Generic placeholder image

Current Drug Delivery


ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Nanomedicines as Drug Delivery Carriers of Anti-Tubercular Drugs: From Pathogenesis to Infection Control

Author(s): Afzal Hussain, Sima Singh, Sabya Sachi Das, Keshireddy Anjireddy, Subramanian Karpagam and Faiyaz Shakeel*

Volume 16 , Issue 5 , 2019

Page: [400 - 429] Pages: 30

DOI: 10.2174/1567201816666190201144815


In spite of advances in tuberculosis (TB) chemotherapy, TB is still airborne deadly disorder as a major issue of health concern worldwide today. Extensive researches have been focused to develop novel drug delivery systems to shorten the lengthy therapy approaches, prevention of relapses, reducing dose-related toxicities and to rectify technologically related drawbacks of anti-tubercular drugs. Moreover, the rapid emergence of drug resistance, poor patient compliance due to negative therapeutic outcomes and intracellular survival of Mycobacterium highlighted to develop carrier with optimum effectiveness of the anti-tubercular drugs. This could be achieved by targeting and concentrating the drug on the infection reservoir of Mycobacterium. In this article, we briefly compiled the general aspects of Mycobacterium pathogenesis, disease treatment along with progressive updates in novel drug delivery carrier system to enhance therapeutic effects of drug and the high level of patient compliance. Recently developed several vaccines might be shortly available as reported by WHO.

Keywords: Clinical therapy, diagnosis, nanomedicine, pathogenesis, review, Tuberculosis.

Graphical Abstract
Handbook of anti-tuberculosis agents: Introduction. Tuberculosis (Edinb.), 2008, 88(2), 85-86.
WHO. World Tuberculosis Report, 2018.
WHO. World Tuberculosis Report, 2012.
Warner, D.F.; Mizrahi, V. Tuberculosis chemotherapy: The influence of bacillary stress and damage response pathways on drug efficacy. Clin. Microbiol. Rev., 2006, 19, 558-570.
Fujiwara, N.; Naka, T.; Ogawa, M.; Yamamoto, R.; Ogura, H.; Taniguchi, H. Characteristics of Mycobacterium smegmatis J15cs strain lipids. Tuberculosis (Edinb.), 2012, 92, 187-192.
WHO. World Tuberculosis Report, 2013.
WHO. World Tuberculosis Report, 2015.
Ducati, R.G.; Ruffino-Netto, A.; Basso, L.A.; Santos, D.S. The resumption of consumption- a review on tuberculosis. Mem. Inst. Oswaldo Cruz, 2006, 101, 697-714.
Steenken, W.; Oatway, W.H.; Petroff, S.A. Biological studies of the Tubercle bacillus: Iii. dissociation and pathogenicity of the R and S variants of the human Tubercle Bacillus (H37). J. Exp. Med., 1934, 60, 515-540.
Zhang, M.; Gong, J.; Lin, Y.; Barnes, P.F. Growth of virulent and avirulent Mycobacterium tuberculosis strains in human macrophages. Infect. Immun., 1998, 66, 794-799.
Briken, V.; Porcelli, S.A.; Besra, G.S.; Kremer, L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol. Microbiol., 2004, 53, 391-403.
Vergne, I.; Chua, J.; Deretic, V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin- PI3K hVPS34 cascade. J. Exp. Med., 2003, 198, 653-659.
Dao, D.N.; Kremer, L.; Guerardel, Y.; Molano, A.; Jacobs, W.R., Jr; Porcelli, S.A.; Briken, V. Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages. Infect. Immun., 2003, 72, 2067-2074.
Means, T.K.; Wang, S.; Lien, E.; Yoshimura, A.; Golenbock, D.T.; Fenton, M.J. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol., 1997, 163, 3920-3927.
Wayne, L.G.; Kubica, G.P. The mycobacteria, Bergey’s manual of systematic bacteriology, 8th edn; Sneath, P.H.A.; Mair, N.S., Eds.; Williams & Wilkins: Baltimore, MD, 1986, pp. 1436-1457.
Shinnick, T.M.; Good, R.C. Mycobacterial taxonomy. Eur. J. Clin. Microbiol. Infect. Dis., 1994, 13, 884-901.
Besra, G.S.; Brennan, P.J. The mycobacterial cell wall: Biosynthesis of arabinogalactan and lipoarabinomannan. Biochem. Soc. Trans., 1997, 25, 845-850.
Belanger, A.E.; Inamine, J.M. Genetics of cell wall biosynthesis. In: Molecular Genetics of Mycobacteria; Hatfull, G.F.; Jacobs, W.R., Jr, Eds.; Washington, DC: American Society for Mircrobiology Press, 2000; pp. 191-202.
Nigou, J.; Gilleron, M.; Puzo, G. Lipoarabinomannans: From structure to biosynthesis. Biochimie, 2003, 85, 153-166.
Nigou, J.; Gilleron, M.; Cahuzac, B.; Bounéry, J.D.; Herold, M.; Thurnher, M.; Puzo, G. The phosphatidyl-myo-inositol anchor of the lipoarabinomannans from Mycobacterium bovis bacillus Calmette Guerin. Heterogeneity, structure, and role in the regulation of cytokine secretion. J. Biol. Chem., 1997, 272, 23094-23103.
Vercellone, A.; Nigou, J.; Puzo, G. Relationships between the structure and the roles of lipoarabinomannans and related glycoconjugates in tuberculosis pathogenesis. Front. Biosci., 1998, 3, 149-163.
Khoo, K.H.; Tang, J.B.; Chatterjee, D. Variation in mannose-capped terminal arabinan motifs of lipoarabinomannans from clinical isolates of Mycobacterium tuberculosis and Mycobacterium avium complex. J. Biol. Chem., 2001, 276, 3863-3871.
Guerardel, Y.; Maes, E.; Elass, E.; Leroy, Y.; Timmerman, P.; Besra, G.S.; Locht, C.; Strecker, G.; Kremer, L. Structural study of lipomannan and lipoarabinomannan from Mycobacterium chelonae. Presence of unusual components with alpha 1,3-mannopyranose side chains. J. Biol. Chem., 2002, 277, 30635-30648.
Reyrat, J.M.; Kahn, D. Mycobacterium smegmatis: An absurd model for tuberculosis? Trends Microbiol., 2001, 9, 472-473.
Shiloh, M.U.; DiGiuseppe Champion, P.A. To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis? Curr. Opin. Microbiol., 2010, 13, 86-92.
Sharbati-Tehrani, S.; Stephan, J.; Holland, G.; Appel, B.; Niederweis, M.; Lewin, A. Porins limit the intracellular persistence of Mycobacterium smegmatis. Microbiol, 2005, 151, 2403-2410.
Etienne, G.; Laval, F.; Villeneuve, C.; Dinadayala, P.; Abouwarda, A.; Zerbib, D.; Galamba, A.; Daffe, M. The cell envelope structure and properties of Mycobacterium smegmatis mc2155: Is there a clue for the unique transformability of the strain? Microbiol., 2005, 151, 2075-2086.
Gopalaswamy, R.; Narayanan, S.; Jacobs, Jr, W.R.; Av-Gay, Y. Mycobacterium smegmatis biofilm formation and sliding motility are affected by the serine/threonine protein kinase PknF. FEMS Microbiol. Lett., 2008, 278, 121-127.
Gordon, S.; Keshav, S.; Stein, M. BCG-induced granuloma formation in murine tissues. Immunobiol., 1994, 191, 369-377.
Chan, J.; Flynn, J. The immunological aspects of latency in tuberculosis. Clin. Immunol., 2004, 110, 2-12.
Kaufmann, S.H. Immunity to intracellular bacteria. Ann. Rev. Immunol., 1993, 11, 129-163.
Saunders, B.M.; Britton, W.J. Life and death in the granuloma: Immunopathology of tuberculosis. Immunol. Cell Biol., 2007, 85, 103-111.
Dube, D.; Agrawal, G.P.; Vyas, S.P. Tuberculosis: From molecular pathogenensis to effective drug carrier design. Drug Discov. Today, 2012, 17, 761-762.
Koul, A.; Herget, T.; Klebl, B.; Ullrich, A. Interplay between mycobacteria and host signaling pathways. Nat. Rev. Microbiol., 2004, 2, 189-191.
Armstrong, J.A.; Hart, P.D. Phagosome–lysosome interactions in cultured macrophages infected with Virulenttubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J. Exp. Med., 1975, 142, 1-16.
Patki, V.; Virbasius, J.; Lane, W.S.; Toh, B.H.; Shpetner, H.S.; Corvera, S. Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. USA, 1997, 94, 7326-7330.
Taunton, J. Actin filament nucleation by endosomes, lysosomes and secretory vesicles. Curr. Opin. Cell Biol., 2001, 13, 85-91.
Keane, J.; Remold, H.G.; Kornfeld, H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J. Immunol., 2000, 164, 2016-2020.
Szalai, G.; Krishnamurthy, R.; Hajnoczky, G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J., 1999, 18, 6349-6361.
Pai, M.; Minion, J.; Steingart, K.; Ramsay, A. New and improved tuberculosis diagnostics: Evidence, policy, practice, and impact. Curr. Opin. Pulm. Med., 2010, 16, 271-284.
Vijayasekaran, D. Treatment of childhood tuberculosis. Indian J. Pediatr., 2011, 78, 443-448.
Falk, R.; Randolph, T.W.; Meyer, J.D.; Kelly, R.M.; Manning, M.C. Controlled release of ionic compounds from poly (L-lactide) microspheres produced by precipitation with a compressed antisolvent. J. Control. Release, 1997, 44, 77-85.
Pandey, R.; Khuller, G.K. Subcutaneous nanoparticle-based antitubercular chemotherapy in an experimental model. J. Antimicrob. Chemother., 2003, 54, 266-268.
Chono, S.; Tanino, T.; Seki, T.; Morimoto, K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J. Control. Release, 2008, 127, 50-58.
Dube, D.; Vyas, S.P. Nanocolloidal systems for macrophage targeting of therapeutics and diagnostics. In colloidal nanocarriers: Site specific and controlled drug delivery, (1st ed); CBS Publishers: New Dehli, India, 2010, pp. 470-495.
Briones, E.; Colino, C.I.; Lanao, J.M. Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J. Control. Release, 2008, 125, 210-227.
Seleem, M.N.; Jain, N.; Pothayee, N.; Ranjan, A.; Riffle, J.S.; Sriranganathan, N. Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol. Lett., 2009, 294, 24-31.
Rodrigues, C.; Gameiro, P.; Prieto, M.; de Castro, B. Interaction of rifampicin and isoniazid with large unilamellar liposomes: Spectroscopic location studies. Biochim. Biophys. Acta, 2003, 1620, 151-159.
Vladimirsky, M.A.V.; Ladigina, G.A. Antibacterial activity of liposome entrapped streptomycin in mice infected with Mycobacterium tuberculosis. Biomed. Pharmacother., 1982, 36, 375-377.
Klemens, S.P.; Cynamon, M.H.; Swenson, C.E.; Ginsberg, R.S. Liposome-encapsulated-gentamicin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob. Agents Chemother., 1990, 34, 967-970.
Leitzke, S.; Bucke, W.; Borner, K.; Müller, R.; Hahn, H.; Ehlers, S. Rationale for and efficacy of prolonged-interval treatment using liposome-encapsulated amikacin in experimental Mycobacterium avium infection. Antimicrob. Agents Chemother., 1998, 42, 459-461.
Giovagnoli, S.; Blasi, P.; Vescovi, C.; Fardella, G.; Chiappini, I.; Perioli, L.; Ricci, M.; Rossi, C. Unilamellar vesicles as potential capreomycin sulfate carriers: Preparation and physicochemical characterization. AAPS PharmSciTech, 2003, 4, E69.
Ricci, M.; Giovagnoli, S.; Blasi, P.; Schoubben, A.; Perioli, L.; Rossi, C. Development of liposomal capreomycin sulfate formulations: Effects of formulation variables on peptide encapsulation. Int. J. Pharm., 2006, 311, 172-181.
Düzgüneş, N.; Flasher, D.; Reddy, M.V.; Luna-Herrera, J.; Gangadharam, P.R. Treatment of intracellular Mycobacterium avium complex infection by free and liposome encapsulated sparfloxacin. Antimicrob. Agents Chemother., 1996, 40, 2618-2621.
Chimote, G.; Banerjee, R. Evaluation of antitubercular drug-loaded surfactants as inhalable drug-delivery systems for pulmonary tuberculosis. J. Biomed. Mater. Res. Part A, 2007, 89, 281-292.
Chimote, G.; Banerjee, R. Effect of antitubercular drugs on dipalmitoylphosphatidylcholine monolayers: Implications for drug loaded surfactants. Resp. Physiol. Neurobiol., 2005, 145, 65-77.
El-Ridy, M.S.; Mostafa, D.M.; Shehab, A.; Nasr, E.A.; Abd El-Alim, S. Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis. Int. J. Pharm., 2007, 330, 82-88.
Jain, C.P.; Vyas, S.P. Preparation and characterization of niosomes containing rifampicin for lung targeting. J. Microencapsul., 1995, 12, 401-407.
Mullaicharam, A.R.; Murthy, R.S.R. Lung accumulation of niosome entrapped rifampicin following intravenous and intratracheal administration in the rat. J. Drug Deliv. Sci. Technol., 2004, 14, 99-104.
Bhardwaj, A.; Kumar, L.; Narang, R.K.; Murthy, R.S.R. Development and characterization of ligand-appended liposomes for multiple drug therapy for pulmonary tuberculosis. Art. Cells Nanomed. Biotechnol., 2013, 41, 52-59.
Mehta, S.K.; Jindal, N. Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs. Coll. Surf. B., 2013, 101, 434-441.
Deol, P.; Khuller, G.K. Lung specific liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Biochem. Biophys. Acta, 1997, 1334, 161-172.
Deol, P.; Khuller, G.K.; Joshi, K. Therapeutic efficacies of isoniazid and rifampin encapsulated in lung-specific stealth liposomes against Mycobacterium tuberculosis infection induced in mice. Antimicrob. Agents Chemother., 1997, 41, 1211-1214.
Vyas, S.P.; Kannan, M.E.; Jain, S.; Mishra, V.; Singh, P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int. J. Pharm., 2004, 269, 37-49.
Adams, L.B.; Sinha, I.; Franzblau, S.G.; Krahenbuhl, J.L.; Mehta, R.T. Effective treatment of acute and chronic murine tuberculosis with liposome-encapsulated clofazimine. Antimicrob. Agents Chemother., 1999, 43, 1638-1643.
Labana, S.; Pandey, R.; Sharma, S.; Khuller, G.K. Chemotherapeutic activity against murine tuberculosis of once weekly administered drugs (isoniazid and rifampicin) encapsulated in liposomes. Int. J. Antimicrob. Agents, 2002, 20, 301-304.
Pandey, R.; Sharma, S.; Khuller, G.K. Nebulization of liposome encapsulated antitubercular drugs in guinea pigs. Int. J. Antimic. Agents, 2004, 24, 93-94.
Chono, S.; Tanino, T.; Seki, T.; Morimoto, K. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J. Pharm. Pharmacol., 2007, 59, 75-80.
Gaspar, M.M.; Cruz, A.; Penha, A.F.; Reymão, J.; Sousa, A.C.; Eleutério, C.V.; Domingues, S.A.; Fraga, A.G.; Filho, A.L.; Cruz, M.E.; Pedrosa, J. Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. Int. J. Antimicrob. Agents, 2008, 31, 37-45.
Jain, C.P.; Vyas, P.S.; Dixit, V.K. Niosomal system for delivery of rifampicin to lymphatics. Indian J. Pharm. Sci., 2006, 68, 575-578.
Singh, G.; Raghuvanshi, H.K.; Anand, A.; Pundir, R.; Dwivedi, H. Targeted delivery of rifampicin by niosomal drug delivery system. J. Pharm. Res., 2010, 3, 1152-1154.
Barrow, E.L.; Winchester, G.A.; Staas, J.K.; Quenelle, D.C.; Barrow, W.W. Use of microsphere technology for targeted delivery of rifampin to Mycobacterium tuberculosis-infected macrophages. Antimicrob. Agents Chemother., 1998, 42, 2682-2689.
Anisimova, Y.V.; Gelperina, S.I.; Peloquin, C.A.; Heifets, L.B. Nanoparticles as antituberculosis drugs carriers: Effect on activity against Mycobacterium tuberculosis in human monocyte-derived macrophages. J. Nanopart. Res., 2000, 2, 165-171.
Fawaz, F.; Bonini, F.; Maugein, J.; Lagueny, A.M. Ciprofloxacin-loaded polyisobutylcyanoacrylate nanoparticles: pharmacokinetics and in vitro anti-microbial activity. Int. J. Pharm., 1998, 168, 255-259.
Ahmad, Z.; Pandey, R.; Sharma, S.; Khuller, G.K. Novel chemotherapy for tuberculosis: Chemotherapeutic potential of econazole and moxifloxacin-loaded PLG nanoparticles. Int. J. Antimi. Agents, 2008, 31, 142-146.
Shipulo, E.V.; Lyubimov, I.I.; Maksimenko, O.O.; Vanchugova, L.V.; Oganesyan, E.A.; Sveshnikov, P.G.; Biketov, S.F.; Severin, E.S.; Heifets, L.B.; Gel’perina, S.E. Development of a nanosomal formulation of moxifloxacin based on poly (butyl-2-cyanoacrylate). Pharm. Chem. J., 2008, 42, 145-149.
Kisich, K.O.; Gelperina, S.; Higgins, M.P.; Wilson, S.; Shipulo, E.; Oganesyan, E.; Heifets, L. Encapsulation of moxifloxacin within poly (butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int. J. Pharm., 2007, 345, 154-162.
Dutt, M.; Khuller, G.K. Sustained release of isoniazid from a single injectable dose of poly (DL-lactide-co-glycolide) microparticles as a therapeutic approach towards tuberculosis. Int. J. Antimicrob. Agents, 2002, 17, 115-122.
Dutt, M.; Khuller, G.K. Chemotherapy of Mycobacterium tuberculosis infections in mice with a combination of isoniazid and rifampicin entrapped in Poly (DL-lactide-co-glycolide) microparticles. J. Antimicrob. Chemother., 2002, 47, 829-835.
Khuller, G.K.; Verma, J.N. Oral drug delivery system for azole, moxifloxacin and rifampicin. US20100310662, 2010.
Doan, T.V.; Grégoire, N.; Lamarche, I.; Gobin, P.; Marchand, S.; Couet, W.; Olivier, J.C. A preclinical pharmacokinetic modeling approach to the biopharmaceutical characterization of immediate and microsphere-based sustained release pulmonary formulations of rifampicin. Eur. J. Pharm. Sci., 2013, 48, 223-230.
Ain, Q.; Sharma, S.; Garg, S.K.; Khuller, G.K. Role of poly [DL-lactide-co-glycolide] in development of a sustained oral delivery system for antitubercular drug(s). Int. J. Pharm., 2002, 239, 37-46.
Sharma, A.; Pandey, R.; Sharma, S.; Khuller, G.K. Chemotherapeutic efficacy of poly (dl-lactide-co-glycolide) nanoparticle encapsulated antitubercular drugs at sub-therapeutic dose against experimental tuberculosis. Int. J. Antimi. Agents, 2004, 24, 599-604.
Pandey, R.; Khuller, G.K. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. J. Antimicrob. Chemother., 2006, 57, 1146-1152.
Pandey, R.; Sharma, S.; Khuller, G.K. Chemotherapeutic efficacy of nanoparticle encapsulated antitubercular drugs. Drug Deliv., 2006, 13, 287-294.
Ahmad, Z.; Pandey, R.; Sharma, S.; Khuller, G.K. Pdharmacokinetic and pharmacodynamic behavior of antitubercular drugs encapsulated in alginate nanoparticles at two doses. Int. J. Antimicrob. Agents, 2006, 27, 409-416.
Samad, A.; Sultana, Y.; Khar, R.K.; Chuttani, K.; Mishra, A.K. Gelatin microspheres of rifampicin cross-linked with sucrose using thermal gelation method for the treatment of tuberculosis. J. Microencapsul., 2009, 26, 83-89.
Saraogi, G.K.; Sharma, B.; Joshi, B.; Gupta, P.; Gupta, U.D.; Jain, N.K.; Agrawal, G.P. Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J. Drug Target., 2011, 19, 1292-1227.
Kumar, G.; Sharma, S.; Shafiq, N.; Pandhi, P.; Khuller, G.K.; Malhotra, S. Pharmacokinetics and tissue distribution studies of orally administered nanoparticles encapsulated method used as potential drug delivery system in management of multi-drug resistant tuberculosis. Drug Deliv., 2011, 18, 65-73.
Hu, C.; Feng, H.; Zhu, C. Preparation and characterization of rifampicin-PLGA microspheres/sodium alginate in situ gel combination delivery system. Coll. Surf. B, 2012, 95, 162-169.
O’Hara, P.; Hickey, A.J. PLGA microspheres containing rifampicin for the treatment of tuberculosis: Manufacture and characterization. Pharm. Res., 2000, 17, 955-961.
Suarez, S.; O’Hara, P.; Kazantseva, M.; Newcomer, C.E.; Hopfer, R.; McMurray, D.N.; Hickey, A.J. Airways delivery of rifampicin microparticles for the treatment of tuberculosis. J. Antimicrob. Chemother., 2001, 48, 431-434.
Johnson, C.M.; Pandey, R.; Sharma, S.; Khuller, G.K.; Basaraba, R.J.; Orme, I.M.; Lenaerts, A.J. Oral therapy using nanoparticle-encapsulated antituberculosis drugs in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2005, 49, 4335-4338.
Ohashi, K.; Kabasawa, T.; Ozeki, T.; Okada, H. One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J. Control. Release, 2009, 135, 19-24.
Yadav, A.B.; Sharma, R.; Muttil, P.; Singh, A.K.; Verma, P.K.; Mohan, M.; Patel, S.K.; Mishra, A. Inhalable microparticles containing isoniazid and rifabutin targeted macrophages and stimulate the phagocyte to achieve high efficacy. Indian J. Exp. Biol., 2009, 7, 469-474.
Palazzo, F.; Giovagnoli, S.; Schoubben, A.; Blasi, P.; Rossi, C.; Ricci, M. Development of a spray-drying method for the formulation of respirable microparticles containing ofloxacin–palladium complex. Int. J. Pharm., 2013, 440, 273-282.
Sharma, R.; Saxena, D.; Dwivedi, A.K.; Misra, A. Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pharm. Res., 2001, 18, 1405-1410.
Pandey, R.; Zahoor, A.; Sharma, S.; Khuller, G.K. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis (Edinb.), 2003, 83, 373-378.
Pandey, R.; Khuller, G.K. Chemotherapeutic potential of alginate chitosan microspheres as antitubercular drug carriers. J. Antimicrob. Chemother., 2004, 53, 635-640.
Sharma, A.; Sharma, S.; Khuller, G.K. Lectin-functionalized poly (lactide-coglycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J. Antimicrob. Chemother., 2004, 54, 761-766.
Pandey, R.; Khuller, G.K. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb.), 2005, 85, 227-234.
Ahmad, Z.; Sharma, S.; Khuller, G.K. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int. J. Antimicrob. Agents, 2005, 26, 298-303.
Garcia-Contreras, L.; Sethuraman, V.; Kazantseva, M.; Godfrey, V.; Hickey, A.J. Evaluation of dosing regimen of respirable rifampicin biodegradable microspheres in the treatment of tuberculosis in the guinea pig. J. Antimicrob. Chemother., 2006, 58, 980-986.
Pandey, R.; Khuller, G.K. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. J. Antimicrob. Chemother., 2006, 57, 146-1152.
Muttil, P.; Kaur, J.; Kumar, K.; Yadav, A.B.; Sharma, R.; Misra, A. Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur. J. Pharm. Sci., 2007, 32, 140-150.
Jain, D.; Banerjee, R. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J. Biomed. Mater. Res. Part B Appl. Biomater., 2008, 86B, 105-112.
Ahmad, Z.; Sharma, S.; Khuller, G.K. Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis. Nanomedicine, 2007, 3, 239-243.
Kumar, P.V.; Agashe, H.; Dutta, T.; Jain, N.K. PEGylated dendritic architecture for development of a prolonged drug delivery system for an antitubercular drug. Curr. Drug Deliv., 2007, 4, 11-19.
Tomoda, K.; Makino, K. Effects of lung surfactants on rifampicin release rate from monodisperse rifampicin-loaded PLGA microspheres. Coll. Surf. B., 2007, 55, 115-124.
Esmaeili, F.; Hosseini-Nasr, M.; Rad-Malekshahi, M.; Samadi, N.; Atyabi, F.; Dinarvand, R. Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles. Nanomedicine, 2007, 3, 161-167.
Hwang, S.M.; Kim, D.D.; Chung, S.J.; Shim, C.K. Delivery of ofloxacin to the lung and alveolar macrophages via hyaluronan microspheres for the treatment of tuberculosis. J. Control. Release, 2008, 129, 100-106.
Manca, M.L.; Mourtas, S.; Dracopoulos, V.; Fadda, A.M.; Antimisiaris, S.G. PLGA, chitosan or chitosan-coated PLGA microparticles for alveolar delivery? A comparative study of particle stability during nebulization. Coll. Surf. B., 2008, 62, 220-231.
Durán, N.; Alvarenga, M.A.; Da Silva, E.C.; Melo, P.S.; Marcato, P.D. Microencapsulation of antibiotic rifampicin in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Arch. Pharm. Res., 2008, 31, 1509-1516.
Saraogi, G.K.; Gupta, P.; Gupta, U.D.; Jain, N.K.; Agrawal, G.P. Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int. J. Pharm., 2010, 385, 143-149.
Hirota, K.; Hasegawa, T.; Nakajima, T.; Inagawa, H.; Kohchi, C.; Soma, G.; Makino, K.; Terada, H. Delivery of rifampicin-PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. J. Control. Release, 2010, 142, 339-346.
Wang, C.; Hickey, A.J. Isoxyl particles for pulmonary delivery: In vitro cytotoxicity and potency. Int. J. Pharm., 2010, 396, 99-104.
Onoshita, T.; Shimizu, Y.; Yamaya, N.; Miyazaki, M.; Yokoyama, M.; Fujiwara, N.; Nakajima, T.; Makino, K.; Terada, H.; Haga, M. The behavior of PLGA microspheres containing rifampicin in alveolar macrophages. Coll. Surf. B., 2010, 76, 151-157.
Cassano, R.; Trombino, S.; Ferrarelli, T.; Mauro, M.V.; Giraldi, C.; Manconi, M.; Fadda, A.M.; Picci, N. Respirable rifampicin-based microspheres containing isoniazid for tuberculosis treatment. J. Biomed. Mater. Res. Part A, 2012, 100A, 536-542.
Zhu, M.; Wang, H.; Liu, J.; He, H.; Hua, X.; He, Q.; Zhang, L.; Ye, X.; Shi, J. A mesoporous silica nanoparticulate/b-TCP/BG composite drug delivery system for osteoarticular tuberculosis therapy. Biomater., 2011, 32, 1986-1995.
Manca, M.L.; Sinico, C.; Maria Maccion, A.M.; Diez, O.; Fadda, A.M.; Manconi, M. Composition influence on pulmonary delivery of rifampicin liposomes. Pharm., 2012, 4, 590-606.
Clemens, D.L.; Lee, B.Y.; Xue, M.; Thomas, C.R.; Meng, H.; Ferris, D.; Nel, A.E.; Zink, J.I.; Horwitza, M.A. Targeted Intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob. Agents Chemother., 2012, 56, 2535-2545.
Chawla, R.; Jaiswal, S.; Mishra, B. Development and optimization of polymeric nanoparticles of antitubercular drugs using central composite factorial design. Expert Opin. Drug Deliv., 2012, 11, 31-43.
Diab, R.; Brillault, J.; Bardy, A.; Gontijo, A.V.L.A.; Olivier, J.C. Formulation and in vitro characterization of inhalable polyvinyl alcohol-free rifampicin-loaded PLGA microspheres prepared with sucrose palmitate as stabilizer: Efficiency for ex vivo alveolar macrophage targeting. Int. J. Pharm., 2012, 436, 833-839.
Gajendiran, M.; Gopi, V.; Elangovan, V.; Murali, R.V.; Balasubramanian, S. Isoniazid loaded core shell nanoparticles derived from PLGA–PEG–PLGA tri-block copolymers: In vitro and in vivo drug release. Coll. Surf. B., 2013, 104, 107-115.
Booysen, L.L.I.J.; Kalombo, L.; Brooks, E.; Hansend, R.; Gilliland, J.; Gruppo, V.; Lungenhoferd, P.; Semete-Makokotlela, B.; Swaia, H.S.; Kotze, A.F.; Lenaerts, A.; du Plessis, L.H. In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid. Int. J. Pharm., 2013, 444, 10-17.
Rajan, M.; Raj, V. Formation and characterization of chitosan-polylacticacid-polyethylene glycoal-gelatin nanoparticles. A novel biosystem for controlled drug delivery. Carbohydr. Polym., 2013, 98, 951-958.
Parmar, R.; Misra, R.; Mohanty, S. In vitro controlled release of Rifampicin through liquid-crystallinefolate nanoparticles. Coll. Surf. B, 2015, 129, 198-205.
Miranda, M.S.; Rodrigues, M.T.; Domingues, R.M.A.; Costa, R.R.; Paz, E.; Rodríguez-Abreu, C.; Freitas, P.; Almeida, B.G.; Carvalho, M.A.; Gonçalves, C.; Ferreira, C.M.; Torrado, E.; Reis, R.L.; Pedrosa, J.; Gomes, M.E. Development of inhalable superparamagnetic iron oxide nanoparticles (SPIONs) in microparticulate system for antituberculosis drug delivery. Adv. Healthcare. Mater., 2018, 7, E1800124.
Ellis, T.; Chiappi, M.; Trenco, A.G.; Ejji, M.A.; Sarkar, S.; Georgiou, T.K.; Shaffer, M.S.P.; Tetley, T.D.; Schwander, S.; Ryan, M.P.; Porter, A.E. Multi-metallic microparticles increase the potency of rifampicin against intracellular Mycobacterium tuberculosis. ACS Nano, 2018.
Pandey, R.; Sharma, S.; Khuller, G.K. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tubercul, 2005, 85, 415-420.
Bhandari, R.; Kaur, I.P. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int. J. Pharm., 2013, 441, 202-212.
Singh, H.; Bhandari, R.; Kaur, I.P. Encapsulation of Rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with isoniazid at acidic pH. Int. J. Pharm., 2013, 446, 106-111.
Singh, H.; Jindal, S.; Singh, M.; Sharma, G.; Kaur, I.P. Nano-formulation of rifampicin with enhanced bioavailability: Development, characterization and in-vivo safety. Int. J. Pharm., 2015, 485, 138-151.
Maretti, E.; Rossi, T.; Bondi, M.; Croce, M.A.; Hanuskova, M.; Leo, E.; Sacchetti, F.; Iannuccelli, V. Inhaled solid lipid microparticles to target alveolar Macrophagesfor tuberculosis. Int. J. Pharm., 2014, 462, 74-82.
Silva, M.; Lara, A.S.; Leite, C.Q.F.; Ferreira, E.I. Potential tuberculostatic agents: Micelle-forming copolymer poly(ethylene glycol)-poly(aspartic acid) prodrug with isoniazid. Arch. Pharm. Pharm. Med. Chem., 2001, 334, 189-193.
Silva, M.; Ricelli, N.L.; Seoud, O.E.; Valentim, C.S.; Ferreira, A.G.; Sato, D.N.; Leite, C.Q.F.; Ferreira, E.I. Potential tuberculostatic agent: Micelle-forming pyrazinamide prodrug. Arch. Pharm. Chem. Life Sci., 2006, 339, 283-290.
Silva, M.; Ferreira, E.I.; Leite, C.Q.F.; Sato, N.D. Preparation of polymeric micelles for use as carriers of tuberculostatic drugs. Trop. J. Pharm. Res., 2007, 6, 815-824.
Chen, L.; Xie, Z.; Hu, J.; Chen, X.; Jing, X. Enantiomeric PLA–PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J. Nanopart. Res., 2007, 9, 777-785.
Chan, J.G.Y.; Chan, H.; Prestidge, C.A.; Denman, J.A.; Young, P.M.; Traini, D. A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. Eur. J. Pharm. Biopharm., 2013, 83, 285-292.
Ahmed, M.; Ramadan, W.; Rambhu, D.; Shakeel, F. Potential of nanoemulsions for intravenous delivery of rifampicin. Pharmazie, 2008, 63, 806-811.
Son, Y.; McConville, J.T. A new respirable form of rifampicin. Eur. J. Pharm. Biopharm., 2011, 78, 366-376.
Singh, C.; Bhatt, T.D.; Gill, M.S.; Suresh, S. Novel rifampicin–phospholipid complex for tubercular therapy: Synthesis, physicochemical characterization and in-vivo evaluation. Int. J. Pharm., 2014, 460, 220-227.
Mathur, I.S.; Gupta, H.P.; Srivastav, S.K.; Singh, S.; Madhu, K.; Khanna, N.M. Evaluation of subdermal biodegradable implants incorporating rifampicin as a method of drug delivery in experimental tuberculosis of guinea pigs. J. Med. Microbiol., 1985, 20, 387-392.
Kailasam, S.; Daneluzzi, D.; Gangadharam, P.R.J. Maintenance of therapeutically active levels of isoniazid for prolonged periods in rabbits after a single implant of biodegradable polymer. Tuber. Lung Dis., 1994, 75, 361-365.
Horwitz, M.A.; Clemens, D.L. Antimicrobial for targeting intracellular pathogens. US6054133 2000.
Dickinson, P.A.; Kellaway, I.W.; Howells, S.W. Particulate composition. US7018657 B2 2006.
Schwarz, J.; Weisspapir, M. Colloidal solid lipid vehicle for pharmaceutical use. US 20060222716 A1 2006.
Becker, R.; Kruss, R.B.; Muller, R.H.; Peters, K. Pharmaceutical nanosuspensions formedicament administration as systems with increased saturation solubility and rate of solution. US 5858410 A 1999.
Jeong, S.Y.; Kwon, I.C.; Chung, H. Formulation solubilizing water- insoluble agents and preparation method thereof. US 6994862 B2 2006.
Barsegyan, G.G.; Gumanov, S.G.; Kryukov, L.N.; Kuznetsov, S.L.; Pomazkova, T.A.; Vorontsov, E.A.; Zykova, I.E. Rifabutin-based medicinal agent, nanoparticles-containing antimicrobial preparation and a method for the production thereof. WO2009002227 A1 2008.
Khuller, G.K.; Pander, R.; Sharma, S.; Verma, J.N. A process for the preparation of poly dl-lactide-co-glycolide nanoparticles having antitubercular drugs encapsulated therein. WO2006109317A8 2006.
Kaur, I.P.; Verma, M.K. Oral nanocolloidal aqueous dispersion (NCD) of streptomycin sulfate. India Patent 3/10/2012 2012.
Kaur, I.P.; Singh, H. Preparation of solid lipid nanoparticles of rifampicin to improve bioavailability and limiting drug interaction with isoniazid. India Patent 17/01/2013. 2013.

© 2022 Bentham Science Publishers | Privacy Policy