Generic placeholder image

Mini-Reviews in Medicinal Chemistry


ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

New Strategies for the Delivery of Some Natural Anti-oxidants with Therapeutic Properties

Author(s): Elisabetta Esposito*, Markus Drechsler, Carmelo Puglia and Rita Cortesi

Volume 19, Issue 13, 2019

Page: [1030 - 1039] Pages: 10

DOI: 10.2174/1389557519666190228160242

Price: $65


Nature offers tremendous potential in the medicine field. Natural antioxidant molecules inhibit or quench free radical reactions and delay or inhibit cellular damage. In the last few years, researchers have been focusing on the health benefits of natural products. Particularly some dietary nutrients, such as curcumin, crocin, resveratrol, quercetin, coenzyme Q10, vitamin C, as well as some polysaccharides have been evaluated for their numerous and unique therapeutic properties. This review focuses on examples of pharmaceutical applications of natural anti-oxidants, with special regards to their encapsulation in micro- and nano- delivery systems. In vitro and in vivo studies have been conducted to investigate the physicochemical and pharmacological properties of different delivery systems containing antioxidant molecules. For instance, ethosomes, organogels, monoolein aqueous dispersions and solid lipid nanoparticle have been considered. It was found that micro and nanoencapsulation strategy can improve the solubility of lipophilic molecules and the chemical stability of labile antioxidants, thus prolonging their efficacy. In vitro and in vivo studies have highlighted that antioxidant encapsulation prolongs release kinetics, bioavailability and antioxidant effects. Noticeably, some encapsulated antioxidants effectively inhibit cancer cell proliferation, cell migration and colony formation, thus suppressing cancer progression.

Keywords: Antioxidant, chemical stability, microparticles, nanoparticles, monoolein, phospholipids.

Graphical Abstract
Quijano, C.; Trujillo, M.; Castro, L.; Trostchansky, A. Interplay between oxidant species and energy metabolism. Redox Biol., 2016, 8, 28-42.
Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 2013, 51, 15-25.
Ratnam, D.V.; Ankola, D.D.; Bhardwaj, V.; Sahana, D.K.; Kumar, N.M.V.R. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Release, 2006, 113, 189-207.
Lü, J.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med., 2010, 14, 840-860.
Lobo, V.; Phatak, A.; Chandra, N. Free radicals and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4, 118-126.
Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer, 2003, 10, 768-780.
Mittal, A.; Elmets, C.A.; Katiyar, S.K. Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: Relationship to decreased fat and lipid peroxidation. Carcinogenesis, 2003, 24, 1379-1388.
Weng, C.I.; Yen, G.C. Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro antiinvasive and in vivo anti-metastatic activities. Cancer Metastasis Rev., 2012, 31, 323-351.
Godman, M.; Bostick, R.M.; Kucuk, O.; Jones, D.P. Clinical trials of antioxidants as cancer prevention agents: Past, present and future. Free Radic. Biol. Med., 2011, 51, 1068-1084.
Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B.K.; Lee, C.Y. Relative antioxidant and cytoprotective activities of common herbs. Food Chem., 2008, 106, 929-936.
Gomes, C.A.; Cruz, T.G.; Andrade, J.L.; Milhazes, N.; Borges, F.; Marques, M.P.M. Anticancer activity of phenolic acids of natural or synthetic origin: A structure–activity study. J. Med. Chem., 2003, 46, 5395-5401.
Wanga, H.; Khorb, T.O.; Shu, L.; Su, Z.; Fuentes, F.; Lee, J.H.; Kong, A.N.T. Plants against cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer. Agents Med. Chem., 2012, 12, 1281-1305.
Weng, C.J.; Yen, G.C. Chemo preventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol and their derivatives. Cancer Treat. Rev., 2012, 38, 76-87.
Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf., 2011, 10, 221-247.
Pokorny, J. Are natural antioxidants better - and safer - that synthetic antioxidants? Eur. J. Lipid Sci. Technol., 2007, 109, 629-642.
Taghvaei, M.; Jafari, S.M. Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. J. Food Sci. Technol., 2015, 52, 1272-1282.
Fang, Z.; Bhandari, B. Encapsuation of polyphenols. A review. Food Sci. Technol., 2010, 21, 510-523.
Winterhalter, P.; Straubinger, R.M. Saffron, renewed interest in an ancient spice. Food Rev. Int., 2000, 16, 39-59.
Christodoulou, E.; Kadoglou, N.P.; Kostomitsopoulos, N.; Valsami, G. Saffron: A natural product with potential pharmaceutical applications. J. Pharm. Pharmacol., 2015, 67, 1634-1649.
Asai, A.; Nakano, T.; Takahashi, M.; Nagao, A. Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. J. Agric. Food Chem., 2005, 53, 7302-7306.
Alavizadeh, S.H.; Hosseinzadeh, H. Bioactivity assessment and toxicity of crocin: A comprehensive review. Food Chem. Toxicol., 2014, 64, 65-80.
Nam, K.N.; Park, Y.M.; Jung, H.J.; Lee, J.Y.; Min, B.; Park, S.; Jung, W.; Cho, K.; Park, J.; Kang, I.; Hong, J.; Lee, E.H. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur. J. Pharmacol., 2010, 648, 110-116.
Esposito, E.; Drechsler, M.; Mariani, P.; Panico, A.M.; Cardile, V.; Crascì, L.; Carducci, F.; Carol, A.; Graziano, E.; Cortesi, R.; Puglia, C. Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.). Mater. Sci. Eng. C, 2017, 71, 669-677.
Esposito, E.; Drechsler, M.; Huang, N.; Pavoni, G.; Cortesi, R.; Santonocito, D.; Puglia, C. Ethosomes and organogels for cutaneous administration of crocin. Biomed. Microdevices, 2016, 18, 1-12.
Changez, M.; Chander, J.; Dinda, A.K. Transdermal permeation of tetracaine hydrochloride by lecithin microemulsion: In vivo. Coll. Surf. B Biointerfaces, 2006, 48, 58-66.
Fiume, Z. Final report on the safety assessment of lecithin and hydrogenated lecithin. Int. J. Toxicol., 2001, 20, 21-45.
Grdadolnik, J.; Kidric, J.; Hadzi, D. Hydration of phosphatidylcholine reverse micelles and multilayers-an infrared spectroscopic study. Chem. Phys. Lipids, 1991, 59, 57-68.
Touitou, E.; Godin, B. Dermal drug delivery with ethosomes: Therapeutic potential. Therapy, 2007, 4, 465-472.
Jain, S.; Tiwary, A.K.; Sapra, B.; Jain, N.K. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS Pharm. Sci. Tech, 2007. 8, 249(E1-E9).
Verma, P.; Pathak, K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J. Adv. Pharm. Technol. Res., 2010, 1, 274-282.
Raut, S.; Bhadoriya, S.S.; Uplanchiwar, V.; Mishra, V.; Gahane, A.; Jain, S.K. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm. Sin. B, 2012, 2, 8-15.
Patil, K.D.; Bakliwal, S.R.; Pawar, S.P. Organogel: Topical and transdermal drug delivery system. Int. J. Pharm. Res. Dev., 2011, 3, 58-66.
Vintiloiu, A.; Leroux, J.C. Organogels and their use in drug delivery: A review. J. Control. Release, 2008, 125, 179-192.
Wohlrab, J.; Klapperstück, T.; Reinhardt, H.W.; Albrecht, M. Interaction of epicutaneously applied lipids with stratum corneum depends on the presence of either emulsifiers or hydrogenated phosphatidylcholine. Skin Pharmacol. Physiol., 2010, 23, 298-305.
Siekmann, B.; Bunjes, H.; Koch, M.H.J.; Westesen, K. Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride/water phases. Int. J. Pharm., 2002, 244, 33-43.
Esposito, E.; Cortesi, R.; Drechsler, M.; Paccamiccio, L.; Mariani, P.; Contado, C.; Stellin, E.; Menegatti, E.; Bonina, F.; Puglia, C. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm. Res., 2005, 22, 2163-2173.
Yaghmur, A.; Glatter, O. Characterization and potential applications of nanostructured aqueous dispersions. Adv. Colloid Interface Sci., 2009, 147, 333-342.
Tsimidou, M.; Tsatsaroni, E. Stability of saffron pigments in aqueous extracts. J. Food Sci., 1993, 58, 1073-1075.
Najafi, H.; Yarijani, Z.M.; Najafi, M. Theoretical and experimental in vivo study of antioxidant activity of crocin in order to propose novel derivatives with higher antioxidant activity and their delivery via nanotubes and nanocones. Inflammation, 2017, 40, 1794-1802.
Aggarwal, B.B.; Sung, B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets. Trends Pharmacol. Sci., 2009, 30, 85-94.
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15, 195-218.
Thangapazham, R.L.; Sharma, A.; Maheshwari, R.K. Beneficial role of curcumin in skin diseases. Adv. Exp. Med. Biol., 2007, 595, 343-357.
Kharat, M.; Du, Z.; McClements, Z.G.; Julian, D. Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. J. Agric. Food Chem., 2017, 65, 1525-1532.
Tonnesen, H.H.; Masson, M.; Loftsson, T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: Solubility, chemical and photochemical stability. Int. J. Pharm., 2002, 244, 127-135.
Kakkar, V.; Muppu, S.; Kumar, C. Kanwaljit, Kaur.; Indu, Pal. Curcumin loaded solid lipid nanoparticles: An efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur. J. Pharm. Biopharm., 2013, 85, 339-345.
Sun, J.; Bi, C.; Chan, H.M.; Sun, S.; Zhang, Q.; Zheng, Y. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf. B Biointerfaces, 2013, 111, 367-375.
Puglia, C.; Tirendi, G.G.; Offerta, A.; Cardile, V.; Panico, A.M.; Crascì, L.; Drechsler, M.; Mariani, P.; Cortesi, R.; Esposito, E. Evaluation of mono-oleine aqueous dispersion as tools for topical administration of curcumin: Characterization, in vitro and ex vivo studies. J. Pharm. Sci., 2014, 102, 2349-2361.
Esposito, E.; Ravani, L.; Mariani, P.; Contado, C.; Drechsler, M.; Puglia, C.; Cortesi, R. Curcumin containing mono-olein aqueous dispersions: A preformulative study. Mater. Sci. Eng. C, 2013, 33, 4923-4934.
Esposito, E.; Ravani, L.; Mariani, P.; Huang, N.; Boldrini, P.; Drechsler, M.; Valacchi, G.; Cortesi, R.; Puglia, C. Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin. Eur. J. Pharm. Biopharm., 2014, 86, 121-132.
Muller, R.H. Mader, K. Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery: A review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50, 161-177.
Dingler, A.; Gohla, S. Production of solid lipid nanoparticles (SLN): Scaling up feasibilities. J. Microencapsul., 2002, 19, 11-16.
Corrias, F.; Lai, F. New methods for lipid nanoparticles preparation. Recent Pat. Drug Deliv. Formul., 2011, 5, 201-213.
Esposito, E.; Cortesi, R.; Drechsler, M.; Fan, J.; Fu, B.M.; Calderan, L.; Mannucci, S.; Boschi, F.; Nastruzzi, C. Nanoformulations for dimethyl fumarate: Physicochemical characterization and in vitro/in vivo behavior. Eur. J. Pharm. Biopharm., 2017, 115, 285-296.
Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1, 35-52.
Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E., Jr; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos., 2004, 32, 1377-1382.
Park, S.; Cha, S-H.; Cho, I.; Park, S.; Park, Y.; Cho, S.; Park, Y. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater. Sci. Eng. C, 2016, 58, 1160-1169.
Huang, X.; Dai, Y.; Cai, J.; Zhong, N.; Xiao, H.; McClements, D.J.; Hu, K. Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities. Food Hydrocoll., 2017, 64, 157-165.
Suktham, K.; Koobkokkruad, T.; Wutikhun, T.; Surassm, S. Efficiency of resveratrol-loaded sericin nanoparticles: Promising bionanocarriers for drug delivery. Int. J. Pharm., 2018, 537, 48-56.
David, A.V.A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev., 2016, 10, 84-89.
Cortesi, R.; Cappellozza, E.; Drechsler, M.; Contado, C.; Baldisserotto, A.; Mariani, P.; Carducci, F.; Pecorelli, A.; Esposito, E.; Valacchi, G. Monoolein aqueous dispersions as a delivery system for quercetin. Biomed. Microdevices, 2017, 19, 41-52.
Ren, K.W.; Li, Y.H.; Wu, G.; Ren, J.Z.; Lu, H.B.; Li, Z.M.; Ha, X.W. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int. J. Oncol., 2017, 50, 1299-1311.
Patel, A.R.; Heussen, P.C.M.; Hazekamp, J.; Drost, E.; Velikov, K.P. Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium. Food Chem., 2012, 133, 423-429.
Turunen, M.; Olsson, J.; Dallner, G. Metabolism and function of coenzyme Q. Biochim. Biophys. Acta, 2004, 1660, 171-199.
Garrido-Maraver, J.; Cordero, M.D.; Oropesa-Avila, M.; Vega, A.F.; de la Mata, M.; Pavon, A.D.; Alcocer-Gomez, E.; Calero, C.P.; Paz, M.V.; Alanis, M.; de Lavera, I.; Cotan, D.; Sanchez-Alcazar, J.A. Clinical applications of coenzyme Q10. Front. Biosci. (Landmark Ed.), 2014, 1, 619-633.
Hsu, C.H.; Cui, Z.; Mumper, R.J.; Jay, M. Preparation and characterization of novel coenzyme Q10 nanoparticles engineered from microemulsion precursors. AAPS PharmSciTech, 2003, 4, 24-35.
Kim, E.A.; Kim, J.Y.; Chung, H.J.; Lim, S.T. Preparation of aqueous dispersions of coenzyme Q10 nanoparticles with amylomaize starch and its dextrin. LWT - Food Sci. Technol, 2012, 47, 493-499.
Lykkesfeldt, J.; Michels, A.J.; Frei, B.; Vitamin, C. Adv. Nutr., 2014, 5, 16-18.
Uetaki, M.; Tabata, S.; Nakasuka, F.; Soga, T.; Tomita, M. Metabolomic alterations in human cancer cells by vitamin C induced oxidative stress. Sci. Rep., 2015, 5, 13896.
Esposito, E.; Cervellati, F.; Menegatti, E.; Nastruzzi, C.; Cortesi, R. Spray dried Eudragit microparticles as encapsulation devices for vitamin C. Int. J. Pharm., 2002, 242, 329-334.
Chakraborty, A.; Jana, N.R. Vitamin C conjugated nanoparticle protects cells from oxidative stress at low doses but induces oxidative stress and cell death at high doses. ACS Appl. Mater. Interfaces, 2017, 9, 41807-41817.
Wang, H.; Liu, Y.M.; Qi, Z.M.; Wang, S.Y.; Liu, S.X.; Li, X.; Wang, H.J.; Xia, X.C. An overview on natural polysaccharides with antioxidant properties. Curr. Med. Chem., 2013, 20, 2899-2913.
Pooja, D.; Sravani Panyaram, S.; Kulhari, H.; Reddy, B.; Rachamalla, S.S.; Sistla, R. Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. Int. J. Biol. Macromol., 2015, 80, 48-56.
Castro-Aceituno, V. Ahn, Sungeun; Simu, S. Y.; Singh, P.; Mathiyalagan, R.; Lee, H.A.; Yang, D. C. Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomed. Pharmacother., 2016, 84, 158-165.
Prakash, D.J.; Arulkumar, S.; Sabesan, M. Behavior and biochemical changes of nanoginkgoba (Ginkgo biloba gold nanoparticles) on restraint stress-induced male albino mice. Int. J. Res. Pharm. Sci., 2010, 1, 533-538.
Balashanmugam, P.; Kim, H.J.; Singh, V.; Kumaran, R.S. Green synthesis of silver nanoparticles using ginkgo biloba and their bactericidal and larvicidal effects. Nanosci. Nanotechnol. Lett., 2018, 10, 422-428.

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy