Review Article

分子伴侣HSP70和细胞凋亡的关键调节因子 - 综述

卷 19, 期 5, 2019

页: [315 - 325] 页: 11

弟呕挨: 10.2174/1566524019666190326114720

价格: $65

摘要

鉴于由于升高的温度变化而组成性地合成的分子伴侣,该热休克蛋白HSP70已显示与许多蛋白质生物发生密切相关,促进蛋白质的合成和折叠以及细胞生长期间新生肽的运输。 HSP70在蛋白质组装,调节和与多种蛋白质的相互作用中也起着至关重要的作用。应激诱导的细胞死亡处于凋亡调节因子Bcl-2家族的控制之下,并显示出促凋亡或抗细胞凋亡活性。受到热应激等应激条件的影响,据报道细胞表达HSP70表达升高。此外,这种分子伴侣已经表明通过修复,重新合成受损蛋白质和稳定未折叠蛋白质,在多个水平上起作用以抑制一些Bcl-2成员的应激诱导的凋亡信号。因此,HSP70合成可以作为致死条件下细胞存活和适应的基本恢复模式。

关键词: 分子伴侣,热休克蛋白,HSP70,细胞凋亡,Bcl-2家族蛋白,caspase。

Next »
[1]
Kanduc D, Mittelman A, Serpico R, et al. Cell death: Apoptosis versus necrosis.(Review) Int J Oncol 2002; 21(1): 165-70.
[2]
Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 1998; 17: 6124-34.
[3]
Kuwana T, Olson NH, Kiosses WB, et al. Pro-apoptotic Bax molecules densely populate the edges of membrane pores. Sci Rep 2016; 6: 27299.
[4]
Krumschnabel G, Sohm B, Bock F, Manzl C, Villunger A. The enigma of caspase-2: The laymen’s view. Cell Death Differ 2009; 16: 195-207.
[5]
Suzuki HI, Yamagata K, Sugimoto K, et al. Modulation of microRNA processing by p53. Nature 2009; 460(7254): 529-33.
[6]
Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 2001; 26: 61-6.
[7]
Salvador-Gallego R, Mund M, Cosentino K, et al. Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J 2016; 35(4): 389-401.
[8]
Gerner EW, Schneider MJ. Induced thermal resistance in HeLa cells. Nature 1975; 256: 500-2.
[9]
Shelton SN, Dillard CD, Robertson J. D. Activation of caspase-9, but not caspase-2 or caspase-8, is essential for heat-induced apoptosis in Jurkat cells. J Biol Chem 2010; 285: 40525-33.
[10]
Isomoto H, Oka M, Yano Y, et al. Expression of heat shock protein (Hsp) 70 and Hsp 40 in gastric cancer. Cancer Lett 2003; 198: 219-28.
[11]
Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104: 487-501.
[12]
Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL- 2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15(1): 49-63.
[13]
Meier P, Finch A, Evan G. Apoptosis in development. Nature 2000; 407: 796-801.
[14]
Antonsson B. Bax and other pro-apoptotic Bcl-2 family “killer-proteins” and their victim the mitochondrion. Cell Tissue Res 2001; 306: 347-61.
[15]
Hikisz P, Kiliańska ZM. PUMA, a critical mediator of cell death–one decade on from its discovery. Mol Cell Biol 2012; 17: 646-69.
[16]
Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis. Nature 2001; 411: 342.
[17]
Mosser DD, Morimoto RI. Molecular chaperones and the stress of oncogenesis. Oncogene 2004; 23: 2907-18.
[18]
Er E, Oliver L, Cartron PF, et al. Mitochondria as the target of the pro-apoptotic protein Bax. Biochim et Biophy Acta 2006; 1757: 1301-11.
[19]
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 2013; 82: 323-55.
[20]
Rohde M, Daugaard M, Jensen MH, et al. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 2005; 19: 570-82.
[21]
Tu S, McStay GP, Boucher LM, Mak T, Beere HM, Green DR. In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nat Cell Biol 2006; 8: 72-7.
[22]
Lithgow T, Strasser A, Driel V, Bertram JF. The Protein Product of the Oncogene bcl-2 is a Component of the Nuclear Envelope, the Endoplasmic Reticulum, and the Outer Mitochondrial Membrane. Cell Growth Differ 1994; 5: 411-7.
[23]
Riedl SJ, Salvesen GS. The apoptosome: signaling platform of cell death. Mol Cell Biol 2007; 8: 405-13.
[24]
Borner C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 2003; 39: 615-47.
[25]
Tsujimoto Y, Cossman J, Jaffe E, Croce CM. Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985; 228(4706): 1440-3.
[26]
Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 1988; 332: 800-5.
[27]
Yost HJ, Lindquist S. RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 1986; 45: 185-93.
[28]
Milleron RS, Bratton SB. ‘Heated’ debates in apoptosis. Cell Mol Life Sci 2007; 64: 2329-33.
[29]
Gotoh T, Terada K, Oyadomari S, Mori M. Hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 2004; 11: 390-402.
[30]
Iyer V, Chettiar ST, Grover M, Rajyaguru P, Nageshan RK, Tatu U. Giardia lamblia Hsp90 pre-mRNAs undergo self-splicing to generate mature RNA in an in vitro trans-splicing reaction. FEBS Lett 2019; 593(4): 433-42.
[31]
Cotter TG. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 2009; 9: 501-7.
[32]
Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser D. D. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 2005; 280: 38729-39.
[33]
Zhang Z, Song T, Zhang T, et al. A novel BH3 mimetic S1 potently induces Bax/Bak-dependent apoptosis by targeting both Bcl-2 and Mcl-1. Int J Cancer 2011; 128(7): 1724-35.
[34]
Tait SWG, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010; 11: 621-32.
[35]
Buchberger A, Bukau B, Sommer T. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell Biol 2010; 40(2): 238-52.
[36]
Beere HM, Wolf BB, Cain K, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000; 2: 469-75.
[37]
Mosser DD, Caron AW, Bourget L, et al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 2000; 20: 7146-59.
[38]
Chen HC, Kanai M, Inoue-Yamauchi A, et al. An interconnected hierarchical model of cell death regulation by the BCL-2 family. Nat Cell Biol 2015; 17(10): 1270-81.
[39]
Voellmy R, Boellmann F. Chaperone regulation of the heat shock protein response. Adv Exp Med Biol 2007; 594: 89-99.
[40]
Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Cancer 1972; 26: 239.
[41]
Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature 2011; 475: 324-32.
[42]
Gavathiotis E, Suzuki M, Davis ML, et al. BAX activation is initiated at a novel interaction site. Nature 2008; 455(7216): 1076-81.
[43]
Richter K, Haslbeck M, Buchner J. The heat shock response: life on the vergeof death. Mol Cell Biol 2010; 40(2): 253-66.
[44]
Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell Biol 2000; 102: 33-42.
[45]
Chipuk JE, Moldoveanu T, Llambi F, et al. The BCL-2 family reunion. Mol Cell Biol 2010; 37: 299-310.
[46]
Lazarev VF, Sverchinsky DV, Mikhaylova ER, et al. Sensitizing tumor cells to conventional drugs: HSP70 chaperone inhibitors, their selection and application in cancer models. Cell Death Dis 2018; 9(2): 41.
[47]
Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007; 26: 1324-37.
[48]
Antignani A, Youle RJ. How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane? Cell Biol 2006; 18: 685-9.
[49]
Meier P, Vousden KH. Lucifer’s labyrinth: ten years of path finding in cell death. Mol Cell Biol 2007; 28: 746-54.
[50]
Steel R, Doherty JP, Buzzard K, Clemons N, Hawkins CJ, Anderson RL. Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J Biol Chem 2004; 279: 51490-9.
[51]
Pagliari LJ, Kuwana T, Bonzon C, et al. The multidomain proapoptotic molecules Bax and Bak are directly activated by heat. Proc Natl Acad Sci USA 2005; 102: 17975-80.
[52]
Pelham HR. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 1986; 46: 959-61.
[53]
Ritossa F. Discovery of the heat shock response. Cell Stress Chaperones 1996; 1: 97-8.
[54]
Strasser A, Cory S, Adams JM. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J 2011; 30: 3667-83.
[55]
Li GC, Mivechi NF, Weitzel G. Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Int J Hyperthermia 1995; 11: 459-88.
[56]
Ritossa FM. Experimental activation of specific loci in polytene chromosomes of drosophila. Exp Cell Res 1964; 35: 601-7.
[57]
Muchmore SW, Sattler M, Liang H, et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 1996; 38: 335-41.
[58]
Cain K, Bratton SB, Cohen GM. The Apaf-1 apoptosome: a large caspase-activating complex. Biochim Biophys Acta 2002; 84: 203-14.
[59]
Wilmink GJ, Roth CL, Ibey BL, et al. Identification of microRNAs associated with hyperthermia-induced cellular stress response. Cell Stress Chaperones 2010; 15: 1027-38.
[60]
Mirault ME, Goldschmidt-Clermont M, Moran L, Arrigo AP, Tissieres A. The effect of heat shock on gene expression in Drosophila melanogaster. Cold Spring Harb Symp Quant Biol 1978; 42(Pt 2): 819-27.
[61]
Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells. Cell 2010; 140: 619-30.
[62]
Penke B, Paragi G, Gera J, et al. The role of lipids and membranes in the pathogenesis of Alzheimer’s disease: A comprehensive view. Curr Alzheimer Res 2018; 5(13): 1191-2.
[63]
Screaton G, Xu XN. T cell life and death signaling via TNF-receptor family members. Curr Opin Immunol 2000; 12: 316-22.
[64]
Hanahan D, Weinberg R. The hallmarks of cancer. Cell 2000; 100: 57-70.
[65]
Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 2008; 22: 1427-38.
[66]
Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 1998; 12: 3788-96.
[67]
Stankiewicz AR, Livingstone AM, Mohseni N, Mosser DD. Regulation of heat-induced apoptosis by Mcl-1 degradation and its inhibition by Hsp70. Cell Death Differ 2009; 16: 638-47.
[68]
Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Cell Biol 2000; 10: 369-77.
[69]
Chipuk JE, Green DR. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Cell Biol 2008; 18: 157-64.
[70]
Willis SN, Fletcher JI, Kaufmann T, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 2007; 315(5813): 856-9.
[71]
Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity 2009; 30(2): 180-92.
[72]
Tsuruta F, Sunayama J, Mori Y, et al. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 2004; 23: 1889-99.
[73]
Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 2010; 11: 515-28.
[74]
Chatterjee S, Burns TF. Targeting heat shock proteins in cancer: A promising therapeutic approach. Int J Mol Sci 2017; 18(9): 1978.
[75]
Chirico WJ, Waters MG, Blobel G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 1988; 332: 805-10.
[76]
Zou H, Li Y, Liu X, Wang X. An APAF-1 Cytochrome c Multimeric Complex is a Functional Apoptosome that Activates Procaspase-9. J Biochem 1999; 274: 11549-56.
[77]
Mosser DD, Martin LH. Induced thermotolerance to apoptosis in a human T lymphocyte cell line. J Cell Physiol 1992; 151: 561-70.
[78]
Golstein P. Cell death in us and others. Science 1998; 281: 1283-3.
[79]
Huang DC, Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 2000; 103: 839-42.
[80]
van Delft MF, Wei AH, Mason KD, et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 10(5): 389-99.
[81]
Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440-2.
[82]
Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 2004; 5: 781-91.
[83]
Huang DC, Hahne M, Schroeter M, et al. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-xL. Proc Natl Acad Sci USA 1999; 96(26): 14871-6.
[84]
Pirkkala L, Nykanen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 2001; 15: 1118-31.
[85]
Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94: 491-501.
[86]
Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9: 47-59.
[87]
Krammer PH. CD95’s deadly mission in the immune cells. Nature 2000; 407: 789795.
[88]
Zuiderweg ER, Hightower LE, Gestwicki JE. The remarkable multivalency of the Hsp70 chaperones. Cell Stress Chaperones 2017; 22: 173-89.
[89]
Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 1997; 17: 5317-27.
[90]
Gabai VL, Meriin AB, Mosser DD, et al. Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 1997; 272: 18033-7.
[91]
Zamzami N, Kroemer G. Review: The mitochondrion in apoptosis: how Pandora’s box opens. Mol Cell Biol 2001; 2: 46-57.
[92]
Zhang Z, Jin L, Qian X, et al. Novel Bcl-2 Inhibitors: Discovery and mechanism study of small organic apoptosis-inducing agents. ChemBioChem 2007; 8(1): 113-21.
[93]
Große L, Wurm CA, Brüser C, et al. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J 2016; 35(4): 2-13.
[94]
Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: An overview. Oncogene 2008; 27: 1-19.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy