Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Advances in High-throughput Platforms with Engineered Biomaterial Microarrays for Screening of Cell and Tissue Behavior

Author(s): Kijun Park, Yeontaek Lee and Jungmok Seo*

Volume 24 , Issue 45 , 2018

Page: [5458 - 5470] Pages: 13

DOI: 10.2174/1381612825666190207093438

Price: $65

Abstract

In the last decades, bioengineers have developed myriad biomaterials for regenerative medicine. Development of screening techniques is essential for understanding complex behavior of cells in the biological microenvironments. Conventional approaches to the screening of cellular behavior in vitro have limitations in terms of accuracy, reusability, labor-intensive screening, and versatility. Thus, drug screening and toxicology test through in vitro screening platforms have been underwhelming. Recent advances in the high-throughput screening platforms somewhat overcome the limitations of in vitro screening platforms via repopulating human tissues’ biophysical and biomchemical microenvironments with the ability to continuous monitoring of miniaturized human tissue behavior. Herein, we review current trends in the screening platform in which a high-throughput system composed of engineered microarray devices is developed to investigate cell-biomaterial interaction. Furthermore, diverse methods to achieve continuous monitoring of cell behavior via developments of biosensor integrated high-throughput platforms, and future perspectives on high-throughput screening will be provided.

Keywords: High-throughput platforms, cell-biomaterial interactions, cellular microenvironments, biomaterial screening, organs-on-a-chip, myriad biomaterials.

[1]
Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008; 214(2): 199-210.
[2]
Ingber DE. Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol 2006; 50(2-3): 255-66.
[3]
Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater 2009; 8(6): 457-70.
[4]
Hubbell JA. Biomaterials in tissue engineering. Biotechnology (N Y) 1995; 13(6): 565-76.
[5]
Leijten J, Khademhosseini A. From Nano to Macro: Multiscale Materials for Improved Stem Cell Culturing and Analysis. Cell Stem Cell 2016; 18(1): 20-4.
[6]
Leijten J, Rouwkema J, Zhang YS, Nasajpour A, Dokmeci MR, Khademhosseini A. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration. Small 2016; 12(16): 2130-45.
[7]
Jabbari E, Leijten J, Xu Q, Khademhosseini A. The matrix reloaded: the evolution of regenerative hydrogels. Mater Today 2015; 19(4): 190-6.
[8]
Alsberg E, von Recum HA, Mahoney MJ. Environmental cues to guide stem cell fate decision for tissue engineering applications. Expert Opin Biol Ther 2006; 6(9): 847-66.
[9]
Ricca BL, Venugopalan G, Fletcher DA. To pull or be pulled: parsing the multiple modes of mechanotransduction. Curr Opin Cell Biol 2013; 25(5): 558-64.
[10]
Bursac N, Papadaki M, Cohen RJ, et al. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol 1999; 277(2): H433-44.
[11]
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005; 23(1): 47-55.
[12]
Leijten J, Seo J, Yue K, et al. Spatially and temporally controlled hydrogels for tissue engineering. Mater Sci Eng Rep 2017; 119: 1-35.
[13]
Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JMS. High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol 2009; 27(6): 342-9.
[14]
Chin VI, Taupin P, Sanga S, Scheel J, Gage FH, Bhatia SN. Microfabricated platform for studying stem cell fates. Biotechnol Bioeng 2004; 88(3): 399-415.
[15]
Seo J, Shin J-Y, Leijten J, et al. High-throughput approaches for screening and analysis of cell behaviors. Biomaterials 2018; 153: 85-101.
[16]
Yang C, Tibbitt MW, Basta L, Anseth KS. Mechanical memory and dosing influence stem cell fate. Nat Mater 2014; 13(6): 645-52.
[17]
Mahlstedt MM, Anderson D, Sharp JS, et al. Maintenance of pluripotency in human embryonic stem cells cultured on a synthetic substrate in conditioned medium. Biotechnol Bioeng 2010; 105(1): 130-40.
[18]
Lund AW, Yener B, Stegemann JP, Plopper GE. The natural and engineered 3D microenvironment as a regulatory cue during stem cell fate determination. Tissue Eng Part B Rev 2009; 15(3): 371-80.
[19]
Jarrahy R, Huang W, Rudkin GH, et al. Osteogenic differentiation is inhibited and angiogenic expression is enhanced in MC3T3-E1 cells cultured on three-dimensional scaffolds. Am J Physiol Cell Physiol 2005; 289(2): C408-14.
[20]
Seo J, Lee S, Lee J, Lee T. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires. ACS Appl Mater Interfaces 2011; 3(12): 4722-9.
[21]
Neto AI, Demir K, Popova AA, Oliveira MB, Mano JF, Levkin PA. Fabrication of Hydrogel Particles of Defined Shapes Using Superhydrophobic-Hydrophilic Micropatterns. Adv Mater 2016; 28(35): 7613-9.
[22]
Dolatshahi-Pirouz A, Nikkhah M, Gaharwar AK, et al. A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Sci Rep 2014; 4: 3896.
[23]
Gobaa S, Hoehnel S, Roccio M, Negro A, Kobel S, Lutolf MP. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat Methods 2011; 8(11): 949-55.
[24]
Lee M-Y, Kumar RA, Sukumaran SM, Hogg MG, Clark DS, Dordick JS. Three-dimensional cellular microarray for high-throughput toxicology assays. Proc Natl Acad Sci USA 2008; 105(1): 59-63.
[25]
Hull R, Chraska T, Liu Y, Longo D. Microcontact printing: new mastering and transfer techniques for high throughput, resolution and depth of focus. Mater Sci Eng C 2002; 19(1): 383-92.
[26]
Seong TW, Seo J, Lee KH. Full length histone H3 conjugated electrochemical biosensor for extracellular proteolytic Cathepsin L activity detection. Sens Actuators B Chem 2018; 267: 237-44.
[27]
Oliveira MB, Salgado CL, Song W, Mano JF. Combinatorial on-chip study of miniaturized 3D porous scaffolds using a patterned superhydrophobic platform. Small 2013; 9(5): 768-78.
[28]
Flaim CJ, Teng D, Chien S, Bhatia SN. Combinatorial signaling microenvironments for studying stem cell fate. Stem Cells Dev 2008; 17(1): 29-39.
[29]
Flaim CJ, Chien S, Bhatia SN. An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2005; 2(2): 119-25.
[30]
Mei Y, Saha K, Bogatyrev SR, et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 2010; 9(9): 768-78.
[31]
Caiazzo M, Okawa Y, Ranga A, Piersigilli A, Tabata Y, Lutolf MP. Defined three-dimensional microenvironments boost induction of pluripotency. Nat Mater 2016; 15(3): 344-52.
[32]
Camci-Unal G, Cuttica D, Annabi N, Demarchi D, Khademhosseini A. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. Biomacromolecules 2013; 14(4): 1085-92.
[33]
Jabbarzadeh E, Blanchette J, Shazly T, Khademhosseini A, Camci-Unal GT, Laurencin C. Vascularization of Biomaterials for Bone Tissue Engineering: Current Approaches and Major Challenges. Curr Angiogenes 2012; 1(3): 180-91.
[34]
Seo J, Lee JS, Lee K, et al. Switchable water-adhesive, superhydrophobic palladium-layered silicon nanowires potentiate the angiogenic efficacy of human stem cell spheroids. Adv Mater 2014; 26(41): 7043-50.
[35]
Ranga A, Gobaa S, Okawa Y, Mosiewicz K, Negro A, Lutolf MP. 3D niche microarrays for systems-level analyses of cell fate. Nat Commun 2014; 5: 4324.
[36]
Fernandes TG, Kwon SJ, Bale SS, et al. Three-dimensional cell culture microarray for high-throughput studies of stem cell fate. Biotechnol Bioeng 2010; 106(1): 106-18.
[37]
Meli L, Barbosa HS, Hickey AM, et al. Three dimensional cellular microarray platform for human neural stem cell differentiation and toxicology. Stem Cell Res (Amst) 2014; 13(1): 36-47.
[38]
Popova AA, Demir K, Hartanto TG, Schmitt E, Levkin PA. Droplet-microarray on superhydrophobic–superhydrophilic patterns for high-throughput live cell screenings. RSC Advances 2016; 6(44): 38263-76.
[39]
Li Y, Chen P, Wang Y, et al. Rapid Assembly of Heterogeneous 3D Cell Microenvironments in a Microgel Array. Adv Mater 2016; 28(18): 3543-8.
[40]
Shin S, Seo J, Han H, Kang S, Kim H, Lee T. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications. Materials (Basel) 2016; 9(2): 116.
[41]
Sahoo B, Yoon K, Seo J, Lee T. Chemical and Physical Pathways for Fabricating Flexible Superamphiphobic Surfaces with High Transparency Coatings 2018; 8(2).
[42]
Seo J, Lee S-K, Lee J, et al. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface. Sci Rep 2015; 5: 12326.
[43]
Leslie DC, Waterhouse A, Berthet JB, et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat Biotechnol 2014; 32(11): 1134-40.
[44]
Oliveira MB, Mano JF. On-chip assessment of the protein-release profile from 3D hydrogel arrays. Anal Chem 2013; 85(4): 2391-6.
[45]
Salgado CL, Oliveira MB, Mano JF. Combinatorial cell-3D biomaterials cytocompatibility screening for tissue engineering using bioinspired superhydrophobic substrates. Integr Biol 2012; 4(3): 318-27.
[46]
Feng W, Li L, Du X, Welle A, Levkin PA. Single-Step Fabrication of High-Density Microdroplet Arrays of Low-Surface-Tension Liquids. Adv Mater 2016; 28(16): 3202-8.
[47]
Hirtz M, Feng W, Fuchs H, Levkin PA. Click‐Chemistry Immobilized 3D‐Infused Microarrays in Nanoporous Polymer Substrates. Adv Mater Interfaces 2016; 3(6): 1500469.
[48]
Molla MR, Levkin PA. Combinatorial Approach to Nanoarchitectonics for Nonviral Delivery of Nucleic Acids. Adv Mater 2016; 28(6): 1159-75.
[49]
Popova AA, Schillo SM, Demir K, Ueda E, Nesterov-Mueller A, Levkin PA. Droplet-Array (DA) Sandwich Chip: A Versatile Platform for High-Throughput Cell Screening Based on Superhydrophobic-Superhydrophilic Micropatterning. Adv Mater 2015; 27(35): 5217-22.
[50]
Barata D, van Blitterswijk C, Habibovic P. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. Acta Biomater 2016; 34: 1-20.
[51]
Domachuk P, Tsioris K, Omenetto FG, Kaplan DL. Bio-microfluidics: biomaterials and biomimetic designs. Adv Mater 2010; 22(2): 249-60.
[52]
Whitesides GM. The origins and the future of microfluidics. Nature 2006; 442(7101): 368-73.
[53]
Kim S, Kim HJ, Jeon NL. Biological applications of microfluidic gradient devices. Integr Biol 2010; 2(11-12): 584-603.
[54]
Berthier E, Beebe DJ. Gradient generation platforms: new directions for an established microfluidic technology. Lab Chip 2014; 14(17): 3241-7.
[55]
Byrd TF IV, Hoang LT, Kim EG, et al. The microfluidic multitrap nanophysiometer for hematologic cancer cell characterization reveals temporal sensitivity of the calcein-AM efflux assay. Sci Rep 2014; 4: 5117.
[56]
Awwad Y, Geng T, Baldwin AS, Lu C. Observing single cell NF-κB dynamics under stimulant concentration gradient. Anal Chem 2012; 84(3): 1224-8.
[57]
Ostrovidov S, Annabi N, Seidi A, et al. Controlled release of drugs from gradient hydrogels for high-throughput analysis of cell-drug interactions. Anal Chem 2012; 84(3): 1302-9.
[58]
Frey O, Misun PM, Fluri DA, Hengstler JG, Hierlemann A. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 2014; 5: 4250.
[59]
Occhetta P, Centola M, Tonnarelli B, Redaelli A, Martin I, Rasponi M. High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells, Towards Engineering Developmental Processes. Sci Rep 2015; 5: 10288.
[60]
Baker BM, Trappmann B, Stapleton SC, Toro E, Chen CS. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 2013; 13(16): 3246-52.
[61]
Malda J, Visser J, Melchels FP, et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater 2013; 25(36): 5011-28.
[62]
Gao D, Liu J, Wei H-B, Li H-F, Guo G-S, Lin J-M. A microfluidic approach for anticancer drug analysis based on hydrogel encapsulated tumor cells. Anal Chim Acta 2010; 665(1): 7-14.
[63]
Yang K, Jung H, Lee H-R, et al. Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. ACS Nano 2014; 8(8): 7809-22.
[64]
Yang K, Lee J, Lee JS, et al. Graphene Oxide Hierarchical Patterns for the Derivation of Electrophysiologically Functional Neuron-like Cells from Human Neural Stem Cells. ACS Appl Mater Interfaces 2016; 8(28): 17763-74.
[65]
Allen JL, Cooke ME, Alliston T. ECM stiffness primes the TGFβ pathway to promote chondrocyte differentiation. Mol Biol Cell 2012; 23(18): 3731-42.
[66]
Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A. Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res 2002; 20(4): 842-8.
[67]
Nunes SS, Miklas JW, Liu J, et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 2013; 10(8): 781-7.
[68]
Dalby MJ, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 2007; 6(12): 997-1003.
[69]
Ankam S, Suryana M, Chan LY, et al. Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage. Acta Biomater 2013; 9(1): 4535-45.
[70]
Kingham E, White K, Gadegaard N, Dalby MJ, Oreffo RO. Nanotopographical cues augment mesenchymal differentiation of human embryonic stem cells. Small 2013; 9(12): 2140-51.
[71]
Jeon H, Koo S, Reese WM, Loskill P, Grigoropoulos CP, Healy KE. Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nat Mater 2015; 14(9): 918-23.
[72]
Unadkat HV, Hulsman M, Cornelissen K, et al. An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci USA 2011; 108(40): 16565-70.
[73]
Hu J, Gondarenko AA, Dang AP, et al. High-Throughput Mechanobiology Screening Platform Using Micro- and Nanotopography. Nano Lett 2016; 16(4): 2198-204.
[74]
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677-89.
[75]
Mih JD, Sharif AS, Liu F, Marinkovic A, Symer MM, Tschumperlin DJ. A multiwell platform for studying stiffness-dependent cell biology. PLoS One 2011; 6(5): e19929.
[76]
Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8(10): 755-68.
[77]
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5(4): 275-84.
[78]
Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer 2006; 6(6): 449-58.
[79]
Liu J, Tan Y, Zhang H, et al. Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Mater 2012; 11(8): 734-41.
[80]
Tan Y, Tajik A, Chen J, et al. Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nat Commun 2014; 5: 4619.
[81]
Lee J, Abdeen AA, Wycislo KL, Fan TM, Kilian KA. Interfacial geometry dictates cancer cell tumorigenicity. Nat Mater 2016; 15(8): 856-62.
[82]
Ehrlich PJ, Lanyon LE. Mechanical strain and bone cell function: a review. Osteoporos Int 2002; 13(9): 688-700.
[83]
Tandon N, Marsano A, Maidhof R, et al. Surface-patterned electrode bioreactor for electrical stimulation. Lab Chip 2010; 10(6): 692-700.
[84]
Sathaye A, Bursac N, Sheehy S, Tung L. Electrical pacing counteracts intrinsic shortening of action potential duration of neonatal rat ventricular cells in culture. J Mol Cell Cardiol 2006; 41(4): 633-41.
[85]
Wang D-L, Jiang S-D, Dai L-Y. Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine 2007; 32(23): 2521-8.
[86]
Pelaez D, Huang CY, Cheung HS. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev 2009; 18(1): 93-102.
[87]
Rath B, Nam J, Knobloch TJ, Lannutti JJ, Agarwal S. Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J Biomech 2008; 41(5): 1095-103.
[88]
Moraes C, Wang G, Sun Y, Simmons CA. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials 2010; 31(3): 577-84.
[89]
Liu H, Usprech J, Sun Y, Simmons CA. A microfabricated platform with hydrogel arrays for 3D mechanical stimulation of cells. Acta Biomater 2015.
[90]
Li Y, Huang G, Gao B, Li M, Genin GM, Lu TJ, et al. Magnetically actuated cell-laden microscale hydrogels for probing strain-induced cell responses in three dimensions. NPG Asia Mater 2016; 8(1): e238.
[91]
Seo J, Shin J-Y, Leijten J, et al. Interconnectable Dynamic Compression Bioreactors for Combinatorial Screening of Cell Mechanobiology in Three Dimensions. ACS Appl Mater Interfaces 2018; 10(16): 13293-303.
[92]
Heidi Au HT, Cui B, Chu ZE, Veres T, Radisic M. Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes. Lab Chip 2009; 9(4): 564-75.
[93]
Chen MQ, Xie X, Wilson KD, et al. Current-controlled electrical point-source stimulation of embryonic stem cells. Cell Mol Bioeng 2009; 2(4): 625-35.
[94]
Jin Y, Seo J, Lee JS, et al. Triboelectric Nanogenerator Accelerates Highly Efficient Nonviral Direct Conversion and In Vivo Reprogramming of Fibroblasts to Functional Neuronal Cells. Adv Mater 2016; 28(34): 7365-74.
[95]
Dai X, Zhou W, Gao T, Liu J, Lieber CM. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat Nanotechnol 2016; 11(9): 776-82.
[96]
Mousavi Shaegh SA, De Ferrari F, Zhang YS, et al. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics 2016; 10(4): 044111.
[97]
Thies R. Physiology (Oklahomar notes). 4th ed: Springer New York; 1995 02/23/1995.
[98]
Brennan MD, Rexius-Hall ML, Elgass LJ, Eddington DT. Oxygen control with microfluidics. Lab Chip 2014; 14(22): 4305-18.
[99]
Massa S, Sakr MA, Seo J, et al. Bioprinted 3D vascularized tissue model for drug toxicity analysis. Biomicrofluidics 2017; 11(4): 044109.
[100]
Riahi R, Shaegh SAM, Ghaderi M, et al. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Sci Rep 2016; 6: 24598.
[101]
Shin SR, Zhang YS, Kim D-J, et al. Aptamer-Based Microfluidic Electrochemical Biosensor for Monitoring Cell-Secreted Trace Cardiac Biomarkers. Anal Chem 2016; 88(20): 10019-27.
[102]
Du L, Wu C, Peng H, Zou L, Zhao L, Huang L, et al. Piezoelectric olfactory receptor biosensor prepared by aptamer-assisted immobilization. Sens Actuators B Chem 2013; 187: 481-7.
[103]
Kara P, de la Escosura-Muñiz A, Maltez-da Costa M, Guix M, Ozsoz M, Merkoçi A. Aptamers based electrochemical biosensor for protein detection using carbon nanotubes platforms. Biosens Bioelectron 2010; 26(4): 1715-8.
[104]
Liu Y, Tuleouva N, Ramanculov E, Revzin A. Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 2010; 82(19): 8131-6.
[105]
Tombelli S, Minunni M, Mascini M. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 2007; 24(2): 191-200.
[106]
Lai RY, Plaxco KW, Heeger AJ. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal Chem 2007; 79(1): 229-33.
[107]
Xiao Y, Lubin AA, Heeger AJ, Plaxco KW. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem Int Ed Engl 2005; 44(34): 5456-9.
[108]
McCauley TG, Hamaguchi N, Stanton M. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem 2003; 319(2): 244-50.
[109]
Liss M, Petersen B, Wolf H, Prohaska E. An aptamer-based quartz crystal protein biosensor. Anal Chem 2002; 74(17): 4488-95.
[110]
Ruigrok VJB, Levisson M, Eppink MHM, Smidt H, van der Oost J. Alternative affinity tools: more attractive than antibodies? Biochem J 2011; 436(1): 1-13.
[111]
Stoltenburg R, Reinemann C, Strehlitz B. SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 2007; 24(4): 381-403.
[112]
Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol Ther Nucleic Acids 2014; 3(8): e182.
[113]
Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 1999; 45(9): 1628-50.
[114]
Tia SQ, He M, Kim D, Herr AE. Multianalyte on-chip native Western blotting. Anal Chem 2011; 83(9): 3581-8.
[115]
Shin SR, Kilic T, Zhang YS, et al. Label-Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. Adv Sci (Weinh) 2017; 4(5): 1600522.
[116]
Zhang YS, Aleman J, Shin SR, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci USA 2017; 114(12): E2293-302.
[117]
Zhang Y-F, He W, Zhang C, et al. Role of receptor interacting protein (RIP)1 on apoptosis-inducing factor-mediated necroptosis during acetaminophen-evoked acute liver failure in mice. Toxicol Lett 2014; 225(3): 445-53.
[118]
Zhang H, Oellers T, Feng W, et al. High-Density Droplet Microarray of Individually Addressable Electrochemical Cells. Anal Chem 2017; 89(11): 5832-9.
[119]
Zhang Y, Wang T-H. Full-range magnetic manipulation of droplets via surface energy traps enables complex bioassays. Adv Mater 2013; 25(21): 2903-8.
[120]
Pollack MG, Fair RB, Shenderov AD. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 2000; 77(11): 1725-6.
[121]
Han H, Lee JS, Kim H, et al. Single-Droplet Multiplex Bioassay on a Robust and Stretchable Extreme Wetting Substrate through Vacuum-Based Droplet Manipulation. ACS Nano 2018; 12(2): 932-41.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy