Generic placeholder image

Current Cancer Drug Targets


ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Anti-cancer Effects of Curcumin on Myelodysplastic Syndrome through the Inhibition of Enhancer of Zeste Homolog-2 (EZH2)

Author(s): Ling Ma, Xia Zhang, Zhiqiong Wang, Lifang Huang, Fankai Meng, Lihua Hu, Yan Chen and Jia Wei*

Volume 19 , Issue 9 , 2019

Page: [729 - 741] Pages: 13

DOI: 10.2174/1568009619666190212121735

Price: $65


Background: Enhancer of zeste homolog-2 (EZH2), a histone methyltransferase that regulates histone H3 methylation of lysine27 (H3K27me3), is involved in the pathogenesis of myelodysplastic syndrome (MDS). Targeting epigenetic regulators has been identified as a potential treatment target in MDS chemotherapy. Curcumin, a natural compound extracted from turmeric, was found to possess a wide range of anticancer activities in various tumors.

Methods: This study was designed to investigate the inhibitory effect and action mechanism of curcumin in myelodysplastic syndrome (MDS) in vitro and in vivo.

Results: Our results showed that curcumin can significantly suppress cell proliferation and induce cell apoptosis and cell cycle arrest in human MDS-derived cell lines. It reduced EZH2, DNA methyltransferase 3A (DNMT3a), ASXL1 and downstream H3K4me3, H3K27me3 and HOXA9 expression and inhibited EZH2 and H3K27me3 nuclear translocation. Curcumin also showed anti-cancer effects in a xenograft mouse model and reduced EZH2, H3K4me3 and H3K27me3 in vivo. EZH2 knockdown can reduce the H3K27me3 levels and induce curcumin resistance in vitro but attenuates leukemic transformation in vivo.

Conclusion: These findings provide the potential molecular mechanism of curcumin as a therapeutic agent for MDS.

Keywords: Myelodysplastic syndrome, curcumin, EZH2, H3K27me3, HOXA9, myelodysplastic syndrome (MDS).

Graphical Abstract
Nimer, S.D. Myelodysplastic syndromes. Blood, 2008, 111, 4841-4851.
Fenaux, P.; Mufti, G.J.; Hellstrom-Lindberg, E.; Santini, V.; Finelli, C.; Giagounidis, A.; Schoch, R.; Gattermann, N.; Sanz, G.; List, A.; Gore, S.D.; Seymour, J.F. Bennett, Byrd, J.; Backstrom, L.; Zimmerman, D.; McKenzie, C.; Beach, L.; Silverman, R.; Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: A randomised, open-label, phase III study. Lancet Oncol., 2009, 10, 223-232.
Quintas-Cardama, A.; Garcia-Manero, F.P. Therapy with azanucleosides for myelodysplastic syndromes. Nat. Rev. Clin. Oncol., 2010, 7, 433-444.
Steensma, D.P.; Baer, M.R.; Slack, J.L.; Buckstein, R.; Godley, L.A.; Garcia-Manero, G.; Albitar, M.; Larsen, J.S.; Arora, S.; Cullen, M.T.; Kantarjian, H. Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: The alternative dosing for outpatient treatment (ADOPT) trial. J. Clin. Oncol., 2009, 27, 3842-3848.
Jabbour, E.; Garcia-Manero, G.; Batty, N.; Shan, J.; O’Brien, S.; Cortes, J.; Ravandi, F.; Issa, J.P.; Kantarjian, H. Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. Cancer, 2010, 116, 3830-3834.
Prebet, T.; Gore, S.D.; Esterni, B.; Gardin, C.; Itzykson, R.; Thepot, S.; Dreyfus, F.; Rauzy, O.B.; Recher, C.; Ades, L.; Quesnel, B.; Beach, C.L.; Fenaux, P.; Vey, N. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J. Clin. Oncol., 2011, 29, 3322-3327.
Lindsley, R.C. Uncoding the genetic heterogeneity of myelodysplastic syndrome. Hematology (Am. Soc. Hematol. Educ. Program), 2017, 447-452.
Cao, R.; Wang, L.; Wang, H.; Xia, L.; Erdjument-Bromage, H.; Tempst, P.; Jones, R.S.; Zhang, Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 2002, 298, 1039-1043.
Kleer, C.G.; Cao, Q.; Varambally, S.; Shen, R.; Ota, I.; Tomlins, S.A.; Ghosh, D.; Sewalt, R.G.; Otte, A.P.; Hayes, D.F.; Sabel, M.S. Livant, D.; Weiss, S.J.; Rubin, M.A.; Chinnaiyan, A.M. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. USA, 2003, 100, 11606-11611.
Liu, Y.; Yu, K.; Li, M.; Zeng, K.; Wei, J.; Li, X.; Liu, Y.; Zhao, D.; Fan, L.; Yu, Z.; Wang, Y.; Li, Z.; Zhang, W.; Bai, Q.; Yan, Q.; Guo, Y.; Wang, Z.; Guo, S. EZH2 overexpression in primary gastrointestinal diffuse large B-cell lymphoma and its association with the clinicopathological features. Hum. Pathol., 2017, 64, 213-221.
Varambally, S.; Dhanasekaran, S.M.M.; Zhou, T.R.; Barrette, C.; Kumar-Sinha, M.G.; Sanda, D.; Ghosh, K.J.; Pienta, R.G.; Sewalt, A.P.; Otte, M.A.; Rubin, A.M. Chinnaiyan, the polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 2002, 419, 624-629.
Kim, K.H.; Roberts, C.W. Targeting EZH2 in cancer. Nat. Med., 2016, 22, 128-134.
Ernst, T.; Chase, A.J.; Score, J.; Hidalgo-Curtis, C.E.; Bryant, C.; Jones, A.V.; Waghorn, K.; Zoi, K.; Ross, F.M.; Reiter, A.; Hochhaus, A.; Drexler, H.G.; Duncombe, A.; Cervantes, F.; Oscier, D.; Boultwood, J.; Grand, F.H.; Cross, N.C. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet., 2010, 42, 722-726.
Shirahata-Adachi, M.; Iriyama, C.; Tomita, A.; Suzuki, Y.; Shimada, K.; Kiyoi, H. Altered EZH2 splicing and expression is associated with impaired histone H3 lysine 27 tri-Methylation in myelodysplastic syndrome. Leuk. Res., 2017, 63, 90-97.
Muto, T.; Sashida, G.; Oshima, M.; Wendt, G.R.; Mochizuki-Kashio, M.; Nagata, Y.; Sanada, M.; Miyagi, S.; Saraya, A.; Kamio, A.; Nagae, G.; Nakaseko, C.; Yokote, K.; Shimoda, K.; Koseki, H.; Suzuki, Y.; Sugano, S.; Aburatani, H.; Ogawa, S.; Iwama, A. Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders. J. Exp. Med., 2013, 210, 2627-2639.
Rastgoo, N.; Pourabdollah, M.; Abdi, J.; Reece, D.; Chang, H. Dysregulation of EZH2/miR-138 axis contributes to drug resistance in multiple myeloma by downregulating RBPMS. Leukemia, 2018.
Gollner, S.; Oellerich, T.; Agrawal-Singh, S.; Schenk, T.; Klein, H.U.; Rohde, C.; Pabst, C.; Sauer, T.; Lerdrup, M.; Tavor, S.; Stolzel, F.; Herold, S.; Ehninger, G.; Kohler, G.; Pan, K.T.; Urlaub, H.; Serve, H.; Dugas, M.; Spiekermann, K.; Vick, B.; Jeremias, I.; Berdel, W.E.; Hansen, K.; Zelent, A.; Wickenhauser, C.; Muller, L.P.; Thiede, C.; Muller-Tidow, C. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat. Med., 2017, 23, 69-78.
Shahabipour, F.; Caraglia, M.; Majeed, M.; Derosa, G.; Maffioli, P.; Sahebkar, A. Naturally occurring anti-cancer agents targeting EZH2. Cancer Lett., 2017, 400, 325-335.
Lee, Y.H.; Song, N.Y.; Suh, J.; Kim, D.H.; Kim, W.; Ann, J.; Lee, J.; Baek, J.H.; Na, H.K.; Surh, Y.J. Curcumin suppresses oncogenicity of human colon cancer cells by covalently modifying the cysteine 67 residue of SIRT1. Cancer Lett., 2018.
He, Z.Y.; Shi, C.B.; Wen, H.; Li, F.L.; Wang, B.L.; Wang, J. Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest., 2011, 29, 208-213.
Li, W.; Jiang, Z.; Xiao, X.; Wang, Z.; Wu, Z.; Ma, Q.; Cao, L. Curcumin inhibits superoxide dismutase-induced epithelial-to-mesenchymal transition via the PI3K/Akt/NF-kappaB pathway in pancreatic cancer cells. Int. J. Oncol., 2018.
Devassy, J.G.; Nwachukwu, I.D.; Jones, P.J. Curcumin and cancer: barriers to obtaining a health claim. Nutr. Rev., 2015, 73, 155-165.
Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci., 2008, 65, 1631-1652.
Wu, G.Q.; Chai, K.Q.; Zhu, X.M.; Jiang, H.; Wang, X.; Xue, Q.; Zheng, A.H.; Zhou, H.Y.; Chen, Y.; Chen, X.C.; Xiao, J.Y.; Ying, X.H.; Wang, F.W.; Rui, T.; Liao, Y.J.; Xie, D.; Lu, L.Q.; Huang, D.S. Anti-cancer effects of curcumin on lung cancer through the inhibition of EZH2 and NOTCH1. Oncotarget, 2016, 7, 26535-26550.
Hua, W.F.; Fu, Y.S.; Liao, Y.J.; Xia, W.J.; Chen, Y.C.; Zeng, Y.X.; Kung, H.F.; Xie, D. Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells. Eur. J. Pharmacol., 2010, 637, 16-21.
Zeng, Y.; Weng, G.; Fan, J.; Li, Z.; Wu, J.; Li, Y.; Zheng, R.; Xia, P.; Guo, K. Curcumin reduces the expression of survivin, leading to enhancement of arsenic trioxide-induced apoptosis in myelodysplastic syndrome and leukemia stem-like cells. Oncol. Rep., 2016, 36, 1233-1242.
Bao, B.; Ali, S.; Banerjee, S.; Wang, Z.; Logna, F.; Azmi, A.S.; Kong, D.; Ahmad, A.; Li, Y.; Padhye, S.; Sarkar, F.H. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res., 2012, 72, 335-345.
Ma, L.; Zhang, X.; Wang, Z.; Chen, Y.; Wei, J.; Hu, L. Establishment of a novel Myelodysplastic Syndrome (MDS) xenotransplantation model. Clin. Lab., 2016, 62, 1651-1659.
Nikoloski, G.; Langemeijer, S.M.; Kuiper, R.P.; Knops, R.; Massop, M.; Tonnissen, E.R.; van der Heijden, A.; Scheele, T.N.; Vandenberghe, P.; de Witte, T.; van der Reijden, B.A.; Jansen, J.H. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet., 2010, 42, 665-667.
Gangat, N.; Mudireddy, M.; Lasho, T.L.; Finke, C.M.; Nicolosi, M.; Szuber, N.; Patnaik, M.M.; Pardanani, A.; Hanson, C.A.; Ketterling, R.P.; Tefferi, A. Mutations and prognosis in myelodysplastic syndromes: karyotype-adjusted analysis of targeted sequencing in 300 consecutive cases and development of a genetic risk model. Am. J. Hematol., 2018, 93, 691-697.
Sashida, G.; Harada, H.; Matsui, H.; Oshima, M.; Yui, M.; Harada, Y.; Tanaka, S.; Mochizuki-Kashio, M.; Wang, C.; Saraya, A.; Muto, T.; Hayashi, Y.; Suzuki, K.; Nakajima, H.; Inaba, T.; Koseki, H.; Huang, G.; Kitamura, T.; Iwama, A. Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat. Commun., 2014, 5, 4177.
Khan, S.N.; Jankowska, A.M.; Mahfouz, R.; Dunbar, A.J.; Sugimoto, Y.; Hosono, N.; Hu, Z.; Cheriyath, V.; Vatolin, S.; Przychodzen, B.; Reu, F.J.; Saunthararajah, Y.; O’Keefe, C.; Sekeres, M.A.; List, A.F.; Moliterno, A.R.; McDevitt, M.A.; Maciejewski, J.P.; Makishima, H. Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia, 2013, 27, 1301-1309.
Yoshida, K.; Toden, S.; Ravindranathan, P.; Han, H.; Goel, A. Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression. Carcinogenesis, 2017, 38, 1036-1046.
Collins, C.T.; Hess, J.L. Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene, 2016, 35, 1090-1098.
Gao, L.; Sun, J.; Liu, F.; Zhang, H.; Ma, Y. Higher expression levels of the HOXA9 gene, closely associated with MLL-PTD and EZH2 mutations, predict inferior outcome in acute myeloid leukemia. OncoTargets Ther., 2016, 9, 711-722.
Chowdhury, I.; Banerjee, S.; Driss, A.; Xu, W.; Mehrabi, S.; Nezhat, C.; Sidell, N.; Taylor, R.N.; Thompson, W.E. Curcumin attenuates proangiogenic and proinflammatory factors in human eutopic endometrial stromal cells through the NF-kappaB signaling pathway. J. Cell. Physiol., (2018).
Eriksson, A.; Lennartsson, A.; Lehmann, S. Epigenetic aberrations in acute myeloid leukemia: Early key events during leukemogenesis. Exp. Hematol., 2015, 43, 609-624.
Lin, M.E.; Hou, H.A.; Tsai, C.H.; Wu, S.J.; Kuo, Y.Y.; Tseng, M.H.; Liu, M.C.; Liu, C.W.; Chou, W.C.; Chen, C.Y.; Tang, J.L.; Yao, M.; Li, C.C.; Huang, S.Y.; Ko, B.S.; Hsu, S.C.; Lin, C.T.; Tien, H.F. Dynamics of DNMT3A mutation and prognostic relevance in patients with primary myelodysplastic syndrome. Clin. Epigenetics, 2018, 10, 42.
Boven, L.; Holmes, S.P.; Latimer, B.; McMartin, K.; Ma, X.; Moore-Medlin, T.; Khandelwal, A.R.; McLarty, J.; Nathan, C.O. Curcumin gum formulation for prevention of oral cavity head and neck squamous cell carcinoma. Laryngoscope, (2018).
Lao, C.D.; Ruffin, M.T.T.; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med., 2006, 6, 10.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy