Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Development of a Comprehensive Matlab/Simulink Based Model for High-Efficiency 2nd Generation Photovoltaic (PV) Modules

Author(s): Muhammad Naveed Shaikh, Qayyum Zafar* and Antonis Papadakis

Volume 16, Issue 4, 2020

Page: [568 - 577] Pages: 10

DOI: 10.2174/1573413715666190130161402

Price: $65

Abstract

Background: The accurate energy yield prediction of a PV system under various environmental conditions is important for designing a high-performance PV system.

Objective: The robust and cost-effective digital simulation studies on PV systems have the advantage in comparison to studies based on measurements because they provide the opportunity for sensitivity analysis on various design parameters of the PV system.

Methods: Herein, we present the development and implementation of a generalized photovoltaic computational model using Matlab/Simulink software package. The model is based on the equivalent diode circuit approach. It is designed to simulate two ubiquitous and high performing 2nd generation photovoltaic (PV) modules constructed with Cadmium Telluride (CdTe) and Copper Indium Gallium di-Selenide (CIGS) photoactive thin films, respectively. The values of key input parameters to the simulator, i.e., parallel resistor (Rp) and series resistor (Rs) have been computed by an efficient Newton-Raphson iteration method.

Results: The output current-voltage (I-V) and power-voltage (P-V) characteristic curves of the aforementioned PV modules have been simulated by taking two input variables (ambient irradiance and temperature) into consideration. The electrical performance of both PV modules under various environmental conditions have been mathematically investigated by the solution of classical non-linear equations.

Conclusion: The developed PV model has been validated with the experimental results obtained from standard PV module datasheets provided by manufacturers. The relative error between the simulated and experimental values of various photovoltaic parameters for CdTe and CIGS PV modules at Standard Test Conditions (STC) has been observed to be below 3%.

Keywords: 2nd generation photovoltaic (PV) modules, equivalent diode circuit, photovoltaic parameters, computational modelling, Newton-Raphson iteration method, Matlab/Simulink.

Graphical Abstract
[1]
Hoffert, M.I.; Caldeira, K.; Benford, G.; Criswell, D.R.; Green, C.; Herzog, H.; Jain, A.K.; Kheshgi, H.S.; Lackner, K.S.; Lewis, J.S.; Lightfoot, H.D.; Manheimer, W.; Mankins, J.C.; Mauel, M.E.; Perkins, L.J.; Schlesinger, M.E.; Volk, T.; Wigley, T.M. Advanced technology paths to global climate stability: energy for a greenhouse planet. Science, 2002, 298(5595), 981-987.
[http://dx.doi.org/10.1126/science.1072357] [PMID: 12411695]
[2]
Ikram, M.; Murray, R.; Hussain, A.; Ali, S.; Shah, S.I. Hybrid organic solar cells using both ZnO and PCBM as electron acceptor materials. Mater. Sci. Eng. B, 2014, 189, 64-69.
[http://dx.doi.org/10.1016/j.mseb.2014.08.005]
[3]
Ikram, M.; Ali, S.; Murray, R.; Hussain, A.; Shah, S.I. Influence of fullerene derivative replacement with TiO2 nanoparticles in organic bulk heterojunction solar cells. Curr. Appl. Phys., 2015, 15(1), 48-54.
[http://dx.doi.org/10.1016/j.cap.2014.10.026]
[4]
Conibeer, G.; Green, M.; Corkish, R.; Cho, Y.; Cho, E-C.; Jiang, C-W.; Fangsuwannarak, T.; Pink, E.; Huang, Y.; Puzzer, T. Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films, 2006, 511, 654-662.
[http://dx.doi.org/10.1016/j.tsf.2005.12.119]
[5]
Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Matschoss, P.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schlömer, S. IPCC special report on renewable energy sources and climate change mitigation. Prepared By Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2011.
[6]
Lewis, N.S.; Nocera, D.G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA, 2006, 103(43), 15729-15735.
[http://dx.doi.org/10.1073/pnas.0603395103] [PMID: 17043226]
[7]
Rafique, S.; Abdullah, S.M.; Iqbal, J.; Jilani, A.; Vattamkandathil, S.; Iwamoto, M. Moderately reduced graphene oxide via UV-ozone treatment as hole transport layer for high efficiency organic solar cells. Org. Electron., 2018, 59, 140-148.
[http://dx.doi.org/10.1016/j.orgel.2018.04.050]
[8]
Akhmedov, K.M.; Karimov, K.S.; Fiodorov, M. Organic solar cells. Appl. Sol. Energy, 1995, 31(2), 63-67.
[9]
Rafique, S.; Abdullah, S.M.; Mahmoud, W.E.; Al-Ghamdi, A.A.; Sulaiman, K. Stability enhancement in organic solar cells by incorporating V2O5 nanoparticles in the hole transport layer. RSC Advances, 2016, 6(55), 50043-50052.
[http://dx.doi.org/10.1039/C6RA07210K]
[10]
Leccisi, E.; Raugei, M.; Fthenakis, V. The energy and environmental performance of ground-mounted photovoltaic systems-A timely update. Energies, 2016, 9(8), 622.
[http://dx.doi.org/10.3390/en9080622]
[11]
Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys., 1961, 32(3), 510-519.
[http://dx.doi.org/10.1063/1.1736034]
[12]
Green, M.A. High Efficiency Silicon Solar Cells. In: Goetzberger, A.; Palz, W.; Willeke, G. (eds.) Seventh E.C. Photovoltaic Solar Energy Conference Springer, Dordrecht. , 1987; pp. 681-687.
[13]
Shah, N.; Ali, A.; Hussain, S.; Maqsood, A. CdCl2-treated CdTe thin films deposited by the close spaced sublimation technique. J. Coat. Technol. Res., 2010, 7(1), 105.
[http://dx.doi.org/10.1007/s11998-008-9146-0]
[14]
Khan, M.A.; Shah, N.A.; Ali, A.; Basharat, M.; Hannan, M.; Maqsood, A. Fabrication and characterization of Cd-enriched CdTe thin films by close spaced sublimation. J. Coat. Technol. Res., 2009, 6(2), 251-256.
[http://dx.doi.org/10.1007/s11998-008-9111-y]
[15]
Shi, W.; Theelen, M.; Gevaerts, V.; Illiberi, A.; Barreau, N.; Butterling, M.; Schut, H.; Egger, W.; Dickmann, M.; Hugenschmidt, C. Positron annihilation studies on the damp heat degradation of ZnO: Al transparent conductive oxide layers for CIGS solar cells. IEEE J. Photovolt., 2018, 6(8), 1-5.
[16]
Salomé, P.; Keller, J.; Törndahl, T.; Teixeira, J.; Nicoara, N.; Andrade, R-R.; Stroppa, D.; González, J.; Edoff, M.; Leitão, J. CdS and Zn1−xSnxOy buffer layers for CIGS solar cells. Sol. Energy Mater. Sol. Cells, 2017, 159, 272-281.
[http://dx.doi.org/10.1016/j.solmat.2016.09.023]
[17]
Hamakawa, Y. Thin-Film Solar Cells: Next Generation Photovoltaics and its Applications, 1st ed; Springer Science & Business Media: Heidelberg, 2013.
[18]
Khan, J.; Arsalan, M.H. Solar power technologies for sustainable electricity generation-A review. Renew. Sustain. Energy Rev., 2016, 55, 414-425.
[http://dx.doi.org/10.1016/j.rser.2015.10.135]
[19]
Chani, M.; Marwani, H.; Danish, E.; Karimov, K.S.; Hilal, M.; Hagfeldt, A.; Asiri, A. Organic-inorganic hybrid tandem bulk heterojunction ITO/A1Pc: H2Pc/n-Si/Al photoelectric cell. J. Optoelectron. Adv. Mater., 2017, 19, 178-183.
[20]
Marwani, H.M.; Chani, M.T.S.; Danish, E.Y.; Karimov, K.S.; Hagfeldt, A.; Asiri, A.M. Tandem heterojunction photoelectric cell based on organic-inorganic hybrid of AlPc-H2Pc and n-Si. Int. J. Electrochem. Sci., 2017, 12, 4096-4106.
[http://dx.doi.org/10.20964/2017.05.20]
[21]
Chani, M.T.S.; Khan, S.B.; Asiri, A.M.; Karimov, K.S.; Rub, M.A. Photo-thermoelectric cells based on pristine α-Al2O3 co-doped CdO, CNTs and their single and bi-layer composites with silicone adhesive. J. Taiwan Inst. Chem. Eng., 2015, 52, 93-99.
[http://dx.doi.org/10.1016/j.jtice.2015.02.005]
[22]
Chani, M.T.S.; Karimov, K.S.; Khan, S.; Asiri, A.M. Fabrication and investigation of flexible photo-thermo electrochemical cells based on Cu/orange dye aqueous solution/Cu. Int. J. Electrochem. Sci., 2015, 10, 5694-5701.
[23]
Chani, M.T.S.; Karimov, KhS.; Asiri, A.M.; Ahmed, N.; Bashir, M.M.; Khan, S.B.; Rub, M.A.; Azum, N. Temperature gradient measurements by using thermoelectric effect in CNTs-silicone adhesive composite. PLoS One, 2014, 9(4)e95287
[http://dx.doi.org/10.1371/journal.pone.0095287] [PMID: 24748375]
[24]
Chani, M.T.S.; Karimov, K.S.; Marwani, H.M.; Danish, E.Y.; Ahmad, W. Nabi, J-u.; Hilal, M.; Hagfeldt, A.; Asiri, A.M. Bulk heterojunction tandem photoelectric cell based on p-Si and phthalocyanine. Int. J. Electrochem. Sci., 2017, 12(10), 9250-9261.
[http://dx.doi.org/10.20964/2017.10.55]
[25]
Polman, A.; Knight, M.; Garnett, E.C.; Ehrler, B.; Sinke, W.C. Photovoltaic materials: Present efficiencies and future challenges. Science, 2016, 352(6283)aad4424
[http://dx.doi.org/10.1126/science.aad4424] [PMID: 27081076]
[26]
Serrano-Luján, L.; Espinosa, N.; Abad, J.; Urbina, A. The greenest decision on photovoltaic system allocation. Renew. Energy, 2017, 101, 1348-1356.
[http://dx.doi.org/10.1016/j.renene.2016.10.020]
[27]
Compaan, A.D. Photovoltaics: Clean power for the 21st century. Sol. Energy Mater. Sol. Cells, 2006, 90(15), 2170-2180.
[http://dx.doi.org/10.1016/j.solmat.2006.02.017]
[28]
Lacerda, J.S.; van den Bergh, J.C. Diversity in solar photovoltaic energy: Implications for innovation and policy. Renew. Sustain. Energy Rev., 2016, 54, 331-340.
[http://dx.doi.org/10.1016/j.rser.2015.10.032]
[29]
National Renewable Energy Laboratory (NREL) Research Cell Record Efficiency Chart Available from:. http://www.nrel.gov/pv/assets/images/efficiency-chart.png (Accessed on: December 20, 2018)
[30]
Vetterl, O.; Finger, F.; Carius, R.; Hapke, P.; Houben, L.; Kluth, O.; Lambertz, A.; Mück, A.; Rech, B.; Wagner, H. Intrinsic microcrystalline silicon: A new material for photovoltaics. Sol. Energy Mater. Sol. Cells, 2000, 62(1), 97-108.
[http://dx.doi.org/10.1016/S0927-0248(99)00140-3]
[31]
Luque, A.; Hegedus, S. Handbook of Photovoltaic Science and Engineering, 2nd ed; John Wiley & Sons: United Kingdom, 2011.
[32]
Jackson, P.; Hariskos, D.; Lotter, E.; Paetel, S.; Wuerz, R.; Menner, R.; Wischmann, W.; Powalla, M. New world record efficiency for Cu (In, Ga) Se2 thin‐film solar cells beyond 20%. Prog. Photovolt. Res. Appl., 2011, 19(7), 894-897.
[http://dx.doi.org/10.1002/pip.1078]
[33]
Ramanathan, K.; Contreras, M.A.; Perkins, C.L.; Asher, S.; Hasoon, F.S.; Keane, J.; Young, D.; Romero, M.; Metzger, W.; Noufi, R. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin‐film solar cells. Prog. Photovolt. Res. Appl., 2003, 11(4), 225-230.
[http://dx.doi.org/10.1002/pip.494]
[34]
Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Zhu, Y.; Mitzi, D.B. Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency. Adv. Energy Mater., 2014, 4(7)1301465
[http://dx.doi.org/10.1002/aenm.201301465]
[35]
Helbig, C.; Bradshaw, A.M.; Kolotzek, C.; Thorenz, A.; Tuma, A. Supply risks associated with CdTe and CIGS thin-film photovoltaics. Appl. Energy, 2016, 178, 422-433.
[http://dx.doi.org/10.1016/j.apenergy.2016.06.102]
[36]
Reinhard, P.; Pianezzi, F.; Bissig, B.; Chirilă, A.; Blösch, P.; Nishiwaki, S.; Buecheler, S.; Tiwari, A.N. Cu(In,Ga)Se2 thin-film solar cells and modules-A boost in efficiency due to potassium. IEEE J. Photovolt., 2015, 5(2), 656-663.
[http://dx.doi.org/10.1109/JPHOTOV.2014.2377516]
[37]
Makrides, G.; Zinsser, B.; Norton, M.; Georghiou, G.E.; Schubert, M.; Werner, J.H. Potential of photovoltaic systems in countries with high solar irradiation. Renew. Sustain. Energy Rev., 2010, 14(2), 754-762.
[http://dx.doi.org/10.1016/j.rser.2009.07.021]
[38]
Hadjipanayi, M.; Koumparou, I.; Philippou, N.; Paraskeva, V.; Phinikarides, A.; Makrides, G.; Efthymiou, V.; Georghiou, G. Prospects of photovoltaics in Southern European, Mediterranean and Middle East regions. Renew. Energy, 2016, 92, 58-74.
[http://dx.doi.org/10.1016/j.renene.2016.01.096]
[39]
Martins, F. PV sector in the European Union countries-clusters and efficiency. Renew. Sustain. Energy Rev., 2017, 74, 173-177.
[http://dx.doi.org/10.1016/j.rser.2017.02.026]
[40]
Castillo, C.P.; de Silva, F.B.; Lavalle, C. An assessment of the regional potential for solar power generation in EU-28. Energy Policy, 2016, 88, 86-99.
[http://dx.doi.org/10.1016/j.enpol.2015.10.004]
[41]
Whitlock, C.H.; Brown, D.E.; Chandler, W.S.; DiPasquale, R.C.; Meloche, N.; Leng, G.J.; Gupta, S.K.; Wilber, A.C.; Ritchey, N.A.; Carlson, A.B. Release 3 NASA surface meteorology and solar energy data set for renewable energy industry use. Proceedings of Rise and Shine, the 26th Annual Conference of the Solar Energy Society of Canada Inc. and Solar Nova Scotia, October 21-24, Halifax, Canada, 2000.
[42]
Paraskevadaki, E.V.; Papathanassiou, S.A. Evaluation of MPP voltage and power of mc-Si PV modules in partial shading conditions. IEEE Trans. Energ. Convers., 2011, 26(3), 923-932.
[http://dx.doi.org/10.1109/TEC.2011.2126021]
[43]
Lalwani, M.; Kothari, D.; Singh, M. Investigation of solar photovoltaic simulation softwares. Int. J. Appl. Eng. Res., 2010, 1(3), 585-601.
[44]
Hwang, T.; Kang, S.; Kim, J.T. Optimization of the building integrated photovoltaic system in office buildings-Focus on the orientation, inclined angle and installed area. Energy Build., 2012, 46, 92-104.
[http://dx.doi.org/10.1016/j.enbuild.2011.10.041]
[45]
Rhouma, M.B.; Gastli, A.; Brahim, L.B.; Touati, F.; Benammar, M. A simple method for extracting the parameters of the PV cell single-diode model. Renew. Energy, 2017, 113, 885-894.
[http://dx.doi.org/10.1016/j.renene.2017.06.064]
[46]
Belhaouas, N.; Cheikh, M-S.A.; Agathoklis, P.; Oularbi, M-R.; Amrouche, B.; Sedraoui, K.; Djilali, N. PV array power output maximization under partial shading using new shifted PV array arrangements. Appl. Energy, 2017, 187, 326-337.
[http://dx.doi.org/10.1016/j.apenergy.2016.11.038]
[47]
Koad, R.B.; Zobaa, A.F.; El-Shahat, A. A novel MPPT algorithm based on particle swarm optimization for photovoltaic systems. IEEE Trans. Sustain. Energy, 2017, 8(2), 468-476.
[http://dx.doi.org/10.1109/TSTE.2016.2606421]
[48]
Salmi, T.; Bouzguenda, M.; Gastli, A.; Masmoudi, A. Matlab/simulink based modeling of photovoltaic cell. IJRER, 2012, 2(2), 213-218.
[49]
Tsai, H-L.; Tu, C-S.; Su, Y-J. In Development of Generalized Photovoltaic Model using Matlab/Simulink. Proceedings of the World Congress on Engineering and Computer Science., San Francisco, USA 2008, pp. 1-6.
[50]
Ishaque, K.; Salam, Z. A comprehensive Matlab simulink PV system simulator with partial shading capability based on two-diode model. Sol. Energy, 2011, 85(9), 2217-2227.
[http://dx.doi.org/10.1016/j.solener.2011.06.008]
[51]
Chenni, R.; Makhlouf, M.; Kerbache, T.; Bouzid, A. A detailed modeling method for photovoltaic cells. Energy, 2007, 32(9), 1724-1730.
[http://dx.doi.org/10.1016/j.energy.2006.12.006]
[52]
Nema, S.; Nema, R.; Agnihotri, G. Matlab/simulink based study of photovoltaic cells/modules/array and their experimental verification. IJEE, 2010, 1(3), 487-500.
[53]
Bellia, H.; Youcef, R.; Fatima, M. A detailed modeling of photovoltaic module using Matlab. NRIAG-JAG, 2014, 3(1), 53-61.
[http://dx.doi.org/10.1016/j.nrjag.2014.04.001]
[54]
Rahim, N.A.; Ping, H.W.; Selvaraj, J. Photovoltaic module modeling using Simulink/Matlab. Procedia Environ. Sci., 2013, 17, 537-546.
[http://dx.doi.org/10.1016/j.proenv.2013.02.069]
[55]
Ma, T.; Yang, H.; Lu, L. Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays. Sol. Energy, 2014, 100, 31-41.
[http://dx.doi.org/10.1016/j.solener.2013.12.003]
[56]
Ikram, M.; Imran, M.; Nunzi, J.; Ali, S. Efficient inverted hybrid solar cells using both CuO and P3HT as an electron donor materials. J. Mater. Sci. Mater. Electron., 2015, 26(9), 6478-6483.
[http://dx.doi.org/10.1007/s10854-015-3239-1]
[57]
Najeeb, M.A.; Abdullah, S.M.; Aziz, F.; Azmer, M.I.; Swelm, W.; Al-Ghamdi, A.A.; Ahmad, Z.; Supangat, A.; Sulaiman, K. Improvement in the photovoltaic properties of hybrid solar cells by incorporating a QD-composite in the hole transport layer. RSC Advances, 2016, 6(27), 23048-23057.
[http://dx.doi.org/10.1039/C6RA01052K]
[58]
Fthenakis, V. Sustainability of photovoltaics: The case for thin-film solar cells. Renew. Sustain. Energy Rev., 2009, 13(9), 2746-2750.
[http://dx.doi.org/10.1016/j.rser.2009.05.001]
[59]
Chopra, K.; Paulson, P.; Dutta, V. Thin‐film solar cells: An overview. Prog. Photovolt. Res. Appl., 2004, 12(2‐3), 69-92.
[http://dx.doi.org/10.1002/pip.541]
[60]
Poortmans, J.; Arkhipov, V. Thin Film Solar Cells: Fabrication, Characterization and Applications; John Wiley & Sons, 2006, Vol. 5, .
[http://dx.doi.org/10.1002/0470091282]
[61]
Imran, M.; Ikram, M.; Dilpazir, S.; Nafees, M.; Ali, S.; Geng, J. Towards efficient and cost-effective inverted hybrid organic solar cells using inorganic semiconductor in the active layer. Appl. Nanosci., 2017, 7(8), 747-752.
[http://dx.doi.org/10.1007/s13204-017-0618-3]
[62]
Ikram, M.; Imran, M.; Nunzi, J.; Bobbara, S.; Ali, S. Islah-u-din. Efficient and low cost inverted hybrid bulk heterojunction solar cells. J. Renew. Sustain. Energy, 2015, 7(4)043148
[http://dx.doi.org/10.1063/1.4929603]
[63]
Zafar, Q.; Ahmad, Z.; Sulaiman, K. PFO-DBT:MEH-PPV:PC71BM ternary blend assisted platform as a photodetector. Sensors (Basel), 2015, 15(1), 965-978.
[http://dx.doi.org/10.3390/s150100965] [PMID: 25574936]
[64]
Ikram, M.; Niaz, N.; Khalid, N.; Ramzan, M.; Imran, M.; Ali, S. Tetra blended based hybrid bulk heterojunction solar cells. J. Ovonic Res., 2014, 10, 257.
[65]
Aziz, F.; Ahmad, Z.; Abdullah, S.; Sulaiman, K.; Sayyad, M. Photovoltaic effect in single-junction organic solar cell fabricated using vanadyl phthalocyanine soluble derivative. Pigm. Resin Technol., 2015, 44(1), 26-32.
[http://dx.doi.org/10.1108/PRT-01-2014-0006]
[66]
Zafar, Q.; Fatima, N.; Karimov, K.S.; Ahmed, M.M.; Sulaiman, K. Realizing broad-bandwidth visible wavelength photodiode based on solution-processed ZnPc/PC71BM dyad. Opt. Mater., 2017, 64, 131-136.
[http://dx.doi.org/10.1016/j.optmat.2016.12.001]
[67]
Ahmad, Z.; Abdullah, S.M.; Zafar, Q.; Sulaiman, K. Investigation of charge transport in organic polymer donor/acceptor photovoltaic materials. J. Mod. Opt., 2014, 61(21), 1730-1734.
[http://dx.doi.org/10.1080/09500340.2014.914596]
[68]
Najeeb, M.A.; Abdullah, S.M.; Aziz, F.; Ahmad, Z.; Shakoor, R.; Mohamed, A.; Khalil, U.; Swelm, W.; Al-Ghamdi, A.A.; Sulaiman, K. A comparative study on the performance of hybrid solar cells containing ZnSTe QDs in hole transporting layer and photoactive layer. J. Nanopart. Res., 2016, 18(12), 384.
[http://dx.doi.org/10.1007/s11051-016-3694-5]
[69]
Zafar, Q.; Ahmad, Z. Dual donor bulk-heterojunction to realize a quick and more sensitive organic visible photodector. J. Mater. Sci. Mater. Electron., 2018, 29, 11144.
[http://dx.doi.org/10.1007/s10854-018-9198-6]
[70]
Roslan, N.A.; Abdullah, S.M.; Majid, W.H.A.; Supangat, A. Investigation of VTP: PC71BM organic composite as highly responsive organic photodetector. Sens. Actuators A Phys., 2018, 279, 361-366.
[http://dx.doi.org/10.1016/j.sna.2018.06.044]
[71]
Abdullah, S.M.; Rafique, S.; Hamdan, K.S.; Sulaiman, K.; Taguchi, D.; Iwamoto, M. Mathematical modelling of degradation phenomena in organic solar cells under various fabrication conditions. Org. Electron., 2018, 58, 46-52.
[http://dx.doi.org/10.1016/j.orgel.2018.03.045]
[72]
Zafar, Q.; Najeeb, M.A.; Ahmad, Z.; Sulaiman, K. Organic–inorganic hybrid nanocomposite for enhanced photo-sensing of PFO-DBT: MEH-PPV: PC71BM blend-based photodetector. J. Nanopart. Res., 2015, 17(9), 372.
[http://dx.doi.org/10.1007/s11051-015-3155-6]
[73]
Zafar, Q.; Aziz, F.; Sulaiman, K. Eco-benign visible wavelength photodetector based on phthalocyanine-low bandgap copolymer composite blend. RSC Advances, 2016, 6(16), 13101-13109.
[http://dx.doi.org/10.1039/C5RA26081G]
[74]
Cuce, E.; Cuce, P.M.; Bali, T. An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters. Appl. Energy, 2013, 111, 374-382.
[http://dx.doi.org/10.1016/j.apenergy.2013.05.025]
[75]
Chegaar, M.; Hamzaoui, A.; Namoda, A.; Petit, P.; Aillerie, M.; Herguth, A. Effect of illumination intensity on solar cells parameters. Energy Procedia, 2013, 36, 722-729.
[http://dx.doi.org/10.1016/j.egypro.2013.07.084]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy