694-703.
[130]
Van Molle, W.; Libert, C.; Fiers, W.; Brouckaert, P. Alpha1-acid glycoprotein and alpha1-antitrypsin inhibit TNF-induced but not anti-fas-induced apoptosis of hepatocytes in mice. J. Immunol., 1997, 159, 3555-3564.
[131]
Van Molle, W.; Denecker, G.; Rodriguez, I.; Brouckaert, P.; Vandenabeele, P.; Libert, C. Activation of caspases in lethal experimental hepatitis and prevention by acute phase proteins. J. Immunol., 1999, 163, 5235-5241.
[132]
Lage, R.; Moscoso, I.; Fernández-Trasancos, Á.; Cebro, M.; Couselo, M.; Fandiño-Vaquero, R.; Bravo, S.B.; Sierra, J.; González-Juanatey, J.R.; Eiras, S. Differential behaviour of epicardial adipose tissue-secretomes with high and low orosomucoid levels from patients with cardiovascular disease in H9C2 cells. Mol. Cell. Endocrinol., 2015, 416, 77-87.
[133]
Daemen, M.A.; Heemskerk, V.H.; van’t Veer, C.; Denecker, G.; Wolfs, T.G.; Vandenabeele, P.; Buurman, W.A. Functional protection by acute phase proteins alpha(1)-acid glycoprotein and alpha(1)-antitrypsin against ischemia/reperfusion injury by preventing apoptosis and inflammation. Circulation, 2000, 102, 1420-1426.
[134]
de Vries, B.; Walter, S.J.; Wolfs, T.G.A.M.; Hochepied, T.; Räbinä, J.; Heeringa, P.; Parkkinen, J.; Libert, C.; Buurman, W.A. Exogenous alpha-1-acid glycoprotein protects against renal ischemia-reperfusion injury by inhibition of inflammation and apoptosis. Transplantation, 2004, 78, 1116-1124.
[135]
Irmak, S.; Oliveira-Ferrer, L.; Singer, B.B.; Ergün, S.; Tilki, D. Pro-angiogenic properties of Orosomucoid (ORM). Exp. Cell Res., 2009, 315, 3201-3209.
[136]
Ligresti, G.; Aplin, A.C.; Dunn, B.E.; Morishita, A.; Nicosia, R.F. The acute phase reactant orosomucoid-1 is a bimodal regulator of angiogenesis with time- and context-dependent inhibitory and stimulatory properties. PLoS One, 2012, 7, e41387.
[137]
Miranda-Ribera, A.; Passaniti, A.; Ceciliani, F.; Goldblum, S.E. A1-acid glycoprotein disrupts capillary-like tube formation of human lung microvascular endothelia. Exp. Lung Res., 2014, 40, 507-519.
[138]
Singh, V.K.; Hugh Fudenberg, H. Lymphocyte stimulation in vitro by orosomucoid glycoprotein. Immunol. Lett., 1986, 14, 9-13.
[139]
Bennett, M.; Schmid, K. Immunosuppression by human plasma alpha1-acid glycoprotein: importance of the carbohydrate moiety. Proc. Natl. Acad. Sci. USA, 1980, 77, 6109-6113.
[140]
Cheresh, D.A.; Haynes, D.H.; Distasio, J.A. Interaction of an acute phase reactant, alpha1-acid glycoprotein (Orosomucoid), with the lymphoid cell surface: A model for non-specific immune suppression. Immunology, 1984, 51, 541-548.
[141]
Pos, O.; Oostendorp, R.A.J.; Van Der Stelt, M.E.; Scheper, R.J.; Van Dijk, W. Con a-nonreactive human alpha1-acid glycoprotein (AGP) is more effective in modulation of lymphocyte proliferation than Con a-reactive AGP serum variants. Inflammation, 1990, 14, 133-141.
[142]
Havenaar, E.C.; Hoff, R.C.; Van Den Eijnden, D.H.; Van Dijk, W. Sialyl Lewis(x) epitopes do not occur on acute phase proteins in mice: Relationship to the absence of alpha3-fucosyltransferase in the liver. Glycoconj. J., 1998, 15, 389-395.
[143]
De Graaf, T.W. Inflammation-induced expression of sialyl lewis X-containing glycan structures on alpha1-acid glycoprotein (Orosomucoid) in human sera. J. Exp. Med., 1993, 177, 657-666.
[144]
Levander, L.; Gunnarsson, P.; Grenegård, M.; Rydén, I.; Påhlsson, P. Effects of alpha1-acid glycoprotein fucosylation on its Ca2+ mobilizing capacity in neutrophils. Scand. J. Immunol., 2009, 69, 412-420.
[145]
Williams, J.P.; Weiser, M.R.; Pechet, T.T.; Kobzik, L.; Moore, F.D.; Hechtman, H.B. Alpha1-acid glycoprotein reduces local and remote injuries after intestinal ischemia in the rat. Am. J. Physiol., 1997, 273, G1031-G1035.
[146]
Ceciliani, F.; Grossi, C.; Giordano, A.; Pocacqua, V.; Paltrinieri, S. Decreased sialylation of the acute phase protein alpha1-acid glycoprotein in Feline Infectious Peritonitis (FIP). Vet. Immunol. Immunopathol., 2004, 99, 229-236.
[147]
Rossi, G.; Capitani, L.; Ceciliani, F.; Restelli, L.; Paltrinieri, S. Hyposialylated alpha1-acid glycoprotein inhibits phagocytosis of feline neutrophils. Res. Vet. Sci., 2013, 95, 465-471.
[148]
Jo, M.; Kim, J-H.; Song, G.J.; Seo, M.; Hwang, E.M.; Suk, K. Astrocytic orosomucoid-2 modulates microglial activation and neuroinflammation. J. Neurosci., 2017, 37, 2878-2894.
[149]
Brinkman-Van der Linden, E.C.; Mollicone, R.; Oriol, R.; Larson, G.; Van den Eijnden, D.H.; Van Dijk, W. A Missense mutation in the FUT6 gene results in total absence of alpha3-fucosylation of human alpha1-acid glycoprotein. J. Biol. Chem., 1996, 271, 14492-14495.
[150]
Van Dijk, W.; Havenaar, E.C.; Brinkman-Van Der Linden, E.C.M. Alpha1-acid glycoprotein (Orosomucoid): Pathophysiological changes in glycosylation in relation to its function. Glycoconj. J., 1995, 12, 227-233.
[151]
Marques, A.T.; Nordio, L.; Lecchi, C.; Grilli, G.; Giudice, C.; Ceciliani, F. Widespread extrahepatic expression of acute-phase proteins in healthy chicken (Gallus gallus) tissues. Vet. Immunol. Immunopathol., 2017, 190, 10-17.
[152]
Kalmovarin, N.; Friedrichs, W.E.; O’Brien, H.V.; Linehan, L.A.; Bowman, B.H.; Yang, F. Extrahepatic expression of plasma protein genes during inflammation. Inflammation, 1991, 15, 369-379.
[153]
Martìnez Cordero, E.; Gonzàlez, M.M.; Aguilar, L.D.; Orozco, E.H.; Hernàndez Pando, R. Alpha-1-Acid Glycoprotein, Its Local Production and Immunopathological Participation in Experimental Pulmonary Tuberculosis. Tuberculosis , 2008, 88, 203-211.
[154]
Ríos-Barrera, V.A.; Campos-Peña, V.; Aguilar-León, D.; Lascurain, L.R.; Meraz-Ríos, M.A.; Moreno, J.; Figueroa-Granados, V.; Hernández-Pando, R. Macrophage and T lymphocyte apoptosis during experimental pulmonary tuberculosis: Their relationship to mycobacterial virulence. Eur. J. Immunol., 2006, 36, 345-353.
[155]
Kowsar, R.; Hambruch, N.; Marey, M.A.; Liu, J.; Shimizu, T.; Pfarrer, C.; Miyamoto, A. Evidence for a novel, local acute-phase response in the bovine oviduct: Progesterone and lipopolysaccharide up-regulate alpha1-acid-glycoprotein expression in epithelial cells in vitro. Mol. Reprod. Dev., 2014, 81, 861-870.
[156]
Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature, 2017, 542, 177-185.
[157]
Alfadda, A.A.; Fatma, S.; Chishti, M.A.; Al-Naami, M.Y.; Elawad, R.; Mendoza, C.D.O.; Jo, H.; Lee, Y.S. Orosomucoid serum concentrations and fat depot-specific MRNA and protein expression in humans. Mol. Cells, 2012, 33, 35-41.
[158]
Lee, Y.S.; Choi, J.W.; Hwang, I.; Lee, J.W.; Lee, J.H.; Kim, A.Y.; Huh, J.Y.; Koh, Y.J.; Koh, G.Y.; Son, H.J.; Masuzaki, H.; Hotta, K.; Alfadda, A.A.; Kim, J.B. Adipocytokine orosomucoid integrates inflammatory and metabolic signals to preserve energy homeostasis by resolving immoderate inflammation. J. Biol. Chem., 2010, 285, 22174-22185.
[159]
Asterholm, I.W.; McDonald, J.; Blanchard, P-G.; Sinha, M.; Xiao, Q.; Mistry, J.; Rutkowski, J.M.; Deshaies, Y.; Brekken, R.A.; Scherer, P.E. Lack of “immunological fitness” during fasting in metabolically challenged animals. J. Lipid Res., 2012, 53, 1254-1267.
[160]
Ferrari, M.; Cuenca-García, M.; Valtueña, J.; Moreno, L.A.; Censi, L.; González-Gross, M.; Androutsos, O.; Gilbert, C.C.; Huybrechts, I.; Dallongeville, J.; Sjöström, M.; Molnar, D.; De Henauw, S.; Gómez-Martínez, S.; de Moraes, A.C.F.; Kafatos, A.; Widhalm, K.; Leclercq, C. Inflammation profile in overweight/obese adolescents in Europe: An analysis in relation to iron status. Eur. J. Clin. Nutr., 2015, 69, 247-255.
[161]
Agra, R.M.; Varela-Román, A.; González-Ferreiro, R.; Viñuela, J.E.; Castro-Pais, A.; Fernández-Trasancos, Á.; Díaz-Rodríguez, E.; Álvarez, E.; Carreira, M.C.; Casanueva, F.F.; González-Juanatey, J.R.; Eiras, S. Orosomucoid as prognosis factor associated with inflammation in acute or nutritional status in chronic heart failure. Int. J. Cardiol., 2017, 228, 488-494.
[162]
Rahman, M.M.; Lecchi, C.; Sauerwein, H.; Mielenz, M.; Häußler, S.; Restelli, L.; Giudice, C.; Ceciliani, F. Expression of α1-acid glycoprotein and lipopolysaccharide binding protein in visceral and subcutaneous adipose tissue of dairy cattle. Vet. J., 2015, 203, 223-227.
[163]
Restelli, L.; Codrea, M.C.; Savoini, G.; Ceciliani, F.; Bendixen, E. LC-MS/MS analysis of visceral and subcutaneous adipose tissue proteomes in young goats with focus on innate immunity and inflammation related proteins. J. Proteomics, 2014, 108, 295-305.
[164]
Ramsay, T.G.; Blomberg, L.; Caperna, T.J. α 1-acid glycoprotein inhibits lipogenesis in neonatal swine adipose tissue. Animal, 2016, 10, 812-820.
[165]
Zeyda, M.; Stulnig, T.M. Adipose tissue macrophages. Immunol. Lett., 2007, 112, 61-67.
[166]
Akter, S.H.; Haussler, S.; Germeroth, D.; Von Soosten, D.; Danicke, S.; Sudekum, K.H.; Sauerwein, H. Immunohistochemical characterization of phagocytic immune cell infiltration into different adipose tissue depots of dairy cows during early lactation. J. Dairy Sci., 2012, 95, 3032-3044.
[167]
Häussler, S.; Germeroth, D.; Laubenthal, L.; Ruda, L.F.; Rehage, J.; Dänicke, S.; Sauerwein, H. Short communication: Immunohistochemical localization of the immune cell marker cd68 in bovine adipose tissue: Impact of tissue alterations and excessive fat accumulation in dairy cows. Vet. Immunol. Immunopathol., 2017, 183, 45-48.
[168]
Friedman, M.J. Control of malaria virulence by delta1-acid glycoprotein (Orosomucoid), an acute-phase (Inflammatory) reactant. Proc. Natl. Acad. Sci. USA, 1983, 80, 5421-5424.
[169]
Bharara, R.; Singh, S.; Pattnaik, P.; Chitnis, C.E.; Sharma, A. Structural analogs of sialic acid interfere with the binding of erythrocyte binding antigen-175 to glycophorin a, an interaction crucial for erythrocyte invasion by Plasmodium falciparum. Mol. Biochem. Parasitol., 2004, 138, 12-129.
[170]
Maeda, H.; Morinaga, T.; Mori, I.; Nishi, K. Further characterization of the effects of alpha-1-acid glycoprotein on the passage of human erythrocytes through micropores. Cell Struct. Funct., 1984, 9, 279-290.
[171]
Matsumoto, K.; Nishi, K.; Tokutomi, Y.; Irie, T.; Suenaga, A.; Otagiri, M. Effects of alpha1-acid glycoprotein on erythrocyte deformability and membrane stabilization. Biol. Pharm. Bull., 2003, 26, 123-126.
[172]
Percário, S.; Moreira, D.; Gomes, B.; Ferreira, M.; Gonçalves, A.; Laurindo, P.; Vilhena, T.; Dolabela, M.; Green, M. Oxidative stress in malaria. Int. J. Mol. Sci., 2012, 13, 16346-16372.
[173]
Gupta, S.K.; Oppenheim, J.D.; Glick, J.; Schulman, S.; Vanderberg, J.P. Lack of inhibitory effects of alpha1-acid glycoprotein (Orosomucoid) on Plasmodium falciparum invasion of human erythrocytes. Am. J. Trop. Med. Hyg., 1985, 34, 441-446.
[174]
Athamna, A.; Kramer, M.R.; Kahane, I. Adherence of mycoplasma pneumoniae to human alveolar macrophages. FEMS Immunol. Med. Microbiol., 1996, 15, 135-141.
[175]
Hochepied, T.; Van Molle, W.; Berger, F.G.; Baumann, H.; Libert, C. Involvement of the acute phase protein α1-acid glycoprotein in nonspecific resistance to a lethal gram-negative infection. J. Biol. Chem., 2000, 275, 14903-14909.
[176]
Seddiki, N.; Rabehi, L.; Benjouad, A.; Saffar, L.; Ferriere, F.; Gluckman, J.C.; Gattegno, L. Effect of mannosylated derivatives on HIV-1 infection of macrophages and lymphocytes. Glycobiology, 1997, 7, 1229-1236.
[177]
Watanabe, K.; Ishima, Y.; Akaike, T.; Sawa, T.; Kuroda, T.; Ogawa, W.; Watanabe, H.; Suenaga, A.; Kai, T.; Otagiri, M.; Maruyama, T. S-Nitrosated α-1-acid glycoprotein kills drug-resistant bacteria and aids survival in sepsis. FASEB J., 2013, 27, 391-398.
[178]
O’Reilly, E.L.; Eckersall, P.D. Acute phase proteins: A review of their function, behaviour and measurement in chickens. Worlds Poult. Sci. J., 2014, 70, 27-44.
[179]
Adler, K.L.; Peng, P.H.; Peng, R.K.; Klasing, K.C. The kinetics of hemopexin and a1-acid glycoprotein levels induced by injection of inflammatory agents in chickens. Avian Dis., 2001, 45, 289.
[180]
Chen, J.; Tellez, G.; Richards, J.D.; Escobar, J. Identification of potential biomarkers for gut barrier failure in broiler chickens. Front. Vet. Sci., 2015, 2, 14.
[181]
Nakamura, O.; Nozawa, Y.; Saito, E.; Ikeda, D.; Tsutsui, S. An alpha-1-acid glycoprotein-like protein as a major component of the ovarian cavity fluid of viviparous fish, Neoditrema ransonnetii (Perciformes, Embiotocidae). Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2009, 153, 222-229.
[182]
Nakamura, O.; Watabe, Y.; Matsumoto, N.; Takasugi, O.; Watanabe, A.; Tsutsui, S. Localization and possible function of NrF-AGP, an alpha-1-acid glycoprotein-like protein in viviparous fish Neoditrema ransonnetii (Perciformes, Embiotocidae). Fish Physiol. Biochem., 2014, 40, 1907-1915.
[183]
Saito, E.; Nakamura, O.; Yamada, H.; Tsutsui, S.; Watanabe, T. Suppression of lymphocyte proliferation by ovarian cavity fluid from the viviparous fish Neoditrema ransonnetii (Perciformes; Embiotocidae). Fish Shellfish Immunol., 2009, 27, 549-555.
[184]
Yokozawa, N.; Nakamura, O.; Saito, E.; Tsutsui, S. Ovarian cavity fluid of the viviparous surfperch Neoditrema ransonnetii suppresses the spontaneous cytotoxic activity of head-kidney leucocytes against xenogeneic targets. J. Fish Biol., 2015, 86, 139-147.
[185]
Machnes, Z.; Avtalion, R.; Shirak, A.; Trombka, D.; Wides, R.; Fellous, M.; Don, J. Male-Specific Protein (MSP): A new gene linked to sexual behavior and aggressiveness of tilapia males. Horm. Behav., 2008, 54, 442-449.
[186]
de Castro, E.; Sigrist, C.J.A.; Gattiker, A.; Bulliard, V.; Langendijk-Genevaux, P.S.; Gasteiger, E.; Bairoch, A.; Hulo, N. ScanProsite: Detection of PROSITE signature matches and prorule-associated functional and structural residues in proteins. Nucleic Acids Res., 2006, 34, W362-W365.
[187]
Schauer, R.; Kamerling, J.P. Glycoproteins II. Montreuil, J.; Vliegenhart, J.F.G; Schachter, H., Ed.; Elsevier: Amsterdam, 1997.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy