Generic placeholder image

Innovations in Corrosion and Materials Science (Discontinued)

Editor-in-Chief

ISSN (Print): 2352-0949
ISSN (Online): 2352-0957

Review Article

Magnesium Based Biodegradable Metallic Implant Materials: Corrosion Control and Evaluation of Surface Coatings

Author(s): Jessica Gayle and Anil Mahapatro*

Volume 9, Issue 1, 2019

Page: [3 - 27] Pages: 25

DOI: 10.2174/2352094909666190228113315

Abstract

Background: Magnesium and magnesium alloys are currently being explored for biodegradable metallic implants. Magnesium’s biocompatibility, low density, and mechanical properties could offer advantages in the development of low-bearing orthopedic prosthesis and cardiovascular stent materials.

Objective: Magnesium’s susceptibility to corrosion and increased hydrogen evolution in vivo compromises the success of its potential applications. Various strategies have been pursued to control and subsequently evaluate degradation.

Methods: This review provides a broad overview of magnesium-based implant materials. Potential coating materials, coating techniques, corrosion testing, and characterization methods for coated magnesium alloys are also discussed.

Results: Various technologies and materials are available for coating magnesium to control and evaluate degradation. Polymeric, ceramic, metallic, and composite coatings have successfully been coated onto magnesium to control its corrosion behaviour. Several technologies are available to carry out the coatings and established methodologies exist for corrosion testing. A few magnesium-based products have emerged in international (European Union) markets and it is foreseen that similar products will be introduced in the United States in the near future.

Conclusion: Overall, many coated magnesium materials for biomedical applications are predominantly in the research stage with cardiac stent materials and orthopaedic prosthesis making great strides.

Keywords: Biomaterials, magnesium, biodegradable coatings, biodegradable implants, corrosion control, surface coatings.

Graphical Abstract
[1]
S. Bhat, Biomaterials., Alpha Science International, 2007.
[2]
X-N. Gu, and Y-F. Zheng, "A review on magnesium alloys as biodegradable materials", Front. Mater. Sci. China, vol. 4, pp. 111-115, 2010.
[3]
N. Jochem, S. Marielle, and M.R. Piet, ""Stress shielding and bone resorption in shoulder arthroplasty"", J. Shoulder Elbow Surg., vol. 12 2003, no. 1, pp. 35-39, .
[4]
Y. Yun, "Revolutionizing biodegradable metals", Mater. Today, vol. 12, pp. 22-32, 2009.
[5]
F. Witte, "Degradable biomaterials based on magnesium corrosion", Curr. Opin. Solid State Mater. Sci., vol. 12, pp. 63-72, 2008.
[6]
F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, and H. Windhagen, "In vivo corrosion of four magnesium alloys and the associated bone response", Biomaterials, vol. 26, pp. 3557-3563, 2005.
[7]
F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, and H. Windhagen, "In vivo corrosion of four magnesium alloys and the associated bone response", Biomaterials, vol. 26, pp. 3557-3563, 2005.
[8]
E. Willbold, A. Weizbauer, A. Loos, J.M. Seitz, N. Angrisani, H. Windhagen, and J. Reifenrath, "Magnesium alloys: A stony pathway from intensive research to clinical reality. Different test methods and approval-related considerations", J. Biomed. Mater. Res. A, vol. 105, pp. 329-347, 2017.
[9]
A. Mahapatro, T.D. Matos Negron, and A.S. Gomes, "Nanostructured self assembled monolayers on magnesium for improved biological performance", Mater. Technol., vol. 31 2016, pp. 818-827, .
[10]
F. Witte, "The history of biodegradable magnesium implants: a review", Acta Biomater., vol. 6, pp. 1680-1692, 2010.
[11]
A. Mahapatro, "Bio-functional nano-coatings on metallic biomaterials", Mater. Sci. Eng. C, vol. 55 2016, pp. 227-251, .
[12]
X. Chen, "Magnesium-based implants: Beyond fixators", J. Orthop. Translat., vol. 10, pp. 1-4, 2017.
[13]
Y.H. An, and R.A. Draughn, Mechanical testing of bone and the bone-implant interface., CRC press, 1999.
[14]
E. Zhang, D. Yin, L. Xu, L. Yang, and K. Yang, "Microstruc-ture, mechanical and corrosion properties and biocompatibil-ity of Mg–Zn–Mn alloys for biomedical application", Mater. Sci. Eng. C, vol. 29, pp. 987-993, 2009.
[15]
A. Mahapatro, T.D. Matos Negrón, C. Bonner, and T.M. Abdel-Fattah, "Nanolayers on Magnesium (Mg) Alloy for Me-tallic Bone Tissue Engineering Scaffolds", J. Biomater. Tissue Eng., vol. 3, pp. 196-204, 2013.
[16]
J.W. Lee, H.S. Han, K.J. Han, J. Park, H. Jeon, M.R. Ok, H.K. Seok, J.P. Ahn, K.E. Lee, D.H. Lee, S.J. Yang, S.Y. Cho, P.R. Cha, H. Kwon, T.H. Nam, J.H. Han, H.J. Rho, K.S. Lee, Y.C. Kim, and D. Mantovani, "Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy", Proc. Natl. Acad. Sci. USA, vol. 113, pp. 716-721, 2016.
[17]
H.M. Wong, P.K. Chu, F.K.L. Leung, K.M.C. Cheung, K.D.K. Luk, and K.W.K. Yeung, "Engineered polycaprolac-tone–magnesium hybrid biodegradable porous scaffold for bone tissue engineering", Pro. Nat. Sci. Mater. Inter., vol. 24, pp. 561-567, 2014.
[18]
C. Li, "The in vitro biocompatibility and osteoinductive activity study of magnesium composed PLGA/TCP porous scaffold for bone regeneration", J. Orthop. Translat., vol. 7, p. 78, 2016.
[19]
A. Mahapatro, and L. Malladi, "Fabrication of hybrid poly-meric-metallic foams as scaffolds for bone tissue engineering", Soci. Plastic Eng. ANTEC, vol. 2016, pp. 1861-1864, 2016.
[20]
C. Sealy, "Magnesium boosts artificial bone performance", Mater. Today, vol. 18, p. 310, 2015.
[21]
N.G. Kounis, G. Hahalis, and T.C. Theoharides, "Coronary stents, hypersensitivity reactions, and the Kounis syndrome", J. Interv. Cardiol., vol. 20, pp. 314-323, 2007.
[22]
M. Joner, "Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk", J. Am. Coll. Cardiol., vol. 48, pp. 193-202, 2016.
[23]
T. Palmerini, "Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive net-work meta-analysis", J. Am. Coll. Cardiol., vol. 65, pp. 2496-2507, 2015.
[24]
R. Waksman, "Promise and challenges of bioabsorbable stents", Catheter. Cardiovasc. Interv., vol. 70, pp. 407-414, 2007.
[25]
J.R. Nebeker, R. Virmani, C.L. Bennett, J.M. Hoffman, M.H. Samore, J. Alvarez, C.J. Davidson, J.M. McKoy, D.W. Raisch, B.K. Whisenant, P.R. Yarnold, S.M. Belknap, D.P. West, J.E. Gage, R.E. Morse, G. Gligoric, L. Davidson, and M.D. Feldman, "Hypersensitivity cases associated with drug-eluting coronary stents: a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project", J. Am. Coll. Cardiol., vol. 47, pp. 175-181, 2006.
[26]
R. Erbel, C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F.R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, C. Ilsley, D. Böse, J. Koolen, T.F. Lüscher, N. Weissman, and R. Waksman, "Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial", Lancet, vol. 369, pp. 1869-1875, 2007.
[27]
R. Waksman, R. Erbel, C. Di Mario, J. Bartunek, B. de Bruyne, F.R. Eberli, P. Erne, M. Haude, M. Horrigan, C. Ilsley, D. Böse, H. Bonnier, J. Koolen, T.F. Lüscher, and N.J. Weissman, "Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries", JACC Cardiovasc. Interv., vol. 2, pp. 312-320, 2009.
[28]
P. Petters, M. Bosiers, J. Verbist, K. Deloose, and B. Heuble-in, "Preliminary results after application of absorbable met-al stents in patients with critical Limb Ischemia", J. Endovasc. Ther., vol. 12, pp. 1-5, 2005.
[29]
Y. Yue, L. Wang, N. Yang, J. Huang, L. Lei, H. Ye, L. Ren, and S. Yang, "Effectiveness of biodegradable magnesium alloy stents in coronary artery and femoral artery", J. Interv. Cardiol., vol. 28, pp. 358-364, 2015.
[30]
F. Amerstorfer, "Long-term in vivo degradation behavior and near-implant distribution of resorbed elements for mag-nesium alloys WZ21 and ZX50", Acta Biomater., vol. 42, pp. 440-450, 2016.
[31]
A. Mahapatro, M. Taina, and A. Nguyen, "Spectroscopic evaluations of interfacial oxidative stability of phosphonic nanocoatings on magnesium", J. Spectrosc., vol. 2015, pp. 1-8, 2015.
[32]
A. Mahapatro, and S.S. Kumar, "Determination of ionic liquid and magnesium compatibility via microscopic evaluations", J. Adv. Microsc. Res., vol. 10, pp. 89-92, 2015.
[33]
J. Ma, M. Thompson, N. Zhao, and D. Zhu, "Similarities and differences in coatings for magnesium-based stents and orthopedic implants", J. Orthop. Translat., vol. 2, pp. 118-130, 2014.
[34]
A. Mahapatro, T.M.D. Negron, S.A. Arshanapalli, A.S. Gomes, and L. Yao, "Fabrication, biofunctionality and bio-compatibility evaluations of octadecyltrichlorosilane nano coatings on magnesium alloy", J. Nanoeng. Nanomanufac., vol. 5, pp. 294-303, 2015.
[35]
Y. Oshida, and Y. Guven, “10 - Biocompatible coatings for metallic biomaterials A2 - Wen, Cuie,” in Surface Coating and Modification of Metallic Biomaterials., Woodhead Publishing, 2015, pp. 287-343.
[36]
S.M. Roberts, "Preparative biotransformations", J. Chem. Soc. Perkin Trans., vol. 1, pp. 1475-1499, 2001.
[37]
R. Hashemi Sanatgar, C. Campagne, and V. Nierstrasz, "Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters", Appl. Surf. Sci., vol. 403, pp. 551-563, 2017.
[38]
A. Ludwicka, B. Jansen, T. Wadström, and G. Pulverer, "Attachment of staphylococci to various synthetic polymers", Zentralbl. Bakteriol. Mikrobiol. Hyg. A, vol. 256, pp. 479-489, 1984.
[39]
S.M. Kim, K-S. Park, J.H. Kang, Y.K. Joung, and D.K. Han, "Optimized sirolimus-eluting stent by coating asymmet-rically with biodegradable and cytocompatible polymers", Asian J. Pharm. Sci., vol. 11, pp. 160-161, 2016.
[40]
A. Junior, "“Bioresorbable polymers as substrate for cells culture and tissue engineering”, Ciênc", Técnol, vol. 17, p. 4, 2007.
[41]
M. Saini, Y. Singh, P. Arora, V. Arora, and K. Jain, "Implant biomaterials: A comprehensive review", World J. Clin. Cases, vol. 3, pp. 52-57, 2015.
[42]
A. Mahapatro, and D.K. Singh, ""Biodegradable carrier systems for drug and vaccine delivery"", ost-genomic Appro. Cancer Nanomedi., vol. 4, pp. 315-340, . 2015
[43]
A. Mahapatro, and T.D. Matos Negrón, ""Biodegradable Polypentadecalactone (PDL) synthesis via synergistic lipase and microwave catalysis"", Am. J. Biomed. Eng., vol. 3, pp. 9-13, . 2013
[44]
S. Kulshrestha Ankur, A. Mahapatro, and A. Henderson Lori, Biomaterials , (ACS Symposium Series). Oxford University Press, 2012.
[45]
A. Mahapatro, and T.D. Matos Negrón, Microwave-Assisted Biocatalytic Polymerizations, vol. 33, pp. 481-510, 2015.
[46]
T.D. Matos, "Microwave assisted lipase catalyzed sol-vent-free polycaprolactone synthesis", Green Chem. Lett., vol. 4, pp. 73-79, 2011.
[47]
A. Mahapatro, and D.K. Singh, "Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines", J. Nanobiotech., vol. 9, p. 55, 2011.
[48]
L. Xu, and A. Yamamoto, "In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition", Appl. Surf. Sci., vol. 258, pp. 6353-6358, 2012.
[49]
S. Li, "Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids", J. Biomed. Mater. Res., vol. 48, pp. 342-353, 1999.
[50]
W. Zhang, "Strengthened corrosion control of poly (lactic acid) (PLA) and poly (ε-caprolactone) (PCL) polymer-coated magnesium by imbedded hydrophobic stearic acid (SA) thin layer", Corros. Sci., vol. 112, pp. 327-337, 2016.
[51]
R.C. Mundargi, S. Srirangarajan, S.A. Agnihotri, S.A. Patil, S. Ravindra, S.B. Setty, and T.M. Aminabhavi, "Development and evaluation of novel biodegradable microspheres based on poly(d,l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies", J. Control. Release, vol. 119, pp. 59-68, 2007.
[52]
J. Singh, S. Pandit, V.W. Bramwell, and H.O. Alpar, "Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems", Methods, vol. 38, pp. 96-105, 2006.
[53]
I. Johnson, K. Akari, and H. Liu, "Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid", Nanotechnology, vol. 24, .375103 2013
[54]
H. Liu, R. Wang, H.K. Chu, and D. Sun, "Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds", J. Biomed. Mater. Res. A, vol. 103, pp. 2966-2973, 2015.
[55]
B.D. Ulery, L.S. Nair, and C.T. Laurencin, "Biomedical Applications of Biodegradable Polymers", J. Polym. Sci., B, Polym. Phys., vol. 49, pp. 832-864, 2011.
[56]
C. Augello, and H. Liu, “12 - Surface modification of magne-sium by functional polymer coatings for neural applications,” in Surface Modification of Magnesium and its Alloys for Bio-medical Applications., Woodhead Publishing, 2015, pp. 335-353.
[57]
M.C. Chen, H.F. Liang, Y.L. Chiu, Y. Chang, H.J. Wei, and H.W. Sung, "A novel drug-eluting stent spray-coated with multi-layers of collagen and sirolimus", J. Control. Release, vol. 108, pp. 178-189, 2005.
[58]
P. Liu, X. Pan, W. Yang, K. Cai, and Y. Chen, "Improved anticorrosion of magnesium alloy via layer-by-layer self-assembly technique combined with micro-arc oxi-dation", Mater. Lett., vol. 75, pp. 118-121, 2012.
[59]
B-D. Hahn, "Aerosol deposition of hydroxyapatite–chitosan composite coatings on biodegradable magnesium alloy", Surf. Coat. Tech., vol. 205, pp. 3112-3118, 2011.
[60]
S. Heise, S. Virtanen, and A.R. Boccaccini, "Tackling Mg alloy corrosion by natural polymer coatings A review", J. Biomed. Mater. Res. A, vol. 104, pp. 2628-2641, 2016.
[61]
N. Stephanopoulos, J.H. Ortony, and S.I. Stupp, "Self assembly for the synthesis of functional biomaterials", Acta Mater., vol. 61, pp. 912-930, 2013.
[62]
M. Morra, C. Cassinelli, G. Cascardo, L. Mazzucco, P. Borzini, M. Fini, G. Giavaresi, and R. Giardino, "Collagen I-coated titanium surfaces: mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants", J. Biomed. Mater. Res. A, vol. 78, no. 3, pp. 449-458, 2006.
[63]
C.H. Park, H.R. Pant, and C.S. Kim, "Effect on corrosion behavior of collagen film/fiber coated AZ31 magnesium al-loy", Dig. J. Nanomater. Biostruct., vol. 8, p. 3, 2013.
[64]
M. Rinaudo, "Chitin and chitosan: Properties and applications", Prog. Polym. Sci., vol. 31, no. 7, pp. 603-632, 2006.
[65]
C. Chen, D. Li, Q. Hu, and R. Wang, "Properties of polymethyl methacrylate-based nanocompo-sites: Reinforced with ultra-long chitin nanofiber extracted from crab shells", Mater. Des., vol. 56, pp. 1049-1056, 2014.
[66]
J. Sriupayo, P. Supaphol, J. Blackwell, and R. Rujiravanit, "Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment", Carbohydr. Polym., vol. 62, pp. 130-136, 2005.
[67]
N. Herrera, "Functionalized blown films of plasticized polylactic ac-id/chitin nanocomposite: Preparation and characterization", Mater. Des., vol. 92, pp. 846-852, 2016.
[68]
P.K. Dutta, J. Dutta, and V. Tripathi, "Chitin and chitosan: Chemistry, properties and applications", J. Sci. Ind. Res. , vol. 63, pp. 20-31, 2004.
[69]
A. Di Martino, M. Sittinger, and M.V. Risbud, "Chitosan: a versatile biopolymer for orthopaedic tissue-engineering", Biomaterials, vol. 26, pp. 5983-5990, 2005.
[70]
J. Zhang, C. Dai, J. Wei, Z. Wen, S. Zhang, and C. Chen, "“Degradable behavior and bioactivity of micro-arc oxidized AZ91D Mg alloy with calcium phosphate/chitosan composite coating in m-SBF” Coll. Surf", B Biointer., vol. 111, pp. 179-187, 2013.
[71]
K. Zia, M. Zuber, and M. Ali, Algae Based Polymers, Blends, and Composites., 1st ed Elsevier Science Publishing Co Inc, 2017.
[72]
N. Dang, Y.H. Wei, L.F. Hou, Y.G. Li, and C.L. Guo, "Investigation of the inhibition effect of the environmentally friendly inhibitor sodium alginate on magnesium alloy in sodium chloride solution", Mater. Corr., vol. 66, pp. 1354-1362, 2015.
[73]
T.W. Chung, J. Yang, T. Akaike, K.Y. Cho, J.W. Nah, S.I. Kim, and C.S. Cho, "Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment", Biomaterials, vol. 23, pp. 2827-2834, 2002. [PMID: 12069321].
[74]
G. Orive, R.M. Hernández, A.R. Gascón, M. Igartua, and J.L. Pedraz, "Survival of different cell lines in alginate-agarose microcap-sules", Eur. J. Pharm. Sci., vol. 18, pp. 23-30, 2003.
[75]
S. K A. Roy, S. Singh, B. Lee, and and P. N. Kumta, ""Novel alginate based coatings on Mg alloys"", Mater. Sci. Eng. B, vol. 176, pp. 1703-1710, 2011.
[76]
X. Gu, "Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents", Coll. Surf. B: Biointer., vol. 144, pp. 170-179, 2016.
[77]
T.F. da Conceicao, N. Scharnagl, W. Dietzel, and K.U. Kainer, "Corrosion protection of magnesium AZ31 alloy using poly(ether imide) [PEI] coatings prepared by the dip coating method: Influence of solvent and substrate pre-treatment", Corros. Sci., vol. 53, pp. 338-346, 2011.
[78]
H. Reddy Tiyyagura, "The chitosan coating and processing effect on the physiolog-ical corrosion behaviour of porous magnesium monoliths", Prog. Org. Coat., vol. 99, pp. 147-156, 2016.
[79]
H. Liu, R. Wang, H.K. Chu, and D. Sun, "Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds", J. Biomed. Mater. Res. A, vol. 103, pp. 2966-2973, 2015. [PMID: 25690806].
[80]
X. Yang, A. Al Hegy, E.R. Gauthier, and J. Gray-Munro, "Influence of mixed organosilane coatings with variable RGD surface densities on the adhesion and proliferation of human osteosarcoma Saos-2 cells to magnesium alloy AZ31", Bioact. Mater., vol. 2, pp. 35-43, 2017.
[81]
A. Golshirazi, M. Kharaziha, and M.A. Golozar, "Polyethylenimine/kappa carrageenan: Micro-arc oxidation coating for passivation of magnesium alloy", Carbohydr. Polym., vol. 167, pp. 185-195, 2017. [PMID: 28433153].
[82]
M. Kawata, K. Azuma, H. Izawa, M. Morimoto, H. Saimoto, and S. Ifuku, "Biomineralization of calcium phosphate crystals on chitin nanofiber hydrogel for bone regeneration material", Carbohydr. Polym., vol. 136, pp. 964-969, 2016.
[83]
K. Kurashina, H. Kurita, M. Hirano, A. Kotani, C.P.A.T. Klein, and K. de Groot, "In vivo study of calcium phosphate cements: implantation of an α-tricalcium phosphate/dicalcium phosphate diba-sic/tetracalcium phosphate monoxide cement paste", Biomaterials, vol. 18, pp. 539-543, 1997.
[84]
D. Zhang, O. J. George, K. M. Petersen, A. C. Jimenez-Vergara, M. S. Hahn, and M. A. Grunlan, A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects.
[85]
A. Mahapatro, and S.A. Arshanapalli, "A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects", Acta Biomater., vol. 10, pp. 4597-4605, 2014.
[86]
J-H. Jo, B.G. Kang, K.S. Shin, H.E. Kim, B.D. Hahn, D.S. Park, and Y.H. Koh, "Hydroxyapatite coating on magnesium with MgF2 interlayer for enhanced corrosion resistance and biocompatibility", J. Mater. Sci. Mater. Med., vol. 22, pp. 2437-2447, 2011.
[87]
H. Yuan, D. Barbieri, X. Luo, C.A. Van Blitterswijk, and J.D. De Bruijn, “Calcium Phosphates and Bone Induction,” in Reference Module in Materials Science and Materials Engineering., Elsevier, 2017.
[88]
K. Kuroda, and M. Okido, "Hydroxyapatite coating of titanium implants using hydropro-cessing and evaluation of their osteoconductivity", Bioinorg. Chem. Appl., vol. 2012, .730693 2012
[89]
S. Shadanbaz, and G.J. Dias, "Calcium phosphate coatings on magnesium alloys for bio-medical applications: A review", Acta Biomater., vol. 8, pp. 20-30, . 2012
[90]
L.C. Junqueira, J. José Carneiro Foltin, H. Lebowitz, and P.J. Boyle, Basic Histology, 10 ed. McGraw-Hill/Appleton & Lange,, 2002, p. 515.
[91]
Y. Song, S. Zhang, J. Li, C. Zhao, and X. Zhang, "Electrodeposition of Ca–P coatings on biodegradable Mg alloy: In vitro biomineralization behavior", Acta Biomater., vol. 6, pp. 1736-1742, 2010.
[92]
P. Bhattacharjee, H. Begam, A. Chanda, and S. K. Nandi, ""Animal trial on zinc doped hydroxyapatite: A case study"", J. Asian Ceram. Soc., vol. 2, no. 1, pp. 44-51, . 014
[93]
I. Uysal, F. Severcan, A. Tezcaner, and Z. Evis, "Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite", Prog. Nat. Sci. Mater. Inter., vol. 24, pp. 340-349, 2014.
[94]
H. Esfahani, E. Salahi, A. Tayebifard, M.R. Rahimipour, and M. Keyanpour-Rad, "Influence of zinc incorporation on microstructure of hydroxyapatite to characterize the effect of pH and calcination temperatures", J. Asian Ceram. Soc., vol. 2, pp. 248-252, 2014.
[95]
V. Moles, L. Navarro, J. Luna, D. Vetcher, and I. Rintoul, "Ceramic coating prevents corrosion of cardiovascular stain-less steel stents", J. Clin. Exp. Cardiolog., vol. 5, p. 3, 2014.
[96]
H. Wieneke, O. Dirsch, T. Sawitowski, Y.L. Gu, H. Brauer, U. Dahmen, A. Fischer, S. Wnendt, and R. Erbel, "Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits", Catheter. Cardiovasc. Interv., vol. 60, pp. 399-407, 2003.
[97]
P. Jackson, and C. Pickles, Stents – New Materials and Tech-nologies for the Future., Todays Medical Developments, 2011.
[98]
L. Yang, B. Sheldon, and T. Webster, "Nanophase Ceramics for Improved Drug Delivery: Current Opportunities and Chal-lenges", Am. Ceram. Soc. Bull. Period., vol. 89, p. 24, 2010.
[99]
M. Kollum, A. Farb, R. Schreiber, K. Terfera, A. Arab, A. Geist, J. Haberstroh, S. Wnendt, R. Virmani, and C. Hehrlein, "Particle debris from a nanoporous stent coating obscures potential antiproliferative effects of tacrolimus-eluting stents in a porcine model of restenosis", Catheter. Cardiovasc. Interv., vol. 64, pp. 85-90, 2005.
[100]
N. Yu, "Microwave assisted deposition of strontium doped hydroxyapatite coating on AZ31 magnesium alloy with enhanced mineralization ability and corrosion resistance", Ceram. Int., vol. 43, pp. 2495-2503, 2017.
[101]
T.M. Mukhametkaliyev, "A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance", Mater. Sci. Eng. C, vol. 75, pp. 95-103, 2017.
[102]
R. Rojaee, M. Fathi, and K. Raeissi, "Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments", Appl. Surf. Sci., vol. 285, pp. 664-673, 2013.
[103]
H. Zhao, "The influence of alkali pretreatments of AZ31 magnesium alloys on bonding of bioglass–ceramic coatings and corrosion resistance for biomedical applications", Ceram. Int., vol. 41, pp. 4590-4600, 2015.
[104]
X. Zhang, X.W. Li, J.G. Li, and X.D. Sun, "Preparation and characterizations of bioglass ceramic cement/Ca-P coating on pure magnesium for biomedical applications", ACS Appl. Mater. Interfaces, vol. 6, pp. 513-525, 2014.
[105]
K. Huang, "Sol–gel derived mesoporous 58S bioactive glass coatings on AZ31 magnesium alloy and in vitro degradation behavior", Surf. Coat. Tech., vol. 240, pp. 137-144, 2014.
[106]
A. Seyfoori, S. Mirdamadi, M. Mehrjoo, and A. Khavandi, "In-vitro assessments of micro arc oxidized ceramic films on AZ31 magnesium implant: degradation and cell-surface response", Prog. Nat. Sci. Mater. Inter., vol. 23, pp. 425-433, 2013.
[107]
W-W. Chen, Z-X. Wang, L. Sun, and S. Lu, "Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode", J. Magnes. Alloy., vol. 3, pp. 253-257, 2015.
[108]
M. Razavi, "Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6)", Appl. Surf. Sci., vol. 288, pp. 130-137, 2014.
[109]
V. Hernandez-Montes, C. Betancur-Henao, and J. Santa-Marin, "Titanium dioxide coatings on magnesium alloys for biomaterials: A review", Dyna , vol. 84, pp. 261-270, 2016.
[110]
A. Mahapatro, "Metals for biomedical applications and devices", J. Biomater. Tissue Eng., vol. 2, pp. 259-268, 2012.
[111]
C. Oldani, and A. Dominguez, "Titanium as a Biomaterial for Implants", In: Recent Advances in Arthroplasty., InTech, 2012.
[112]
L. Cordero-Arias, A.R. Boccaccini, and S. Virtanen, "Electrochemical behavior of nanostructured TiO2/alginate composite coating on magnesium alloy AZ91D via electrophoretic deposition", Surf. Coat. Tech., vol. 265, pp. 212-217, 2015.
[113]
H.R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar, M. Kasiri-Asgarani, and M. Medraj, "Synthesis and biodegradation evaluation of nano-Si and nano-Si/TiO2 coatings on biodegradable Mg–Ca alloy in simulated body fluid", Ceram. Int., vol. 40, pp. 14009-14018, 2014.
[114]
R-C. Zeng, F. Zhang, Z-D. Lan, H-Z. Cui, and E-H. Han, "Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys", Corros. Sci., vol. 88, pp. 452-459, 2014.
[115]
R. Fujita, M. Sakairi, T. Kikuchi, and S. Nagata, "Corrosion resistant TiO 2 film formed on magnesium by liquid phase deposition treatment", Electrochim. Acta, vol. 56, pp. 7180-7188, 2011.
[116]
E. Marin, A. Lanzutti, L. Guzman, and L. Fedrizzi, "Chemical and electrochemical characterization of TiO2/Al2O3 atomic layer depositions on AZ-31 magnesium alloy", J. Coat. Technol. Res., vol. 9, pp. 347-355, 2012.
[117]
P. Shi, W.F. Ng, M.H. Wong, and F.T. Cheng, "Improvement of corrosion resistance of pure magnesium in Hanks’ solution by microarc oxidation with sol–gel TiO2 sealing", J. Alloys Compd., vol. 469, pp. 286-292, 2009.
[118]
Y.K. Pan, C.Z. Chen, D.G. Wang, and X. Yu, "Microstructure and biological properties of micro-arc oxidation coatings on ZK60 magnesium alloy", J. Biomed. Mater. Res. B Appl. Biomater., vol. 100, pp. 1574-1586, 2012.
[119]
K.Y. Chiu, M.H. Wong, F.T. Cheng, and H.C. Man, "Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants", Surf. Coat. Tech., vol. 202, pp. 590-598, 2007.
[120]
M. Thomann, C. Krause, N. Angrisani, D. Bormann, T. Hassel, H. Windhagen, and A. Meyer-Lindenberg, "Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model", J. Biomed. Mater. Res. A, vol. 93, pp. 1609-1619, 2010.
[121]
X. Cui, Y. Yang, E. Liu, G. Jin, J. Zhong, and Q. Li, "Corrosion behaviors in physiological solution of cerium conversion coatings on AZ31 magnesium alloy", Appl. Surf. Sci., vol. 257, pp. 9703-9709, 2011.
[122]
G. Levy, and E. Aghion, ""Effect of diffusion coating of Nd on the corrosion resistance of biodegradable Mg implants in simulated physiological electrolyte"", Acta Biomater, vol. 9, pp. 8624-8630, . 2013. 2
[123]
E. Willbold, X. Gu, D. Albert, K. Kalla, K. Bobe, M. Brauneis, C. Janning, J. Nellesen, W. Czayka, W. Tillmann, Y. Zheng, and F. Witte, "Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium", Acta Biomater., vol. 11, pp. 554-562, 2015.
[124]
A. Mahapatro, J. Hakim, J.B. Crane, and S.S. Kumar, "Elec-trodeposition of niobium on magnesium using green ionic liquids", ECS Trans., vol. 53, pp. 77-81, 2013.
[125]
A.L. Rudd, C.B. Breslin, and F. Mansfeld, "The corrosion protection afforded by rare earth conversion coatings applied to magnesium", Corros. Sci., vol. 42, pp. 275-288, 2000.
[126]
E. Zhang, L. Xu, and K. Yang, "Formation by ion plating of Ti-coating on pure Mg for biomedical applications", Scr. Mater., vol. 53, pp. 523-527, 2005.
[127]
Y. Zhao, "Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation", Thin Solid Films, vol. 529, pp. 407-411, 2013.
[128]
G. Wu, L. Gong, K. Feng, S. Wu, Y. Zhao, and P.K. Chu, "Rapid degradation of biomedical magnesium induced by zinc ion implantation", Mater. Lett., vol. 65, pp. 661-663, 2011.
[129]
J. Liu, Y. Zheng, Y. Bi, Y. Li, and Y. Zheng, "Improved cytocompatibility of Mg-1Ca alloy modified by Zn ion implantation and deposition", Mater. Lett., vol. 205, pp. 87-89, 2017.
[130]
G.Y. Li, J.S. Lian, L.Y. Niu, Z.H. Jiang, and Q. Jiang, "Growth of zinc phosphate coatings on AZ91D magnesium alloy", Surf. Coat. Tech., vol. 201, pp. 1814-1820, 2006.
[131]
J. Wang, J. Tang, P. Zhang, Y. Li, J. Wang, Y. Lai, and L. Qin, "Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review", J. Biomed. Mater. Res. B Appl. Biomater., vol. 100, pp. 1691-1701, 2012.
[132]
Z. Wei, H. Du, and E. Zhang, "The formation mechanism and biocorrosion property of CaSiO3/CaHPO4 · 2H2O composite conversion coating on the extruded Mg-Zn-Ca alloy for bone implant application·", Surf. Interface Anal., vol. 43, pp. 791-794, 2011.
[133]
S. Kaabi Falahieh Asl, S. Nemeth, and M.J. Tan, "Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate", J. Biomed. Mater. Res. B Appl. Biomater., vol. 104, pp. 1643-1657, 2016.
[134]
B-D. Hahn, "Aerosol deposition of hydroxyapatite–chitosan composite coatings on biodegradable magnesium alloy", Surf. Coat. Tech., vol. 205, no. 8, pp. 3112-3118, 2011.
[135]
G. Song, and A. Atrens, "Understanding magnesium corrosion - a framework for improved alloy performance", Adv. Eng. Mater., vol. 5, pp. 837-858, 2003.
[136]
J. Sun, Y. Zhu, L. Meng, T. Shi, X. Liu, and Y. Zheng, "A biodegradable coating based on self-assembled hybrid nanoparticles to control the performance of magnesium", Macromol. Chem. Phys., vol. 216, pp. 1952-1962, 2015.
[137]
A.P. Loperena, I.L. Lehr, and S.B. Saidman, "Formation of a cerium conversion coating on magnesium alloy using ascorbic acid as additive. Characterisation and anticorrosive properties of the formed films", J. Magnes. Alloys, vol. 4, pp. 278-285, 2016.
[138]
X.B. Chen, K. Chong, T.B. Abbott, N. Birbilis, and M.A. Easton, “15 - Biocompatible strontium-phosphate and man-ganese-phosphate conversion coatings for magnesium and its alloys,” in Surface Modification of Magnesium and its Alloys for Biomedical Applications., Woodhead Publishing, 2015, pp. 407-432.
[139]
G. Barati Darband, M. Aliofkhazraei, P. Hamghalam, and N. Valizade, "Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications", J. Magnes. Alloys, vol. 5, pp. 74-132, 2017.
[140]
A. Němcová, P. Skeldon, G.E. Thompson, S. Morse, J. Čížek, and B. Pacal, "Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy", Corros. Sci., vol. 82, pp. 58-66, 2014.
[141]
X. He, X. Zhang, X. Wang, and L. Qin, "review of antibacterial activity of titanium-based implants surfaces fabricated by micro-arc oxidation", Coatings, vol. 7, p. 45, 2017.
[142]
T.S.N. Sankara Narayanan, I.S. Park, and M.H. Lee, "Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges", Prog. Mater. Sci., vol. 60, pp. 1-71, 2014.
[143]
M. Manso, C. Jiménez, C. Morant, P. Herrero, and J.M. Martínez-Duart, "Electrodeposition of hydroxyapatite coatings in basic conditions", Biomaterials, vol. 21, pp. 1755-1761, 2000.
[144]
Y.D. Gamburg, and G. Zangari, Theory and practice of metal electrodeposition., Springer Science & Business Media, 2011.
[145]
N.P. Pham, E. Boellard, P.M. Sarro, and J.N. Burghartz, "Spin, Spray coating and Electrodeposition of photoresist for MEMS structures–A comparison", 81-86
[146]
D. Thirumalaikumarasamy, K. Shanmugam, and V. Balasubramanian, "Influences of atmospheric plasma spraying parameters on the porosity level of alumina coating on AZ31B magnesium alloy using response surface methodology", Prog. Nat. Sci. Mater. Inter., vol. 22, pp. 468-479, 2012.
[147]
M.A. Gonzalez-Nunez, "A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites", Corros. Sci., vol. 37, pp. 1763-1772, 1995.
[148]
T. Yan, L. Tan, B. Zhang, and K. Yang, "Fluoride conversion coating on biodegradable AZ31B magnesium alloy", J. Mater. Sci. Technol., vol. 30, pp. 666-674, 2014.
[149]
T.S.N.S. Narayanan, "Surface pretreatment by phosphate conversion coatings - a review", Rev. Adv. Mater. Sci., vol. 9, pp. 130-177, 2005.
[150]
B. Liu, X. Zhang, G-Y. Xiao, and Y-P. Lu, "Phosphate chemical conversion coatings on metallic substrates for biomedical application: A review", Mater. Sci. Eng. C, vol. 47, pp. 97-104, 2015.
[151]
X.B. Chen, "Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating", Acta Biomater., vol. 10, pp. 1463-1474, 2014.
[152]
R-C. Zeng, "Influence of solution temperature on corrosion resistance of Zn-Ca phosphate conversion coating on biomedical Mg-Li-Ca alloys", Trans. Nonferrous Met. Soc. China, vol. 23, pp. 3293-3299, 2013.
[153]
L. Xia, J. Han, J.P. Domblesky, Z. Yang, and W. Li, "Investigation of the scanning microarc oxidation process", Adv. Mater. Sci. Eng , vol. 2017, 2017.
[154]
G.Y. Liu, J. Hu, Z.K. Ding, and C. Wang, "Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition", Appl. Surf. Sci., vol. 257, pp. 2051-2057, 2011.
[155]
H. Tang, D. Yu, Y. Luo, and F. Wang, "Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment", Appl. Surf. Sci., vol. 264, pp. 816-822, 2013.
[156]
G. Liu, S. Tang, D. Li, and J. Hu, "Self-adjustment of calcium phosphate coating on micro-arc oxidized magnesium and its influence on the corrosion behaviour in simulated body fluids", Corros. Sci., vol. 79, pp. 206-214, 2014.
[157]
Y.K. Pan, C.Z. Chen, D.G. Wang, and X. Yu, "Microstructure and biological properties of micro-arc oxidation coatings on ZK60 magnesium alloy", J. Biomed. Mater. Res. B Appl. Biomater., vol. 100, pp. 1574-1586, 2012.
[158]
S.F. Fischerauer, "In vivo degradation performance of micro-arc-oxidized magnesium implants: A micro-CT study in rats", Acta Biomater., vol. 9, pp. 5411-5420, 2013.
[159]
X. Song, J. Lu, X. Yin, J. Jiang, and J. Wang, "The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy", J. Magnes. Alloys, vol. 1, pp. 318-322, 2013.
[160]
J. Liu, W. Zhang, H. Zhang, X. Hu, and J. Zhang, "“Effect of microarc oxidation time on electrochemical behaviors of coat-ed bio-compatible magnesium alloy”, Mater. Today", Pro-ceedings, vol. 1, pp. 70-81, 2014.
[161]
A. Mahapatro, and S.K. Suggu, "Mathematical modeling of the electrodeposition process", ECS Trans., vol. 61, pp. 23-29, 2014.
[162]
M. Misawa, T. Ogasawara, M. Sagane, Y. Hirata, and M. Ku-me, Electrodeposition coating method., 1989.
[163]
M. Jamesh, S. Kumar, and T.S.N.S. Narayanan, "Electro-deposition of hydroxyapatite coating on magnesium for bio-medical applications", J. Coat. Technol. Res., vol. 9, pp. 495-502, 2012.
[164]
X. Qiu, P. Wan, L. Tan, X. Fan, and K. Yang, "Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition", Mater. Sci. Eng. C, vol. 36, pp. 65-76, 2014.
[165]
M.S. Chandrasekar, and M. Pushpavanam, "Pulse and pulse reverse plating - Conceptual, advantages and applications", Electrochim. Acta, vol. 53, pp. 3313-3322, 2008.
[166]
H.X. Wang, S.K. Guan, X. Wang, C.X. Ren, and L.G. Wang, "In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process", Acta Biomater., vol. 6, pp. 1743-1748, 2010.
[167]
A. Vardelle, C. Moreau, N.J. Themelis, and C. Chazelas, "A perspective on plasma spray technology", Plasma Chem. Plasma Process., vol. 35, pp. 491-509, 2015.
[168]
E. Çelik, A.Ş. Demirkıran, and E. Avcı, "Effect of grit blasting of substrate on the corrosion behaviour of plasma-sprayed Al2O3 coatings", Surf. Coat. Tech., vol. 116, pp. 1061-1064, 1999.
[169]
D. Thirumalaikumarasamy, K. Shanmugam, and V. Balasubramanian, "Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment", J. Asian Ceramic Soci., vol. 2, pp. 403-415, 2014.
[170]
D. Thirumalaikumarasamy, K. Shanmugam, and V. Balasubramanian, "Influence of chloride ion concentration on immersion corrosion behaviour of plasma sprayed alumina coatings on AZ31B magnesium alloy", J. Magnes. Alloys, vol. 2, pp. 325-334, 2014.
[171]
E.S. Bogya, Z. Károly, and R. Barabás, "Atmospheric plasma sprayed silica–hydroxyapatite coatings on magnesium alloy substrates", Ceram. Int., vol. 41, pp. 6005-6012, 2015.
[172]
Y. Cao, J. Weng, J. Chen, J. Feng, Z. Yang, and X. Zhang, "Water vapour-treated hydroxyapatite coatings after plasma spraying and their characteristics", Biomaterials, vol. 17, pp. 419-424, 1996.
[173]
M. Curioni, F. Scenini, T. Monetta, and F. Bellucci, "Correlation between electrochemical impedance measurements and corrosion rate of magnesium investigated by real-time hydrogen measurement and optical imaging,", Electrochimica Acta, vol. 166, pp. 372-384, . 2015/06/01/ 2015
[174]
Y. Feng, "Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg-Zn-Ca alloy", Bioact. Mater., vol. 2, pp. 63-70, 2017.
[175]
B. Salami, A. Afshar, and A. Mazaheri, "The effect of sodium silicate concentration on microstructure and corrosion properties of MAO-coated magnesium alloy AZ31 in simulated body fluid", J. Magnes. Alloys, vol. 2, pp. 72-77, 2014.
[176]
S. Shetty, J. Nayak, and A.N. Shetty, "Influence of sulfate ion concentration and pH on the corrosion of Mg-Al-Zn-Mn (GA9) magnesium alloy", J. Magnes. Alloys, vol. 3, pp. 258-270, 2015.
[177]
H. Wu, "Doping inorganic ions to regulate bioactivity of Ca–P coating on bioabsorbable high purity magnesium", Prog. Nat. Sci. Mater. Inter., vol. 24, pp. 479-485, 2014.
[178]
K.O. Oparaodu, and G.C. Okpokwasili, "Comparison of percentage weight loss and corrosion rate trends in different metal coupons from two soil environments", Inter. J. Enviro. Bioremed. Biodegrad., vol. 2, pp. 243-249, 2014.
[179]
G.K. Soujanya, T. Hanas, V.Y. Chakrapani, B.R. Sunil, and T.S.S. Kumar, "Electrospun nanofibrous polymer coated magnesium alloy for biodegradable implant applications", Procedia Mater. Sci., vol. 5, pp. 817-823, 2014.
[180]
K.S. Williams, V. Rodriguez-Santiago, and J.W. Andzelm, "Modeling reaction pathways for hydrogen evolution and water dissociation on magnesium", Electrochim. Acta, vol. 210, pp. 261-270, 2016.
[181]
Y. Yang, F. Scenini, and M. Curioni, "A study on magnesium corrosion by real-time imaging and electrochemical methods: relationship between local processes and hydrogen evolution", Electrochim. Acta, vol. 198, pp. 174-184, 2016.
[182]
M. Curioni, "The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging", Electrochim. Acta, vol. 120, pp. 284-292, 2014.
[183]
G. Song, A. Atrens, and D. StJohn, "An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys", Magnes. Technol., vol. 2001, pp. 254-262, 2001.
[184]
A. Mahapatro, "Biodegradation evaluation of magnesium alloys corrosion via hydrogen evolution measurements,", In: 225th ECS Meeting.(May 11-15, 2014), 2014: Ecs.,
[185]
S. Lebouil, A. Duboin, F. Monti, P. Tabeling, P. Volovitch, and K. Ogle, "A novel approach to on-line measurement of gas evolution kinetics: Application to the negative difference effect of Mg in chloride solution", Electrochim. Acta, vol. 124, pp. 176-182, 2014.
[186]
J. Tang, "Surface coating reduces degradation rate of magnesium alloy developed for orthopaedic applications", J. Orthop. Translat., vol. 1, pp. 41-48, 2013.
[187]
N.T. Kirkland, N. Birbilis, and M.P. Staiger, "Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations", Acta Biomater., vol. 8, pp. 925-936, 2012.
[188]
T. Kraus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, and A.M. Weinberg, "Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone", Acta Biomater., vol. 8, pp. 1230-1238, 2012.
[189]
D. Noviana, D. Paramitha, M.F. Ulum, and H. Hermawan, "The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats", J. Orthop. Translat., vol. 5, pp. 9-15, 2016.
[190]
G.L. Song, and A. Atrens, "Corrosion Mechanisms of Magne-sium Alloys", Adv. Eng. Mater., vol. 1, pp. 11-33, 1999.
[191]
T.M. Abdel-Fattah, and A. Mahapatro, "Electrochemical corrosion study of protective organic thin film coating on magnesium alloy", ECS Trans., vol. 41, pp. 115-119, 2012.
[192]
J. Bontrager, A. Mahapatro, and A.S. Gomes, "Microscopic bio-corrosion evaluations of magnesium surfaces in static and dynamic conditions", J. Microsc., vol. 255, pp. 104-115, 2014.
[193]
J. Tkacz, J. Minda, S. Fintová, and J. Wasserbauer, "Comparison of electrochemical methods for the evaluation of cast AZ91 magnesium alloy,", Mater, vol. 9, . 2016
[194]
V. Bagotsky, Fundamentals of Electrochemistry 2nd ed.The Electrochemical Society Series , 2005
[195]
M. Stern, and A.L. Geary, "Electrochemical polarization I. A theoretical analysis of the shape of polarization curves", J. Electrochem. Soc., vol. 104, pp. 56-63, 1957.
[196]
J. Jankowski, "Electrochemical methods for corrosion rate determination under cathodic polarisation conditions-A re-view part I-DC methods", Corros. Rev., vol. 20, pp. 159-178, 2002.
[197]
G. Astm, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Meas-urements.
[198]
M.B. Kannan, "Improving the packing density of calcium phosphate coating on a magnesium alloy for enhanced degradation resistance", J. Biomed. Mater. Res. A, vol. 101, no. 5, pp. 1248-1254, 2013.
[199]
W.D. Müller, M.L. Nascimento, M. Zeddies, M. Córsico, L.M. Gassa, and M.A.F.L.d. Mele, "Magnesium and its alloys as degradable biomaterials: corrosion studies using poten-tiodynamic and EIS electrochemical techniques", Mater. Res., vol. 10, pp. 5-10, 2007.
[200]
S-M. Kim, J.H. Jo, S.M. Lee, M.H. Kang, H.E. Kim, Y. Estrin, J.H. Lee, J.W. Lee, and Y.H. Koh, "Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response", J. Biomed. Mater. Res. A, vol. 102, no. 2, pp. 429-441, 2014.
[201]
D. Song, "Hydrothermal synthesis and corrosion behavior of the protective coating on Mg-2Zn-Mn-Ca-Ce alloy", Prog. Nat. Sci. Mater. Inter., vol. 26, pp. 590-599, 2016.
[202]
M. Esmaily, "Fundamentals and advances in magnesium alloy corrosion", Prog. Mater. Sci., vol. 89, pp. 92-193, 2017.
[203]
S. Frangini, and N. De Cristofaro, Analysis of the galvanostatic polarization method for determining reliable pitting potentials on stainless steels in crevice-free conditions., pp. 2769-2786, 2003.
[204]
A. Němcová, "Film growth and alloy enrichment during anodizing AZ31 magnesium alloy in fluoride/glycerol electrolytes of a range of water contents", Electrochim. Acta, vol. 219, pp. 28-37, 2016.
[205]
S. Fajardo, and G.S. Frankel, "Gravimetric method for hydro-gen evolution measurements on dissolving magnesium", J. Electrochem. Soc., vol. 162, no. 14, pp. C693-C701, 2015.
[206]
F. Mansfeld, "Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection", Electrochim. Acta, vol. 35, pp. 1533-1544, 1990.
[207]
M.E. Orazem, and B. Tribollet, Electrochemical impedance spectroscopy., John Wiley & Sons, 2011.
[208]
A. Lasia, "Electrochemical impedance spectroscopy and its applications", In: Modern aspects of electrochemistry., Springer, 2002, pp. 143-248.
[209]
K.D. Vernon-Parry, "Scanning electron microscopy: an introduction", III-Vs Review, vol. 13, pp. 40-44, 2000.
[210]
G. Pantazopoulos, and A. Vazdirvanidis, Identification of corrosion and damage mechanisms by using scanning electron microscopy and energy-dispersive X-ray microanalysis: contribution to failure analysis case histories, vol. 55, p. 012015, . IOP Publishing
[211]
I.I. Smolyaninov, "Optical microscopy beyond the diffraction limit", HFSP J., vol. 2, no. 3, pp. 129-131, 2008. [PMID: 19404465].
[212]
C. Liu, P. Wan, L. L. Tan, K. Wang, and K. Yang, Preclinical investigation of an innovative magnesium-based bone graft substitute for potential orthopaedic applications.
[213]
M.E. Iskandar, A. Aslani, and H. Liu, "The effects of nanostructured hydroxyapatite coating on the biodegradation and cytocompatibility of magnesium implants", J. Biomed. Mater. Res. A, vol. 101, no. 8, pp. 2340-2354, 2013. [PMID: 23359521].
[214]
V. Wagener, A. Schilling, A. Mainka, D. Hennig, R. Gerum, M.L. Kelch, S. Keim, B. Fabry, and S. Virtanen, "Cell Adhesion on Surface-Functionalized Magnesium", ACS Appl. Mater. Interfaces, vol. 8, no. 19, pp. 11998-12006, 2016.
[215]
C. Liu, P. Wan, L.L. Tan, K. Wang, and K. Yang, "Preclinical investigation of an innovative magnesium-based bone graft substitute for potential orthopaedic applications", J. Orthop. Translat., vol. 2, pp. 139-148, 2014.
[216]
S. Oswald, “X-Ray Photoelectron Spectroscopy in Analysis of Surfaces,” in Encyclopedia of Analytical Chemistry., John Wiley & Sons, Ltd, 2006.
[217]
J.E. Gray-Munro, and M. Strong, "The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31", J. Biomed. Mater. Res. A, vol. 90, no. 2, pp. 339-350, 2009.
[218]
A. Mahapatro, Hybrid Corrosion Inhibiting and Bio-Functional Coatings for Magnesium Based Materials for De-velopment of Biodegradable Metallic Implants.
[219]
G.W. Stone, "Outcomes of the Absorb bioresorbable vascular scaffold in very small and not very small coronary arteries: the ABSORB III randomized trial", J. Am. Coll. Cardiol., vol. 67, no. 13, p. 35, 2016.
[220]
M. Haude, "Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial", The Lancet, vol. 387, pp. 31-39, 2016.
[221]
H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, and H. Waizy, "Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study", Biomed. Eng. Online, vol. 12, p. 62, 2013.
[222]
F-W. Bach, D. Bormann, R. Kucharski, and A. Meyer-Lindenberg, "Magnesium sponges as a bioabsorbable materi-al–attributes and challenges", Int. J. Mater. Res., vol. 98, pp. 609-612, 2007.
[223]
M. Lalk, J. Reifenrath, D. Rittershaus, D. Bormann, and A. Meyer-Lindenberg, "Biocompatibility and degradation behav-iour of degradable magnesium sponges coated with bioglass – method establishment within the framework of a pilot study. Biokompatibilität und Degradationsverhalten von degrada-blen, bioglas-beschichteten Magnesiumschwämmen – Methodenetablierung im Rahmen einer Pilotstudie", Materialwiss. Werkstofftech., vol. 41, no. 12, pp. 1025-1034, 2010.
[224]
M. Lalk, J. Reifenrath, N. Angrisani, A. Bondarenko, J.M. Seitz, P.P. Mueller, and A. Meyer-Lindenberg, "Fluoride and calcium-phosphate coated sponges of the magnesium alloy AX30 as bone grafts: a comparative study in rabbits", J. Mater. Sci. Mater. Med., vol. 24, no. 2, pp. 417-436, 2013.
[225]
D.J. Hickey, B. Ercan, L. Sun, and T.J. Webster, "Adding MgO nanoparticles to hydroxyapatite–PLLA nanocomposites for improved bone tissue engineering applications", Acta Biomater., vol. 14, pp. 175-184, 2015.
[226]
J.M. Seitz, M. Durisin, J. Goldman, and J.W. Drelich, "Recent advances in biodegradable metals for medical sutures: a critical review", Adv. Healthc. Mater., vol. 4, no. 13, pp. 1915-1936, 2015.
[227]
P. Kustra, A. Milenin, D. Byrska-Wójcik, O. Grydin, and M. Schaper, The process of ultra-fine wire drawing for magnesium alloy with the guaranteed restoration of ductility between passes , 2017.
[228]
Y. Liu, S. Zheng, N. Li, H. Guo, Y. Zheng, and J. Peng, "In vivo response of AZ31 alloy as biliary stents: a 6 months evaluation in rabbits," (in eng)", Sci Rep, vol. 7, . 2017
[229]
Z. Wang, "Effects of biodegradable Mg–6Zn alloy extracts on apoptosis of intestinal epithelial cells", Mater. Sci. Eng. B, vol. 177, pp. 388-393, 2012.
[230]
S. Zhang, "Biodegradation behavior of magnesium and ZK60 alloy in artificial urine and rat models", Bioact. Mater., vol. 2, pp. 53-62, 2017.
[231]
J.Y. Lock, E. Wyatt, S. Upadhyayula, A. Whall, V. Nuñez, V.I. Vullev, and H. Liu, "Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications", J. Biomed. Mater. Res. A, vol. 102, no. 3, pp. 781-792, 2014.

© 2024 Bentham Science Publishers | Privacy Policy