Generic placeholder image

Current Organic Chemistry


ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Application of Chitosan and Chitosan Derivatives as Bio Supported Catalyst in the Cross Coupling Reactions

Author(s): Fatemeh Rafiee*

Volume 23, Issue 4, 2019

Page: [390 - 408] Pages: 19

DOI: 10.2174/1385272823666190318164223

Price: $65


The present review article surveys an outline on the most recent efforts and exciting developments (between 2010-2018 years) in the application of chitosan and modified chitosan derivatives as bio support for metal immobilization in the cross coupling reactions. The procedures incorporated in this review comprise metal nanoparticles (Pd, Ni, Cu, Au, Co) or metal ions immobilization on non-modified chitosan, porous chitosan microspheres, chitosan hybrid with other organic and inorganic polymers and functionalized chitosan with different ligands such as amine, amide, thiourea, amino acid, carbene and Schiff base derivatives. Also, in each case, the catalytic efficiency was described in various cross coupling reactions.

Keywords: Chitosan, modified chitosan, biopolymer supported catalysts, functionalized chitosan metal complexes, metal immobilization, cross coupling reactions.

Graphical Abstract
Molnár, A.; Papp, A. The use of polysaccharides and derivatives in palladium-catalyzed coupling reactions. Catal. Sci. Technol., 2014, 4, 295-310.
Santos, M.R.; Rodrigues, M.V.R.; Santos, A.B.S.; Valerio, M.G.; Martins, G.B.C.; Sucupira, R.R.; Meneghetti, L.; Suarez, P.A.Z. Metal-cellulose catalytic systems for biodiesel preparation and reductive stabilization. J. Mol. Catal. A Chem., 2016, 422, 131-141.
Dewan, A.; Bharali, P.; Bora, U.; Thakur, A.J. Starch assisted palladium (0) nanoparticles as in situ generated catalysts for room temperature Suzuki–Miyaura reactions in water. RSC Adv., 2016, 6, 11758-11762.
Keshipour, S.; Kalam Khalteh, N. Oxidation of ethylbenzene to styrene oxide in the presence of cellulose‐supported Pd magnetic nanoparticles. Appl. Organomet. Chem., 2016, 30, 653-656.
Guibal, E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol, 2004, 38, 43-74.
Guibal, E. Heterogeneous catalysis on chitosan-based materials: A review. Prog. Polym. Sci., 2005, 30, 71-109.
Kadib, A.E.I. Chitosan as a sustainable organocatalyst: A concise overview. ChemSusChem, 2015, 8, 217-244.
Kyzas, G.Z.; Bikiaris, D.N. Recent modifications of chitosan for adsorption applications: A critical and systematic review. Mar. Drugs, 2015, 13, 312-337.
Lee, M.; Chen, B.Y.; Den, W. Chitosan as a natural polymer for heterogeneous catalysts support: A short review on its applications. Appl. Sci., 2015, 5, 1272-1283.
Pestov, A.; Bratskaya, S. Chitosan and its derivatives as highly efficient polymer ligands. Molecules, 2016, 21, 330-364.
Liu, Y.; Peng, C.; Linyong, S.; Fang, Y. Synthesis of silver nanoparticles by gamma-ray irradiation in acetic water solution containing chitosan. Radiat. Phys. Chem., 2007, 76, 1165-1168.
Huang, H.; Yang, X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr. Res., 2004, 339, 2627-2631.
Adlim, M.; Bakar, M.A.; Liew, K.Y.; Ismail, J. Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J. Mol. Catal. A Chem., 2004, 212, 141-149.
Guibal, E.; Vincent, T. Chitosan-supported palladium catalyst. IV. Influence of temperature on nitrophenol degradation and thermodynamic parameters. J. Environ. Manage., 2004, 71, 15-23.
Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+2] Huisgen cycloaddition. Angew. Chem. Int. Ed. Engl., 2009, 48, 5916-5920.
Keshipour, S.; Ahmadi, F.; Seyyedi, B. Chitosan-modified Pd (II)-d-penicillamine: Preparation, characterization and catalyst application. Cellulose, 2017, 24, 1455-1462.
Huang, G.; Cai, C.C.; Luo, J.; Zhou, H.; Guo, Y.A.; Liu, S.Y. Highly selective oxidation of toluene using air over [Fe(III)TPP]Cl supported on chitosan. Can. J. Chem., 2008, 86, 199-204.
Kumar, S.; Singhal, N.; Singh, R.K.; Gupta, P.; Singh, R.; Jain, S.L. Dual catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide using isobutyraldehyde as the sacrificial reductant. Dalton Trans., 2015, 44, 11860-11866.
Wang, H.; Sun, W.; Xia, C. An easily recoverable and efficient catalyst for heterogeneous cyclopropanation of olefins. J. Mol. Catal. A Chem., 2003, 206, 199-203.
Peirano, F.; Vincent, T.; Quignard, F.; Robitzer, M.; Guibal, E. Palladium supported on chitosan hollow fiber for nitrotoluene hydrogenation. J. Membr. Sci., 2009, 329, 30-45.
Zhou, J.; Dong, Z.; Yang, H.; Shi, Z.; Zhou, X.; Li, R. Pd immobilized on magnetic chitosan as a heterogeneous catalyst for acetalization and hydrogenation reactions. Appl. Surf. Sci., 2013, 279, 360-366.
Hardy, J.J.E.; Hubert, S.; Macquarrie, D.J.; Wilson, A.J. Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem., 2004, 6, 53-56.
Calò, V.; Nacci, A.; Monopoli, A.; Fornaro, A.; Sabbatini, L.; Cioffi, N.; Ditaranto, N. Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids. Organometallics, 2004, 23, 5154-5158.
Yi, S.S.; Lee, D.H.; Sin, E.; Lee, Y.S. Chitosan-supported palladium(0) catalyst for microwave-prompted Suzuki cross-coupling reaction in water. Tetrahedron Lett., 2007, 48, 6771-6775.
Lv, D.; Zhang, M. O-Carboxymethyl Chitosan supported heterogeneous palladium and Ni catalysts for Heck reaction. Molecules, 2017, 22, 150-159.
Cotugno, P.; Casiello, M.; Nacci, A.; Mastrorilli, P.; Dell’Anna, M.M.; Monopoli, A. Suzuki coupling of iodo and bromoarenes catalyzed by chitosan-supported Pd-nanoparticles in ionic liquids. J. Organomet. Chem., 2014, 752, 1-5.
Bradshaw, M.; Zou, J.; Byrne, L.; Iyer, K.S.; Stewart, S.G.; Raston, C.L. Pd(II) conjugated chitosan nanofibre mats for application in Heck cross-coupling reactions. Chem. Commun., 2011, 47, 12292-12294.
Kaur, P.; Kumar, B.; Kumar, V.; Kumar, R. Chitosan-supported copper as an efficient and recyclable heterogeneous catalyst for A3/decarboxylative A3-coupling reaction. Tetrahedron Lett., 2018, 59, 1986-1991.
Shen, C.; Xu, J.; Yu, W.; Zhang, P. A highly active and easily recoverable chitosan@copper catalyst for the C–S coupling and its application in the synthesis of zolimidine. Green Chem., 2014, 16, 3007-3012.
Bodhak, C.; Kundu, A.; Pramanik, A. An efficient and recyclable chitosan supported copper(II) heterogeneous catalyst for C–N cross coupling between aryl halides and aliphatic diamines. Tetrahedron Lett., 2015, 56, 419-424.
Baran, T.; Sargin, I.; Kaya, M.; Mentes, A. Green heterogeneous Pd(II) catalyst produced from chitosan-cellulose micro beads for green synthesis of biaryls. Carbohydr. Polym., 2016, 152, 181-188.
Baran, N.Y.; Baran, T.; Menteş, A. Production of novel palladium nanocatalyst stabilized with sustainable chitosan/cellulose composite and its catalytic performance in Suzuki-Miyaura coupling reactions. Carbohydr. Polym., 2018, 181, 596-604.
Sin, E.; Yi, S.S.; Lee, Y.S. Chitosan-g-mPEG-supported palladium (0) catalyst for Suzuki cross-coupling reaction in water. J. Mol. Catal. A Chem., 2010, 315, 99-104.
Martina, K.; Leonhardt, S.E.S.; Ondruschka, B.; Curini, M.; Binello, A.; Cravotto, G. In situ cross-linked chitosan Cu(I) or Pd(II) complexes as a versatile, eco-friendly recyclable solid catalyst. J. Mol. Catal. A Chem., 2011, 334, 60-64.
Zeng, M.; Yuan, X.; Zuo, S.; Qi, C. Novel chitosan-based/montmorillo-nite/palladium hybrid microspheres as heterogeneous catalyst for Sonogashira reactions. RSC Adv., 2015, 5, 37995-38000.
Jadhav, S.; Kumbhar, A.; Salunkhe, R. Palladium supported on silica–chitosan hybrid material (Pd‐CS@SiO2) for Suzuki–Miyaura and Mizoroki–Heck cross‐coupling reactions. Appl. Organomet. Chem., 2015, 29, 339-345.
Sarvestani, M.; Azadi, R. Buchwald‐Hartwig amination reaction of aryl halides using heterogeneous catalyst based on Pd nanoparticles decorated on chitosan functionalized graphene oxide. Appl. Organomet. Chem., 2018, 32, e3906.
Demetgul, C. Synthesis of the ketimine of chitosan and 4,6-diacetylresorcinol, and study of the catalase-like activity of its copper chelate. Carbohydr. Polym., 2012, 89, 354-361.
Jin, X.; Wang, J.; Bai, J. Synthesis and antimicrobial activity of the Schiff base from chitosan and citral. Carbohydr. Res., 2009, 344, 825-359.
Wang, Z.; Xu, M.; Shao, L.; Qi, C. Palladium immobilized on chitosan nanofibers cross-linked by glutaraldehyde as an efficient catalyst for the Mizoroki–Heck reaction. Kinet. Catal., 2016, 57, 354-359.
Baran, T.; Menteş, A. Microwave assisted synthesis of biarlys by CC coupling reactions with a new chitosan supported Pd(II) catalyst. J. Mol. Struct., 2016, 1122, 111-116.
Baran, T.; Menteş, A. Highly efficient Suzuki cross-coupling reaction of biomaterial supported catalyst derived from glyoxal and chitosan. J. Organomet. Chem., 2016, 803, 30-38.
Baran, T.; Açıksöz, E.; Menteş, A. Carboxymethyl chitosan Schiff base supported heterogeneous palladium(II) catalysts for Suzuki cross-coupling reaction. J. Mol. Catal. A Chem., 2015, 407, 47-52.
Baran, T.; Menteş, A. Cationic palladium(II) catalysts on O-carboxymethyl chitosan Schiff base for Suzuki coupling reactions. J. Macromol. Sci. Pure Appl. Chem., 2016, 53, 687-690.
Baran, T.; Menteş, A. Construction of new biopolymer (chitosan)-based pincer-type Pd(II) complex and its catalytic application in Suzuki cross coupling reactions. J. Mol. Struct., 2017, 1134, 591-598.
Baran, T.; Açıksöz, E.; Menteş, A. Highly efficient, quick and green synthesis of biarlys with chitosan supported catalyst using microwave irradiation in the absence of solvent. Carbohydr. Polym., 2016, 142, 189-198.
Baran, T.; Inanan, T.; Menteş, A. Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst. Carbohydr. Polym., 2016, 145, 20-29.
Baran, T. A new chitosan Schiff base supported Pd(II) complex for microwave-assisted synthesis of biaryls compounds. J. Mol. Struct., 2017, 1141, 535-541.
Baran, T. New chitosan-glyoxal beads supported Pd(II) catalyst: Synthesis, characterization and application in Suzuki coupling reactions. Hacettepe J. Biol. & Chem, 2016, 44, 307-315.
Makhubela, B.C.E.; Jardine, A.; Smith, G.S. Pd nanosized particles supported on chitosan and 6-deoxy-6-amino chitosan as recyclable catalysts for Suzuki–Miyaura and Heck cross-coupling reactions. Appl. Catal. A., 2011, 393, 231-241.
Li-xia, W.; Zi-wei, W.; Guo-song, W.; Xiao-dong, L.; Jian-guo, R. Catalytic performance of Chitosan-Schiff base supported Pd/Co bimetallic catalyst for acrylamide with phenyl halide. Polym. Adv. Technol., 2010, 21, 244-249.
Hajipour, A.R.; Sadeghi, A.R.; Khorsandi, Z. Pd nanoparticles immobilized on magnetic chitosan as a novel reusable catalyst for green Heck and Suzuki cross‐coupling reaction: In water at room temperature. Appl. Organomet. Chem., 2018, 32, e4112.
Anuradha, Kumari. S.; Layek, S.; Pathak, D.D. Palladium nanoparticles immobilized on a magnetic chitosan-anchored Schiff base: applications in Suzuki–Miyaura and Heck–Mizoroki coupling reactions. New J. Chem., 2017, 41, 5595-5604.
Fakhri, A.; Naghipour, A. Chitosan-Pd (II) complex-decorated Fe3O4 nanoparticle as the highly effective and magnetically recyclable catalyst for Suzuki and Heck coupling reactions. Comments Inorg. Chem., 2017, 37, 201-218.
Naghipour, A.; Fakhri, A. Heterogeneous Fe3O4@chitosan-Schiff base Pd nanocatalyst: Fabrication, characterization and application as highly efficient and magnetically-recoverable catalyst for Suzuki–Miyaura and Heck–Mizoroki C–C coupling reactions. Catal. Commun., 2016, 73, 39-45.
Yang, Y.; Li, G.; Song, Z.; Yang, X.; Liu, P. Synthesis and characterization of chitosan-ferrocenylimine palladacycle and its catalytic performance in Heck reaction. Lett. Org. Chem., 2010, 7, 533-538.
Movassagh, B.; Rezaei, N. A magnetic porous chitosan-based palladium catalyst: a green, highly efficient and reusable catalyst for Mizoroki–Heck reaction in aqueous media. New J. Chem., 2015, 39, 7988-7997.
Liu, X.; Chang, S.; Chen, X.; Ge, X.; Qian, C. Efficient Ullmann C-X coupling reaction catalyzed by a recoverable functionalized-chitosan supported copper complex. New J. Chem., 2018, 42, 16013-16020.
Frindy, S.; Primo, A.; Lahcini, M.; Bousmina, M.; Garcia, H.; El Kadib, A. Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water–ethanol mixture. Green Chem., 2015, 17, 1893-1898.
Zeng, M.; Qi, C.; Yang, J.; Wang, B.; Zhang, X.M. A highly efficient and stable palladium catalyst entrapped within the cross-linked chitosan membrane for Heck reactions. Ind. Eng. Chem. Res., 2014, 53, 10041-10050.
Zeng, M.; Zhang, X.; Shao, L.; Qi, C.; Zhang, X.M. Highly porous chitosan microspheres supported palladium catalyst for coupling reactions in organic and aqueous solutions. J. Organomet. Chem., 2012, 704, 29-37.
Zeng, M.; Zhang, X.; Qi, C.; Zhang, X.M. Microstructure-stability relations studies of porous chitosan microspheres supported palladium catalysts. Int. J. Biol. Macromol., 2012, 51, 730-737.
Cheng, K.; Zeng, M.; Qi, C. Porous chitosan microspheres supported-palladium catalyst for the C–N cross-coupling of aryl halides with secondary amines. J. Chem. Res., 2013, 37, 99-101.
Primo, A.; Quignard, F. Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: Design of hybrid catalyst for carbon-carbon bond formation. Chem. Commun., 2010, 46, 5593-5595.
Frindy, S.; Kadib, A.; Lahcini, M.; Primo, A.; García, H. Copper nanoparticles stabilized in a porous chitosan aerogel as a heterogeneous catalyst for C−S cross‐coupling. ChemCatChem, 2015, 7, 3307-3315.
Hajipour, A.R.; Boostani, E.; Mohammadsaleh, F. Proline-functionalized chitosan–palladium(II) complex, a novel nanocatalyst for C–C bond formation in water. RSC Adv., 2015, 5, 24742-24748.
Hajipour, A.R.; Tavangar‐Rizi, A. Methionine‐functionalized chitosan–Pd(0) complex: A novel magnetically separable catalyst for Heck reaction of aryl iodides and aryl bromides at room temperature in water as only solvent. Appl. Organomet. Chem., 2017, 31, e3638.
Hajipour, A.R. Tavangar‐Rizi, Palladium nanoparticles immobilized on magnetic methionine‐functionalized chitosan: A versatile catalyst for Suzuki and copper‐free Sonogashira reactions of aryl halides at room temperature in water as only solvent. Appl. Organomet. Chem., 2017, 31, e3701.
Hajipour, A.R.; Hosseini, S.M.; Jajarmi, S. Histidine-functionalized chitosan–Cu(II) complex: a novel and green heterogeneous nanocatalyst for two and three component C–S coupling reactions. New J. Chem., 2017, 41, 7447-7452.
Veisi, H.; Ghadermazi, M.; Naderi, A. Biguanidine‐functionalized chitosan to immobilize palladium nanoparticles as a novel, efficient and recyclable heterogeneous nanocatalyst for Suzuki–Miyaura coupling reactions. Appl. Organomet. Chem., 2016, 30, 341-345.
Veisi, H.; Najafi, S.; Hemmati, S. Pd(II)/Pd(0) anchored to magnetic nanoparticles (Fe3O4) modified with biguanidine-chitosan polymer as a novel nanocatalyst for Suzuki-Miyaura coupling reactions. Int. J. Biol. Macromol., 2018, 113, 186-194.
Hajipour, A.R.; Rezaei, F.; Khorsandi, Z. Pd/Cu-free Heck and Sonogashira cross-coupling reaction by Co nanoparticles immobilized on magnetic chitosan as reusable catalyst. Green Chem., 2017, 19, 1353-1361.
Affrose, A.; Suresh, P.; Azath, I.A.; Pitchumani, K. Palladium nanoparticles embedded on thiourea-modified chitosan: a green and sustainable heterogeneous catalyst for the Suzuki reaction in water. RSC Adv., 2015, 5, 27533-27539.
Rafiee, F.; Hosseini, S.A. CNC pincer palladium complex supported on magnetic chitosan as highly efficient and recyclable nanocatalyst in C—C coupling reactions. Appl. Organomet. Chem., 2018, 32, e4519.
Lasri, J.; Mac Leod, T.C.O.; Pombeiro, A.J.L. Oxadiazoline and ketoimine palladium(II) complexes supported on a chitosan membrane and their catalytic activity for the microwave-assisted Suzuki–Miyaura cross-coupling in water. Appl. Catal. A., 2011, 397, 94-102.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy