Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Research Article

Pharmacophores Modeling in Terms of Prediction of Theoretical Physicochemical Properties and Verification by EXPERIMENTAL correlations of Carbacylamidophosphates (CAPh) and Sulfanylamidophosphates (SAPh) Tested as New Carbonic Anhydrase Inhibitors

Author(s): Vladimir Amirkhanov*, Abdur Rauf, Taibi Ben Hadda*, Vladimir Ovchynnikov, Viktor Trush, Muhammad Saleem, Muslam Raza, Tayyeba Rehman, Hsaine Zgou, Usama Shaheen and Thoraya A. Farghaly*

Volume 19, Issue 12, 2019

Page: [1015 - 1027] Pages: 13

DOI: 10.2174/1389557519666190222172757

Price: $65

Abstract

Background: The function of Carbonic anhydrase is to facilitate the physiological process i.e. interconversion of CO2 to HCO3 - by hydration. Carbonic anhydrase enzyme plays a vital role in different physiological processes to regulate pH as well as regulate the inner environment of CO2 and secretion of electrolytes.

Methods: Six representatives of amidophosphate derivatives (L1-L6) were synthesized and evaluated for their biological activities against carbonic anhydrase enzyme.

Results: Out of six derivatives, L1 (IC50 = 12.5 ± 1.35 µM), and L2 (IC50 = 3.12 ± 0.45 µM) showed potent activity against BCA-II. While (L3, L4 and L5) showed weak inhibitory activity with IC50 values of 24.5 ± 2.25, 55.5± 1.60, and 75.5 ± 1.25 µM, respectively and were found to be weak inhibitors of carbonic anhydrase as compared to acetazolamide (IC50 =0.12± 0.03µM), used as standard inhibitor.

A computational Petra/Osiris/Molinspiration/DFT (POM/DFT) based model has been expanded for the determination of physicochemical parameters governing the bioactivity amidophosphate derivatives (L1-L6) containing (O1 --- O2) pharmacophore site. The six compounds (L1-L6) analyzed here were previously experimentally and now virtually screened for their anti-carbonic anhydrase activity.

Conclusion: The highest anti-carbonic anhydrase activity was obtained for compound L2, which exhibited excellent bioactivity (% of inhibition = 95%), comparable to acetazolamide (% of inhibition = 89%). The compound L3 represents increased activity as compared to its analogues (L4-L6). The increase of bioactivity from L3 to L4-L6 could be attributed to the presence of a minimum of steric effect of substituents of P=O moiety which plays a decisive template part in the organization of anti-carbonic anhydrase (O1---O2) phramacophore site. Moreover, it is inexpensive, has little side effects and possible inclusions in selective anti-carbonic anhydrase agents design.

Keywords: Amidophosphate derivatives, carbonic anhydrase, acetazolamide, docking, Petra/Osiris/Molinspiration (POM) analyses, pharmacophore site identification.

Next »
Graphical Abstract
[1]
Supuran, C.T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., 2003, 23(2), 146-189.
[2]
Supuran, C.T.; Scozzafava, A. Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin. Ther. Pat., 2000, 10, 575-600.
[3]
Maren, T.H. Carbonic anhydrase: Chemistry, physiology and inhibition. Physiol. Rev., 1967, 47, 595-781.
[4]
Gawryszewska, P.; Smolenski, P. Ligands synthesis, characterization and role in biotechnology; NOVA Publishers: New York, 2014.
[5]
Gholivand, K.; Dorosti, N. Novel ammonium phosphinates containing peptide moiety: Synthesis, structure, and in vitro antimicrobial activity. Chem. Pap., 2012, 66(8), 765-771.
[6]
Gholivand, K.; Dorosti, N. Some new compounds with P(E)NHC(O) (E = lone pair, O, S) linkage: Synthesis, spectroscopic, crystal structures, theoretical studies, and antimicrobial evaluation. Monatsh. Chem., 2013, 144, 1417-1425.
[7]
Prylutska, S.; Grynyuk, I.; Grebinyk, A.; Hurmach, V.; Shatrava, Iu.; Sliva, T.; Amirkhanov, V.; Prylutskyy, Yu.; Matyshevska, O.; Slobodyanik, M.; Frohme, M.; Ritter, U. Cytotoxic effects of dimorfolido-N-trichloroacetylphosphorylamide and dimorfolido-N-benzoylphosphorylamide in combination with C60 fullerene on leukemic cells and docking study of their interaction with DNA. Nanoscale Res. Lett., 2017, 12, 124-132.
[8]
Zabirov, N.; Shamsevaleev, F.; Cherkasov, R. N-phosphorylated amides and thioamides. Russ. Chem. Rev., 1991, 60(10), 1128-1144.
[9]
Kiran, Y.B.; Gunasekar, D.; Reddy, C.D. Synthesis and bioactivity of some new N-aryl/alkyl/cyclohexyl-N'-(2,3-dihydro-2-oxo-4H-benz[e] [1,3,2] oxazaphosphorin-2-yl) ureas. Pest Manag. Sci., 2005, 61, 1016-1023.
[10]
Grimes, K.D.; Lu, Y-J.; Zhang, Y-M. Novel acylphosphate mimics that target PlsY, an essential, acyltransferase in gram-positive bacteria. ChemMedChem, 2008, 3, 1936-1945.
[11]
Amirkhanov, V.M.; Ovchynnikov, V.A.; Trush, V.A.; Gawryszewska, P.; Jerzykiewicz, L.B. Chapter 7. Powerful new ligand systems: Carbacylamidophosphates (CAPh) and sulfonylamidophosphates (SAPh) p. 199 - 248. (in the book “Ligands. Synthesis, Characterization and Role in Biotechnology. NOVA Publishers: New York,, 2014.
[12]
Ashiq, U.; Jamal, R.A.; Saleem, M.; Mahroof-Tahir, M. Alpha-glucosidase and carbonic anhydrase inhibition studies of Pd (II)-hydrazide complexes. Arab. J. Chem., 2017, 10, 488-499.
[13]
Guex, N.; Peitsch, M.C. SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714-2723.
[14]
Li, Z.; Wan, H.; Shi, Y.; Ouyang, P. Personal experience with four kinds of chemical structure drawing software: Review on chemdraw, chemwindow, ISIS/draw, and chemsketch. J. Chem. Inf. Comput. Sci., 2004, 44(5), 1886-1890.
[15]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4, 17-33.
[16]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[17]
Hsu, K-C.; Chen, Y-F.; Lin, S-R.; Yang, J-M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 2011, 12(Suppl. 1), S33.
[18]
DeLano, W. L. The PyMOL molecular graphics system, 2002.
[19]
Saito, R.; Sato, T.; Ikai, A.; Tanaka, N. Structure of bovine carbonic anhydrase II at 1.95 A resolution. Acta Crystallograph. Sect. D Biol. Crystallogr., 2004, 60(4), 792-795.
[20]
Saeed, A.; Zaib, S.; Pervez, A.; Mumtaz, A.; Shahid, M.; Iqbal, J. Synthesis, molecular docking studies, and in vitro screening of sulfanilamide-thiourea hybrids as antimicrobial and urease inhibitors. Med. Chem. Res., 2013, 22(8), 3653-3662.
[21]
Hakkou, Z.; Maciuk, A.; Leblais, V.; Bouanani, N.E.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Rauf, A.; Ben Hadda, T.; Shaheen, U.; Patel, S.; Fischmeiste, R.; Legssyer, A. Antihypertensive and vasodilator effects of methanolic extract of Inulaviscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother., 2017, 93, 62-69.
[22]
Rauf, A.; Uysal, S.; Ben Hadda, T.; Siddiqui, B.S.; Khan, H.; Khan, M.A. IjazIjaz, M.; Mubarak, M. S.; Bawazeer, S.; Abu-Izneid, T.; Khan, A.; Farooq, U. Antibacterial, cytotoxic and phytotoxic profile of three medicinal plants collected from the Pakistan. Marmara Pharm. J., 2017, 21, 261-268.
[23]
Genc, M.; Genc, Z.K.; Tekin, S.; Sandal, S.; Sirajuddin, M.; Ben Hadda, T. Design, Synthesis, in vitro antiproliferative activity, binding modeling of 1,2,4-triazoles as new anti-breast cancer agents acta. Chim. Slov., 2016, 63(4), 726-737.
[24]
Mabkhot, Y.N.; Arfan, M.; Zgou, H.; Genc, Z.K.; Genc, M.; Rauf, A.; Bawazeer, S.; Ben Hadda, T. How to improve antifungal bioactivity: POM and DFT study of some chiral amides derivatives of diacetyl-L-tartaric acid and amines. Res. Chem. Intermed., 2016, 42, 8055-8068.
[25]
Rauf, A.; Uddin, G.; Siddiqui, B.S.; Khan, H.; Rehman, M.; Warad, I.; Ben Hadda, T.; Patel, S.; Khan, A.; Farooq, U. POM analysis of phytotoxic agents from pistaciaintegerrima stewart. Curr. Bioact. Compd., 2015, 11, 231-238.
[26]
Mabkhot, Y.; Alatibi, A.; El-sayed, N.; Kheder, N.; Wadood, A.; Rauf, A.; Bawazeer, S.; Al-Showiman, S.; Ben Hadda, T. Experimental-computational evaluation of antimicrobial activity of some novel armed thiophene derivatives. Molecules, 2016, 21(2), 222.
[http://dx.doi.org/10.3390/molecules21020222]
[27]
Tatar, E.; Şenkardeş, S.; Sellitepe, H.E.; Küçükgüzel, Ş.G.; Karaoğlu, Ş.A.; Bozdeveci, A.; De Clercq, E.; Pannecouque, C.; Ben Hadda, T.; Küçükgüzel, İ. Synthesis, prediction of molecular properties and antimicrobial activity of some acylhydrazones derived from N-(arylsulfonyl)methionine. Turk. J. Chem., 2016, 40, 510-534.
[28]
Tighadouni, S.; Radi, S.; Sirajuddin, M.; Akkurt, M.; Özdemir, N.; Ahmad, M.; Mabkhot, Y.N.; Ben Hadda, T. In vitro antifungal, anticancer activities and POM analyses of a novel bioactive schiff base 4-[(E)-furan-2-ylmethylidene]aminop-henol: Synthesis, characterization and crystal structure. J. Chem. Soc. Pak., 2016, 38, 157-165.
[29]
Sajid, Z.; Ahmad, M.; Aslam, S.; Ashfaq, U.A.; Zahoor, A.F.; Saddique, F.A.; Parvez, M.; Hameed, A.; Sultan, S.; Zgou, H.; Ben Hadda, T. Novel armed pyrazolobenzothiazine derivatives: Synthesis, X-ray crystal structure and POM analyses of biological activity against drug resistant clinical isolate of staphylococus aureus. Pharm. Chem. J., 2016, 50, 172-180.
[30]
Rauf, A.; Uddin, G.; Siddiqui, B.S.; Khan, H.; Rehman, M.; Warad, I.; Ben Hadda, T.; Patel, S.; Khan, A.; Farooq, U. POM analysis of phytotoxic agents from pistaciaintegerrima stewart. current bioactive compounds. Curr. Bioact. Compd., 2015, 11(4), 231-238.
[31]
Pervez, H.; Ahmad, M.; Hadda, T.B.; Toupet, L.; Naseer, M.M. Synthesis and fluorine-mediated interactions in methanol-encapsulated solid state self-assembly of an isatin-thiazoline hybrid. J. Mol. Struct., 2015, 1098, 124-129.
[32]
Abdelhady, M.I.S.; Kamal, A.M.; Rauf, A.; Mubarak, M.S.; Ben Hadda, T. Bioassay-guided isolation and POM analyses of a new immunomodulatory polyphenolic constituent from Callistemon Viridiflorus. Nat. Prod. Res., 2016, 30, 1131-1135.
[33]
Header, E.; ElSawy, N.; El-Boshy, M.; Basalamah, M.; Mubarak, M. S.; Ben Hadda, T. POM analyses of constituents of rosmarinus officinalis and their synergistic effect in experimental diabetic rats. J. Bioanal. Biomed., 2015, 15(7), 018-023.
[34]
Ben Hadda, T.; Genc, Z.K.; Masand, V.H.; Nebbache, N.; Warad, I.; Jodeh, S.; Genc, M.; Mabkhot, Y.N.; Barakat, A.; Salgado-Zamora, H. Computational POM and DFT evaluation of experimental in-vitro cancer inhibition of staurosporine-ruthenium(II) complexes: The power force of organometallics in drug design. Acta Chim. Slov., 2015, 62, 679-688.
[35]
Sheikh, J.; Taile, V.; Ghatole, A.; Ingle, V.; Genc, M.; Lahsasni, S.; Ben Hadda, T. Hatzade. K. Antimicrobial/antioxidant activity and POM analyses of novel 7-O-b-D-glucopyranosyloxy-3-(4,5-disubstituted imidazol-2-yl)-4H-chromen-4-ones. Med. Chem. Res., 2015.
[http://dx.doi.org/10.1007/s00044-015-1326-8]
[36]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[37]
Derkatsch, G.; Dregval, G.; Kirsanow, A. Russian J. Gen. Chem., 1961, 31, 2385-2390.. (Engl. Transl.) 2223-2228.
[38]
Amirkhanov, V.M.; Ovchynnikov, V.A.; Glowiak, T.; Kozlowski, H. Crystal and molecular structures of N, N’-Diphenyl-N’’- trichloroacetylphopshortriamide and N, N’-Tetraethyl-N’’- benzoylphosphortriamide. The effect of various substituents on the structural parameters of the [C(O)N(H)P(O)] moiety. Z. Naturforsch , 1997, 52 b, 1331-1336..
[39]
Gubina, K.E.; Ovchynnikov, V.A.; Amirkhanov, V.M.; Skopenko, V.V.; Shishkin, O.V. Carbacylamidophosphates: Synthethis and structure of N, N’Tetramethyl-N’’-benzoylphosphoryltriamide and Dimorpholido-N-benzoylphosphorylamide, Z. Naturforsch, 2000, 55 b, 495-498. .
[40]
Kirsanow, A.; Schewtschenko, A. Russian J. Gen. Chem, 1954, 24, 474-484. . (Engl. Transl.) 483-492
[41]
Kirsanow, A.; Schewtschenko, V. Zhurnal Obshchei Khimii., 1954, 24, 1980-1993. Engl. Ausg., 1949-1962.
[42]
Kirsanow, A.; Makitra, R. Russ. J. Gen. Chem., 1955, 36, 2134-2137.
[43]
Saleem, M.; Saeed, A.; Wahab, A.; Khan, A.; Abbasi, S.; Khan, W.; Khan, S.B.; Choudhary, M.I. Benzamide sulfonamide derivatives: Potent inhibitors of carbonic anhydrase-II. Med. Chem. Res., 2016, 25, 438-448.
[44]
Fleming, J. Frontier Orbitals and Organic Chemical Reactions; Wiley: London, 1976, pp. 111-155.
[45]
Sajan, D.; Lakshmi, K.U.; Erdogdu, Y.; Joe, I.H. Molecular structure and vibrational spectra of 2, 6-bis (benzylidene) cyclohexanone: A density functional theoretical study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2011, 78A, 113-121.
[46]
Eren, B.; Unal, A. Molecular structure and spectroscopic analysis of 1,4-Bis(1-methyl-2-benzimidazolyl) benzene; XRD, FT-IR, Dispersive-Raman, NMR and DFT studies. Spectrochim. Acta Part A., 2013, 103, 222-231.
[47]
Barakat, A.; Soliman, S.M.; Al-Majid, A.M.; Lotfy, G.; Ghabbour, H.A.; Fun, H.; Yousuf, S.; Choudhary, M.I.; Wadood, A. Synthesis and structure investigation of novel pyrimidine-2,4,6-trione derivatives of highly potential biological activity as anti-diabetic agent. J. Mol. Struct., 2015, 1098, 365-376.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy