Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

PI3K/Akt-Nrf2 and Anti-Inflammation Effect of Macrolides in Chronic Obstructive Pulmonary Disease

Author(s): Xuejiao Sun, Lin Chen and Zhiyi He*

Volume 20, Issue 4, 2019

Page: [301 - 304] Pages: 4

DOI: 10.2174/1389200220666190227224748

Price: $65

Abstract

Background: Chronic Obstructive Pulmonary Disease (COPD) is a systematic inflammatory disease, and smoking is an important risk factor for COPD. Macrolide can reduce COPD inflammation. However, the inflammatory mechanism of COPD remains unclear and the anti-inflammatory mechanism of Macrolide is complex and not exactly known.

Methods: We read and analysed thirty-eight articles, including original articles and reviews.

Results: The expression of Nrf2 was lower in COPD patients and might have a protective role against apoptosis caused by CSE-induced oxidative stress. Nrf2 may play an important role in COPD inflammation. Nrf2 is a key factor in downstream of PI3K/Akt and is involved in the regulation of oxidative stress and inflammatory response. Therefore, PI3K/Akt pathway may play an important role in the activation of Nrf2 and COPD inflammation. Macrolide reduces lung and systemic inflammation of COPD by regulating PI3K/Akt pathway.

Conclusion: This review indicates that PI3K/Ak-Nrf2 may play an important role in COPD inflammation and macrolides may reduce lung and systemic inflammation of COPD by regulating PI3K/Akt-Nrf2 pathway. However, many crucial and essential questions remain to be answered. Further understanding of the mechanisms of macrolide efficacy and PI3K/Akt-Nrf2-mediated inflammatory responses may provide a new clue for exploring COPD treatment in the future.

Keywords: PI3K/Akt pathway, Nrf2 protein, oxidative stress, inflammation, macrolides, chronic obstructive pulmonary disease.

Graphical Abstract
[1]
Hogg, J.C.; Timens, W. The pathology of chronic obstructive pulmonary diease. Annu. Rev. Pathol., 2009, 4, 435-459.
[2]
Lopea, A.D.; Shibuya, K.; Rao, C.; Mathers, C.D.; Hansell, A.L.; Held, L.S.; Schmid, V.; Buist, S. Chronic obstructive pulmonary diease: Current burden and future projections. Eur. Respir. J., 2006, 27, 397-412.
[3]
Guerra, S.; Sherrill, D.L.; Kurzius-Spencer, M.; Venker, C.; Halonen, M.; Quan, S.F.; Martinez, F.D. The course of persistent airflow limitation in subjects with and without asthma. Respir. Med., 2008, 102, 1473-1482.
[4]
Hogg, J.C. Pathophsiology of airflow limitation in chronic obstructive pulmonary diease. Lancet, 2004, 36, 709-721.
[5]
Lamela, J.; Vega, F. Immunologic aspects of chronic obstructive pulmonary disease. N. Engl. J. Med., 2009, 361, 1024.
[6]
Barnes, P.J.; Celli, B.R. Systemic manifestations and comorbidities of COPD. Eur. Respir. J., 2009, 33, 1165-1185.
[7]
Martinez, F.J.; Curtis, J.L.; Albert, R. Role of macrolide therapy in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis., 2008, 3, 331-350.
[8]
Sun, X.J.; Li, Z.H.; Zhang, Y.; Zhou, G.; Zhang, J.Q.; Deng, J.M.; Bai, J.; Liu, G.N.; Li, M.H.; MacNee, W.; Zhong, X.N.; He, Z.Y. Combination of erythromycin and dexamethasone improves corticosteroid sensitivity induced by cigarette smoke extract through inhibition of PI3K-δ/Akt pathway and increased GR expression. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 309, L139-L146.
[9]
Fabbri, L.M.; Rabe, K.F. From COPD to chronic systemic inflammatory syndrome? Lancet, 2007, 370, 797-799.
[10]
Nussbaumer-Ochsner, Y.; Rabe, K.F. Systemic manifestations of COPD. Chest, 2011, 139, 165-173.
[11]
Duong, C.; Seow, H.J.; Bozinovski, S.; Crack, P.J.; Anderson, G.P.; Vlahos, R. Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2010, 299, L425-L433.
[12]
MacNee, W.; Tuder, R.M. New paradigms in the pathogenesis of chronic obstructive pulmonary disease I. Proc. Am. Thorac. Soc., 2009, 6, 527-531.
[13]
Yao, H.; Rahman, I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol. Appl. Pharmacol., 2011, 254, 72-85.
[14]
McGrath-Morrow, S.; Lauer, T.; Yee, M.; Neptune, E.; Podowski, M.; Thimmulappa, R.K.; O’Reilly, M.; Biswal, S. Nrf2 increases survival and attenuates alveolar growth inhibition in neonatal mice exposed to hyperoxia. Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, 296, 565-573.
[15]
Ohta, T.; Iijima, K. Loss of keap1 function activities Nrf2 and provides advantages for lung cancer cell growth. Cancer Res., 2008, 68, 1303-1309.
[16]
Rangasamy, T.; Guo, J.; Mitzner, W.A.; Roman, J.; Singh, A.; Fryer, A.D.; Yamamoto, M.; Kensler, T.W.; Tuder, R.M.; Georas, S.N.; Biswal, S. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J. Exp. Med., 2005, 202, 47-59.
[17]
Storz, P. Reactive oxygen species in tumor progression. Front. Biosci., 2005, 10, 1881-1896.
[18]
Rahman, I. The role of oxidative stress in the pathogenesis of COPD: Implications for therapy. Treat. Respir. Med., 2005, 4, 175-200.
[19]
Rabman, I. Oxidative stress, transcription factors and chromatin remodelling in lung inflammation. Biochem. Pharmacol., 2002, 64, 935-942.
[20]
Iizuka, T.; Ishii, Y.; Itoh, K.; Kiwamoto, T.; Kimura, T.; Matsuno, Y.; Morishima, Y.; Hegab, A.E.; Homma, S.; Nomura, A.; Sakamoto, T.; Shimura, M.; Yoshida, A.; Yamamoto, M.; Sekizawa, K. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells, 2005, 10, 1113-1125.
[21]
Rangasamy, T.; Cho, C.Y.; Thimmulappa, R.K.; Zhen, L.; Srisuma, S.S.; Kensler, T.W.; Yamamoto, M.; Petrache, I.; Tuder, R.M.; Biswal, S. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J. Clin. Invest., 2004, 114, 1248-1259.
[22]
Yamada, K.; Asai, K.; Nagayasu, F.; Sato, K.; Ijiri, N.; Yoshii, N.; Imahashi, Y.; Watanabe, T.; Tochino, Y.; Kanazawa, H.; Hirata, K. Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking. BMC Pulm. Med., 2016, 16, 27.
[23]
Ishii, Y.; Itoh, K.; Morishima, Y.; Kimura, T.; Kiwamoto, T.; Iizuka, T.; Hegab, A.E.; Hosoya, T.; Nomura, A.; Sakamoto, T.; Yamamoto, M.; Sekizawa, K. Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema. J. Immunol., 2005, 175, 6968-6975.
[24]
Takada, Y.; Mukhopadhyay, A.; Kundu, G.C.; Mahabeleshwar, G.H. Singh. S.; Aggarwal, B.B. Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: Evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J. Biol. Chem., 2003, 278, 24233-24241.
[25]
Szulakowski, P.; Crowther, A.J.; Jiménez, L.A.; Donaldson, K.; Mayer, R.; Leonard, T.B.; MacNee, W.; Drost, E.M. The effect of smoking on the transcriptional regulation of lung inflammation in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2006, 174, 41-50.
[26]
Jin, W.; Zhu, L.; Guan, Q.; Chen, G.; Wang, Q.F.; Yin, H.X.; Hang, C.H.; Shi, J.X.; Wang, H.D. Influence of Nrf2 genotype on pulmonary NF-kappaB activity and inflammatory response after traumatic brain injury. Ann. Clin. Lab. Sci., 2008, 38, 221-227.
[27]
Li, X.Y.; Luo, B.L.; Chen, H.M. The function of nuclear factor-erythroid 2-related factor 2 and its association with I-kappa B kinases α/β in a rat model of chronic obstructive pulmonary disease. Chin J. Tuberc. Respir. Dis., 2009, 32, 935-939.
[28]
He, Z.Y.; Liang, Y.; Liang, Q.L. Effect of cigarette smoking condensate on myogenic differentiation of murine skeletal muscle C2C12 cells. Chinese J. Pathophysiol., 2010, 26, 881-884.
[29]
Marwick, J.A.; Caramori, C.; Stevenson, C.S.; Casolari, P.; Jazrawi, E.; Barnes, P.J.; Ito, K.; Adcock, I.M.; Kirkham, P.A.; Papi, A. Inhibition of PI3Kδ restores glucocorticoid function in smoking-induced airway inflammation in mice. Am. J. Respir. Crit. Care Med., 2009, 179, 542-548.
[30]
Ichiyama, T.; Hasegawa, S.; Matsubara, T.; Hayashi, T.; Furukawa, S. Theophylline inhibits NF-κB activation and IκBα degradation in human pulmonary epithelial cells. N-S. Arch. Pharmacol, 2014, 364, 558-561.
[31]
Cosio, B.G.; Tsaprouni, L.; Ito, K.; Jazrawi, E.; Adcock, I.M.; Barned, P.J. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J. Exp. Med., 2004, 200, 689-695.
[32]
Ortiz, J.L.; Milara, J.; Lluch, J. De, Diego, A.; Sanz, C.; Cortijo, J. Phosphodiesterase-4 inhibition improves corticosteroid insensitivity in pulmonary endothelial cells under oxidative stress. Allergy, 2013, 68, 64-73.
[33]
Mercado, N.; To, Y.; Ito, K.; Barnes, P.J. Nortriptyline reverses corticosteroid insensitivity by inhibition of phosphoinositide-3-kinase-delta. J. Pharmacol. Exp. Ther., 2011, 337, 465-470.
[34]
Kao, T-C.; Shyu, M-H.; Yen, G-C. Glycyrrhizic acid and 18β-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3β signaling and glucocorticoid receptor activation. J. Agric. Food Chem., 2010, 58, 8623-8629.
[35]
Ford, P.A.; Durham, A.L.; Russell, R.E.; Gordon, F.; Adcock, I.M.; Barnes, P.J. Treatment effects of low-dose theophylline combined with an inhaled corticosteroid in COPD. Chest, 2010, 137, 1338-1344.
[36]
Zhang, L.; Johnson, D.; Johnson, J.A. Deletion of Nrf2 impairs functional recovery, reduces clearance of myelin debris and decreases axonal remyelination after peripheral nerve injury. Neurobiol. Dis., 2013, 54, 329-338.
[37]
Li, M.H.; Zhong, X.N.; He, Z.Y.; Wen, M.A.; Li, J.; Peng, X.Y.; Liu, G.N.; Deng, J.M.; Zhang, J.Q.; Bai, J. Effect of erythromycin on cigarette-induced histone deacetylase protein expression and nuclear factor-κB activity in human macrophages in vitro. Int. Immunopharmacol., 2012, 12, 643-650.
[38]
Kobayashi, Y.; Wada, H.; Rossios, C.; Takagi, D.; Charron, C.; Barnes, P.J.; Ito, K. A novel macrolide/fluoroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity phosphoinositide 3-kina pathway inhibition. Br. J. Pharmacol., 2013, 169, 1024-1034.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy