Review Article

用于研究自闭症相关细菌梭状芽孢杆菌的碳水化合物支架。

卷 26, 期 35, 2019

页: [6341 - 6348] 页: 8

弟呕挨: 10.2174/0929867326666190225164527

open access plus

摘要

自闭症谱系障碍的大量儿童患有胃肠道(GI)疾病,例如便秘和腹泻。螺栓梭状芽胞杆菌是在受胃肠道和自闭症症状影响的宿主的粪便样本中定期检出的一组病原体的一部分。伴随的研究指出,这种微生物可能通过所谓的肠脑连接产生神经毒性代谢产物而影响行为。作为基于艰难梭菌多糖(PS)的疫苗研究的扩展,我们从事了C. bolteae表面碳水化合物的发现。到目前为止,研究表明,C。bolteae可产生一种特定的具有免疫原性的PS胶囊,该胶囊由甘露糖(Manp)和鼠李糖(Rhap)单元的二糖重复嵌段组成:α-D-Manp-(1→[-4)-β-D- Rhap-(1→3)-α-D-Manp-(1→] n。为了进行疫苗学和进一步的免疫原性实验,已开发了一种生产C. bolteae PS偶联物的方法,以及非PS的化学合成方法。减少末端键,与D-Rha或L-Rha,α-D-Manp-(1→4)-α-D-Rhap-(1→O(CH2)5NH2和α-D-Manp-(1→4 )-α-L-Rhap-(1→O(CH2)5NH2,在还原端配有氨基戊基接头以进行缀合。C. bolteae PS免疫原的发现打开了创建非规避性诊断工具的大门评估这种微生物在自闭症患者中的频率和作用,以及降低胃肠道中定植水平的疫苗,从而阻碍了神经毒素的浓度。

关键词: 梭状芽胞杆菌,多糖,合成,结合物,TEMPO,自闭症,诊断,疫苗,胃肠道疾病,肠脑轴。

[1]
Bradley, E.; Caldwell, P.; Underwood, L. Handbook of Psychopathology in Intellectual Disability; Tsakanikos, E.; McCarthy, J., Eds.; Springer New York, 2014, pp. 237-264.
[http://dx.doi.org/10.1007/978-1-4614-8250-5_16]
[2]
Finegold, S.M. Desulfovibrio species are potentially important in regressive autism. Med. Hypotheses, 2011, 77(2), 270-274.
[http://dx.doi.org/10.1016/j.mehy.2011.04.032] [PMID: 21592674]
[3]
Parracho, H.M.; Bingham, M.O.; Gibson, G.R.; McCartney, A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol., 2005, 54(Pt 10), 987-991.
[http://dx.doi.org/10.1099/jmm.0.46101-0] [PMID: 16157555]
[4]
Guarner, F.; Malagelada, J-R. Gut flora in health and disease. Lancet, 2003, 361(9356), 512-519.
[http://dx.doi.org/10.1016/S0140-6736(03)12489-0] [PMID: 12583961]
[5]
Toh, M.C.; Allen-Vercoe, E. The human gut microbiota with reference to autism spectrum disorder: considering the whole as more than a sum of its parts. Microb. Ecol. Health Dis., 2015, 26, 26309.
[PMID: 25634609]
[6]
Finegold, S.M.; Downes, J.; Summanen, P.H. Microbiology of regressive autism. Anaerobe, 2012, 18(2), 260-262.
[http://dx.doi.org/10.1016/j.anaerobe.2011.12.018] [PMID: 22202440]
[7]
Bercik, P.; Denou, E.; Collins, J.; Jackson, W.; Lu, J.; Jury, J.; Deng, Y.; Blennerhassett, P.; Macri, J.; McCoy, K.D.; Verdu, E.F.; Collins, S.M. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 2011. 141(2), 599-609, 609.e1-609.e3.
[http://dx.doi.org/10.1053/j.gastro.2011.04.052] [PMID: 21683077]
[8]
Arranga, T.; Viadro, C.I.; Underwood, L.; Herbert, M. Bugs, Bowels, and Behavior: The Groundbreaking Story of the Gut-Brain Connection; Skyhorse Publishing Company, Incorporated, 2013.
[9]
Valicenti-McDermott, M.; McVicar, K.; Rapin, I.; Wershil, B.K.; Cohen, H.; Shinnar, S. Frequency of gastrointestinal symptoms in children with autistic spectrum disorders and association with family history of autoimmune disease. J. Dev. Behav. Pediatr., 2006, 27(2)(Suppl.), S128-S136.
[http://dx.doi.org/10.1097/00004703-200604002-00011] [PMID: 16685179]
[10]
Finegold, S.M.; Molitoris, D.; Song, Y.; Liu, C.; Vaisanen, M-L.; Bolte, E.; McTeague, M.; Sandler, R.; Wexler, H.; Marlowe, E.M.; Collins, M.D.; Lawson, P.A.; Summanen, P.; Baysallar, M.; Tomzynski, T.J.; Read, E.; Johnson, E.; Rolfe, R.; Nasir, P.; Shah, H.; Haake, D.A.; Manning, P.; Kaul, A. Gastrointestinal microflora studies in late-onset autism. Clin. Infect. Dis., 2002, 35(Suppl. 1), S6-S16.
[http://dx.doi.org/10.1086/341914] [PMID: 12173102]
[11]
Song, Y.; Liu, C.; Molitoris, D.R.; Tomzynski, T.J.; Lawson, P.A.; Collins, M.D.; Finegold, S.M. Clostridium bolteae sp. nov., isolated from human sources. Syst. Appl. Microbiol., 2003, 26(1), 84-89.
[http://dx.doi.org/10.1078/072320203322337353] [PMID: 12747414]
[12]
MacFabe, D.F.; Cain, D.P.; Rodriguez-Capote, K.; Franklin, A.E.; Hoffman, J.E.; Boon, F.; Taylor, A.R.; Kavaliers, M.; Ossenkopp, K-P. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav. Brain Res., 2007, 176(1), 149-169.
[http://dx.doi.org/10.1016/j.bbr.2006.07.025] [PMID: 16950524]
[13]
MacFabe, D.F.; Rodríguez-Capote, K.; Hoffman, J.E.; Franklin, A.E.; Mohammad-Asef, Y.; Taylor, A.R.; Boon, F.; Cain, D.P.; Kavaliers, M.; Possmayer, F. A novel rodent model of autism: intraventricular infusions of propionic acid increase locomotor activity and induce neuroinflammation and oxidative stress in discrete regions of adult rat brain. Am. J. Biochem. Biotechnol., 2008, 4(2), 146-166.
[http://dx.doi.org/10.3844/ajbbsp.2008.146.166]
[14]
Macfabe, D.F. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb. Ecol. Health Dis., 2012, 23. Epub ahead of print
[http://dx.doi.org/10.3402/mehd.v3423i3400.19260] [PMID: 23990817]
[15]
Shultz, S.R.; MacFabe, D.F.; Ossenkopp, K-P.; Scratch, S.; Whelan, J.; Taylor, R.; Cain, D.P. Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: implications for an animal model of autism. Neuropharmacology, 2008, 54(6), 901-911.
[http://dx.doi.org/10.1016/j.neuropharm.2008.01.013] [PMID: 18395759]
[16]
Bolte, E.R. Autism and Clostridium tetani. Med. Hypotheses, 1998, 51(2), 133-144.
[http://dx.doi.org/10.1016/S0306-9877(98)90107-4] [PMID: 9881820]
[17]
Song, Y.; Liu, C.; Finegold, S.M. Real-time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microbiol., 2004, 70(11), 6459-6465.
[http://dx.doi.org/10.1128/AEM.70.11.6459-6465.2004] [PMID: 15528506]
[18]
Finegold, S.M.; Dowd, S.E.; Gontcharova, V.; Liu, C.; Henley, K.E.; Wolcott, R.D.; Youn, E.; Summanen, P.H.; Granpeesheh, D.; Dixon, D.; Liu, M.; Molitoris, D.R.; Green, J.A., III Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe, 2010, 16(4), 444-453.
[http://dx.doi.org/10.1016/j.anaerobe.2010.06.008] [PMID: 20603222]
[19]
Wang, L.; Christophersen, C.T.; Sorich, M.J.; Gerber, J.P.; Angley, M.T.; Conlon, M.A. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism, 2013, 4(1), 42-42.
[http://dx.doi.org/10.1186/2040-2392-4-42] [PMID: 24188502]
[20]
Finegold, S.M.; Song, Y.; Liu, C.; Hecht, D.W.; Summanen, P.; Könönen, E.; Allen, S.D. Clostridium clostridioforme: a mixture of three clinically important species. Eur. J. Clin. Microbiol. Infect. Dis., 2005, 24(5), 319-324.
[http://dx.doi.org/10.1007/s10096-005-1334-6] [PMID: 15891914]
[21]
Sandler, R.H.; Finegold, S.M.; Bolte, E.R.; Buchanan, C.P.; Maxwell, A.P.; Väisänen, M-L.; Nelson, M.N.; Wexler, H.M. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J. Child Neurol., 2000, 15(7), 429-435.
[http://dx.doi.org/10.1177/088307380001500701] [PMID: 10921511]
[22]
Venugopal, A.A.; Johnson, S. Current state of Clostridium difficile treatment options. Clin. Infect. Dis., 2012, 55(Suppl. 2), S71-S76.
[http://dx.doi.org/10.1093/cid/cis355] [PMID: 22752868]
[23]
Srinivasan, A.; Dick, J.D.; Perl, T.M. Vancomycin resistance in staphylococci. Clin. Microbiol. Rev., 2002, 15(3), 430-438.
[http://dx.doi.org/10.1128/CMR.15.3.430-438.2002] [PMID: 12097250]
[24]
Cetinkaya, Y.; Falk, P.; Mayhall, C.G. Vancomycin-resistant enterococci. Clin. Microbiol. Rev., 2000, 13(4), 686-707.
[http://dx.doi.org/10.1128/CMR.13.4.686] [PMID: 11023964]
[25]
Monteiro, M.A. The design of a Clostridium difficile carbohydrate-based vaccine. Methods Mol. Biol., 2016, 1403, 397-408.
[http://dx.doi.org/10.1007/978-1-4939-3387-7_21] [PMID: 27076143]
[26]
Pequegnat, B.; Sagermann, M.; Valliani, M.; Toh, M.; Chow, H.; Allen-Vercoe, E.; Monteiro, M.A. A vaccine and diagnostic target for Clostridium bolteae, an autism-associated bacterium. Vaccine, 2013, 31(26), 2787-2790.
[http://dx.doi.org/10.1016/j.vaccine.2013.04.018] [PMID: 23602537]
[27]
Pequegnat, B. A Diagnostic Target Against Clostridium bolteae, Towards a Multivalent Vaccine for Autism-Related Gastric Bacteria; University of Guelph, 2013.
[28]
Bertolo, L.; Ewing, C.P.; Maue, A.; Poly, F.; Guerry, P.; Monteiro, M.A. The design of a capsule polysaccharide conjugate vaccine against Campylobacter jejuni serotype HS15. Carbohydr. Res., 2013, 366, 45-49.
[http://dx.doi.org/10.1016/j.carres.2012.11.017] [PMID: 23261782]
[29]
Ma, Z.; Bertolo, L.; Arar, S.; Monteiro, M.A. TEMPO-mediated glycoconjugation: a scheme for the controlled synthesis of polysaccharide conjugates. Carbohydr. Res., 2011, 346(2), 343-347.
[http://dx.doi.org/10.1016/j.carres.2010.11.021] [PMID: 21167478]
[30]
Pequegnat, B. Polysaccharide Vaccines for Enteric Pathogens: The Next Generation Multivalent Diarrhea Vaccine; University of Guelph, 2016.
[31]
Jiao, Y. Syntheses of Carbohydrate Antigens Expressed by Gastric-intestinal Bacteria and Conjugates Thereof; University of Guelph, 2016.
[32]
Kerékgyártó, J.; Kamerling, J.P.; Bouwstra, J.B.; Vliegenthart, J.F.; Lipták, A. Synthesis of four structural elements of xylose-containing carbohydrate chains from N-glycoproteins. Carbohydr. Res., 1989, 186(1), 51-62.
[http://dx.doi.org/10.1016/0008-6215(89)84004-2] [PMID: 2720704]
[33]
Fauré, R.; Shiao, T.C.; Damerval, S.; Roy, R. Practical synthesis of valuable d-rhamnoside building blocks for oligosaccharide synthesis. Tetrahedron Lett., 2007, 48(13), 2385-2388.
[http://dx.doi.org/10.1016/j.tetlet.2007.01.122]
[34]
Ma, Z.; Zhang, J.; Kong, F. Concise syntheses of β-GlcNAcp-(1→ 6)-α-Manp-(1→ 6)-Manp and its dimer, and β-GlcNAcp-(1→ 2)-α-Manp-(1→ 6)-. Manp. Tetrahedron: Asymmetry, 2003, 14(17), 2595-2603.
[http://dx.doi.org/10.1016/S0957-4166(03)00570-6]
[35]
Ning, J.; Zhang, W.; Yi, Y.; Yang, G.; Wu, Z.; Yi, J.; Kong, F. Synthesis of β-(1-->6)-branched β-(1-->3) glucohexaose and its analogues containing an α-(1-->3) linked bond with antitumor activity. Bioorg. Med. Chem., 2003, 11(10), 2193-2203.
[http://dx.doi.org/10.1016/S0968-0896(03)00118-4] [PMID: 12713829]
[36]
Johnson, K.V.; Foster, K.R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol., 2018, 16(10), 647-655.
[http://dx.doi.org/10.1038/s41579-018-0014-3] [PMID: 29691482]
[37]
Ganeshapillai, J.; Vinogradov, E.; Rousseau, J.; Weese, J.S.; Monteiro, M.A. Clostridium difficile cell-surface polysaccharides composed of pentaglycosyl and hexaglycosyl phosphate repeating units. Carbohydr. Res., 2008, 343(4), 703-710.
[http://dx.doi.org/10.1016/j.carres.2008.01.002] [PMID: 18237724]
[38]
Bertolo, L.; Boncheff, A.G.; Ma, Z.; Chen, Y-H.; Wakeford, T.; Friendship, R.M.; Rosseau, J.; Weese, J.S.; Chu, M.; Mallozzi, M.; Vedantam, G.; Monteiro, M.A. Clostridium difficile carbohydrates: glucan in spores, PSII common antigen in cells, immunogenicity of PSII in swine and synthesis of a dual C. difficile-ETEC conjugate vaccine. Carbohydr. Res., 2012, 354, 79-86.
[http://dx.doi.org/10.1016/j.carres.2012.03.032] [PMID: 22533919]
[39]
Jiao, Y.; Ma, Z.; Hodgins, D.; Pequegnat, B.; Bertolo, L.; Arroyo, L.; Monteiro, M.A. Clostridium difficile PSI polysaccharide: synthesis of pentasaccharide repeating block, conjugation to exotoxin B subunit, and detection of natural anti-PSI IgG antibodies in horse serum. Carbohydr. Res., 2013, 378(0), 15-25.
[http://dx.doi.org/10.1016/j.carres.2013.03.018] [PMID: 23597587]
[40]
Monteiro, M.A.; Ma, Z.; Bertolo, L.; Jiao, Y.; Arroyo, L.; Hodgins, D.; Mallozzi, M.; Vedantam, G.; Sagermann, M.; Sundsmo, J.; Chow, H. Carbohydrate-based Clostridium difficile vaccines. Expert Rev. Vaccines, 2013, 12(4), 421-431.
[http://dx.doi.org/10.1586/erv.13.9] [PMID: 23560922]
[41]
Oberli, M.A.; Hecht, M.L.; Bindschädler, P.; Adibekian, A.; Adam, T.; Seeberger, P.H. A possible oligosaccharide-conjugate vaccine candidate for Clostridium difficile is antigenic and immunogenic. Chem. Biol., 2011, 18(5), 580-588.
[http://dx.doi.org/10.1016/j.chembiol.2011.03.009] [PMID: 21609839]
[42]
Broecker, F.; Martin, C.E.; Wegner, E.; Mattner, J.; Baek, J.Y.; Pereira, C.L.; Anish, C.; Seeberger, P.H. Synthetic lipoteichoic acid glycans are potential vaccine candidates to protect from Clostridium difficile infections. Cell Chem. Biol., 2016, 23(8), 1014-1022.
[http://dx.doi.org/10.1016/j.chembiol.2016.07.009] [PMID: 27524293]
[43]
Kalelkar, S.; Glushka, J.; van Halbeek, H.; Morris, L.C.; Cherniak, R. Structure of the capsular polysaccharide of Clostridium perfringens Hobbs 5 as determined by NMR spectroscopy. Carbohydr. Res., 1997, 299(3), 119-128.
[http://dx.doi.org/10.1016/S0008-6215(97)00010-4] [PMID: 9163894]
[44]
Rocchetta, H.L.; Burrows, L.L.; Lam, J.S. Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev., 1999, 63(3), 523-553.
[PMID: 10477307]
[45]
Ramm, M.; Wolfender, J-L.; Queiroz, E.F.; Hostettmann, K.; Hamburger, M. Rapid analysis of nucleotide-activated sugars by high-performance liquid chromatography coupled with diode-array detection, electrospray ionization mass spectrometry and nuclear magnetic resonance. J. Chromatogr. A, 2004, 1034(1-2), 139-148.
[http://dx.doi.org/10.1016/j.chroma.2004.02.023] [PMID: 15116923]
[46]
Watt, G.; Leoff, C.; Harper, A.D.; Bar-Peled, M. A bifunctional 3,5-epimerase/4-keto reductase for nucleotide-rhamnose synthesis in Arabidopsis. Plant Physiol., 2004, 134(4), 1337-1346.
[http://dx.doi.org/10.1104/pp.103.037192] [PMID: 15020741]
[47]
Institute, B. [Clostridium] bolteae WAL-14578;, Human Microbiome Project. 2015.
[48]
Davidson, J. Synthesis of Clostridium bolteae Capsular Polysaccharide Fragments: A Repeating Disaccharide Unit; University of Guelph, 2016.

© 2024 Bentham Science Publishers | Privacy Policy