Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Spark Plasma Sintering of Hybrid Nanocomposites of Hydroxyapatite Reinforced with CNTs and SS316L for Biomedical Applications

Author(s): Muhammad Asif Hussain*, Adnan Maqbool*, Abbas Saeed Hakeem, Fazal Ahmad Khalid, Muhammad Asif Rafiq, Muhammad Shahzeb Khan, Muhammad Umer Farooq, Irfan Haider Abidi and Nabi Bakhsh

Volume 16, Issue 4, 2020

Page: [578 - 583] Pages: 6

DOI: 10.2174/1573413715666190130160253

Price: $65

Abstract

Background: The development of new bioimplants with enhanced mechanical and biomedical properties have great impetus for researchers in the field of biomaterials. Metallic materials such as stainless steel 316L (SS316L), applied for bioimplants are compatible to the human osteoblast cells and bear good toughness. However, they suffer by corrosion and their elastic moduli are very high than the application where they need to be used. On the other hand, ceramics such as hydroxyapatite (HAP), is biocompatible as well as bioactive material and helps in bone grafting during the course of bone recovery, it has the inherent brittle nature and low fracture toughness. Therefore, to overcome these issues, a hybrid combination of HAP, SS316L and carbon nanotubes (CNTs) has been synthesized and characterized in the present investigation.

Methods: CNTs were acid treated to functionalize their surface and cleaned prior their addition to the composites. The mixing of nano-hydroxyapatite (HAPn), SS316L and CNTs was carried out by nitrogen gas purging followed by the ball milling to insure the homogeneous mixing of the powders. In three compositions, monolithic HAPn, nanocomposites of CNTs reinforced HAPn, and hybrid nanocomposites of CNTs and SS316L reinforced HAPn has been fabricated by spark plasma sintering (SPS) technique.

Results: SEM analysis of SPS samples showed enhanced sintering of HAP-CNT nanocomposites, which also showed significant sintering behavior when combined with SS316L. Good densification was achieved in the nanocomposites. No phase change was observed for HAP at relatively higher sintering temperatures (1100°C) of SPS and tricalcium phosphate phase was not detected by XRD analysis. This represents the characteristic advantage with enhanced sintering behavior by SPS technique. Fracture toughness was found to increase with the addition of CNTs and SS316L in HAPn, while hardness initially enhanced with the addition of nonreinforcement (CNTs) in HAPn and then decrease for HAPn-CNT-SS316L hybrid nanocomposites due to presence of SS316L.

Conclusions: A homogeneous distribution of CNTs and SPS technique resulted in the improved mechanical properties for HAPn-CNT-SS316L hybrid nanocomposites than other composites and suggested their application as bioimplant materials.

Keywords: Hydroxyapatite, carbon nanotubes, SS316L, hybrid nanocomposites, spark plasma sintering, fracture toughness, bioimplants.

Graphical Abstract
[1]
Paital, S.R.; Dahotre, N.B. Calcium phosphate coatings for bioimplant applications: Materials, performance factors, and methodologies. Mater. Sci. Eng. Rep., 2009, 66, 1-70.
[http://dx.doi.org/10.1016/j.mser.2009.05.001]
[2]
Ananth, K.P.; Sun, J.; Bai, J. An innovative approach to manganese-substituted hydroxyapatite coating on zinc oxide–coated 316L SS for implant application. Int. J. Mol. Sci., 2018, 19(8), 2340.
[http://dx.doi.org/10.3390/ijms19082340] [PMID: 30096888]
[3]
Gnanavel, S.; Ponnusamy, S.; Mohan, L.; Muthamizhchelvan, C. In vitro corrosion behaviour of Ti–6Al–4V and 316L stainless steel alloys for biomedical implant applications. J. Bio. Tribo. Corros., 2018, 4, 1.
[http://dx.doi.org/10.1007/s40735-017-0118-8]
[4]
Monmaturapoj, N. Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route. J. Met. Mater. Miner., 2017, 18, 15-20.
[5]
Monmaturapoj, N.; Yatongchai, C. Effect of sintering on microstructure and properties of hydroxyapatite produced by different synthesizing methods. J. Met. Mater. Miner., 2017, 20, 53-61.
[6]
Sun, F.; Zhou, H.; Lee, J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater., 2011, 7(11), 3813-3828.
[http://dx.doi.org/10.1016/j.actbio.2011.07.002] [PMID: 21784182]
[7]
Ramesh, N.; Moratti, S.C.; Dias, G.J. Hydroxyapatite-polymer biocomposites for bone regeneration: A review of current trends. J. Biomed. Mater. Res. B Appl. Biomater., 2018, 106(5), 2046-2057.
[http://dx.doi.org/10.1002/jbm.b.33950] [PMID: 28650094]
[8]
Zhu, J.; Wong, H.M.; Yeung, K.W.K.; Tjong, S.C. Spark plasma sintered hydroxyapatite/graphite nanosheet and hydroxyapatite/multiwalled carbon nanotube composites: Mechanical and in vitro cellular properties. Adv. Eng. Mater., 2011, 13, 336-341.
[http://dx.doi.org/10.1002/adem.201000300]
[9]
Huang, B.; Caetano, G.; Vyas, C.; Blaker, J.J.; Diver, C.; Bártolo, P. Polymer-ceramic composite scaffolds: The effect of hydroxyapatite and β-tri-calcium phosphate. Materials (Basel), 2018, 11(1)E129
[http://dx.doi.org/10.3390/ma11010129] [PMID: 29342890]
[10]
Aryal, S.; Bahadur, K.R.; Dharmaraj, N.; Kim, K-W.; Kim, H.Y. Synthesis and characterization of hydroxyapatite using carbon nanotubes as a nano-matrix. Scr. Mater., 2006, 54, 131-135.
[http://dx.doi.org/10.1016/j.scriptamat.2005.09.050]
[11]
Grossin, D.; Rollin-Martinet, S.; Estournès, C.; Rossignol, F.; Champion, E.; Combes, C.; Rey, C.; Geoffroy, C.; Drouet, C. Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects. Acta Biomater., 2010, 6(2), 577-585.
[http://dx.doi.org/10.1016/j.actbio.2009.08.021] [PMID: 19686872]
[12]
Ahmed, B.A.; Hakeem, A.S.; Laoui, T.; Khan, R.M.A.; Al Malki, M.M.; Ul-Hamid, A.; Khalid, F.A.; Bakhsh, N. Effect of precursor size on the structure and mechanical properties of calcium-stabilized sialon/cubic boron nitride nanocomposites. J. Alloys Compd., 2017, 728, 836-843.
[http://dx.doi.org/10.1016/j.jallcom.2017.09.032]
[13]
Maqbool, A.; Hussain, M.A.; Khalid, F.A.; Bakhsh, N.; Hussain, A.; Kim, M.H. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites. Mater. Charact., 2013, 86, 39-48.
[http://dx.doi.org/10.1016/j.matchar.2013.09.006]
[14]
Srikanth, I.; Padmavathi, N.; Kumar, S.; Ghosal, P.; Kumar, A.; Subrahmanyam, C. Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos. Sci. Technol., 2013, 80, 1-7.
[http://dx.doi.org/10.1016/j.compscitech.2013.03.005]
[15]
Bakhsh, N.; Khalid, F.A.; Hakeem, A.S. Synthesis and characterization of pressureless sintered carbon nanotube reinforced alumina nanocomposites. Mater. Sci. Eng. A, 2013, 578, 422-429.
[http://dx.doi.org/10.1016/j.msea.2013.04.020]
[16]
Durairaj, R.; Chereyala, M.; Mageshwaran, G.; Jeevahan, J. Surface roughness and corrosion characterisation of multi-walled carbon-nanotube-reinforced zirconium composite coated over SS316L. Int. J. Amb. Energ., 2018, 39, 54-57.
[http://dx.doi.org/10.1080/01430750.2016.1237891]
[17]
Ferreira, T.; Vieira, M. MWCNT reinforced SS 316L matrix composites. Adv. Mater. Process. Technol., 2017, 3, 640-650.
[18]
Zhang, F.; Weidmann, A.; Nebe, J.B.; Burkel, E. Osteoblast cell response to surface-modified carbon nanotubes. Mater. Sci. Eng. C, 2012, 32, 1057-1061.
[http://dx.doi.org/10.1016/j.msec.2010.07.007]
[19]
Mahanthesha, P.; Mohankumar, G. Microstructure and mechanical properties of nickel coated multi walled carbon nanotube reinforced stainless steel 316L matrix composites by laser sintering process. First International Conference on Design, Materials and Manufacture., Karnataka, India January 29-31, 2018 AIP Conference Proceedings AIP Publishing. 2018, p. 020098.
[http://dx.doi.org/10.1063/1.5029674]
[20]
Wang, W.; Zhu, Y.; Watari, F.; Liao, S.; Yokoyama, A.; Omori, M.; Ai, H.; Cui, F. Carbon nanotubes/hydroxyapatite nanocomposites fabricated by spark plasma sintering for bonegraft applications. Appl. Surf. Sci., 2012, 262, 194-199.
[http://dx.doi.org/10.1016/j.apsusc.2012.04.142]
[21]
Lahiri, D.; Singh, V.; Keshri, A.K.; Seal, S.; Agarwal, A. Carbon nanotube toughened hydroxyapatite by spark plasma sintering: Microstructural evolution and multiscale tribological properties. Carbon, 2010, 48, 3103-3120.
[http://dx.doi.org/10.1016/j.carbon.2010.04.047]
[22]
Kalmodia, S.; Goenka, S.; Laha, T.; Lahiri, D.; Basu, B.; Balani, K. Microstructure, mechanical properties, and in vitro biocompatibility of spark plasma sintered hydroxyapatite–aluminum oxide-carbon nanotube composite. Mater. Sci. Eng. C, 2010, 30, 1162-1169.
[http://dx.doi.org/10.1016/j.msec.2010.06.009]
[23]
Sun, L.; Berndt, C.C.; Khor, K.A.; Cheang, H.N.; Gross, K.A. Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating. J. Biomed. Mater. Res., 2002, 62(2), 228-236.
[http://dx.doi.org/10.1002/jbm.10315] [PMID: 12209943]
[24]
Akmal, M.; Khalid, F.A.; Hussain, M.A. Interfacial diffusion reaction and mechanical characterization of 316L stainless steel hydroxyapatite functionally graded materials for joint prostheses. Ceram. Int., 2015, 41, 14458-14467.
[http://dx.doi.org/10.1016/j.ceramint.2015.07.082]
[25]
Maqbool, A.; Khalid, F.A.; Hussain, M.A.; Bakhsh, N. Synthesis of copper coated carbon nanotubes for aluminium matrix composites. IOP Conf. Ser. Mater. Sci. Eng., 2014, 60, 012040
[http://dx.doi.org/10.1088/1757-899X/60/1/012040]
[26]
Mishina, H.; Inumaru, Y.; Kaitoku, K. Fabrication of ZrO2/AISI316L functionally graded materials for joint prostheses. Mater. Sci. Eng. A, 2008, 475, 141-147.
[http://dx.doi.org/10.1016/j.msea.2007.05.004]
[27]
Yoshida, K.; Mishina, H.; Sasaki, S.; Morita, M.; Mabuchi, K. Development of 3Y-PSZ/AISI 316L composites for joint prostheses. Mater. Trans., 2004, 45, 3209-3215.
[http://dx.doi.org/10.2320/matertrans.45.3209]
[28]
Yoshida, K.; Mishina, H.; Sasaki, S.; Morita, M.; Mabuchi, K. Mechanical properties of titanium cermets for joint prostheses. Mater. Trans., 2006, 47, 418-425.
[http://dx.doi.org/10.2320/matertrans.47.418]
[29]
Akasaka, T.; Watari, F.; Sato, Y.; Tohji, K. Apatite formation on carbon nanotubes. Mater. Sci. Eng. C, 2006, 26, 675-678.
[http://dx.doi.org/10.1016/j.msec.2005.03.009]
[30]
Pulskamp, K.; Diabaté, S.; Krug, H.F. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett., 2007, 168(1), 58-74.
[http://dx.doi.org/10.1016/j.toxlet.2006.11.001] [PMID: 17141434]
[31]
Liu, Z.; Xu, S.; Xiao, B.; Xue, P.; Wang, W.; Ma, Z. Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Compos., Part A Appl. Sci. Manuf., 2012, 43, 2161-2168.
[http://dx.doi.org/10.1016/j.compositesa.2012.07.026]
[32]
Ahmed, B.; Hakeem, A.S.; Laoui, T.; Al Malki, M.; Ehsan, M.; Ali, S. Low-temperature spark plasma sintering of calcium stabilized alpha sialon using nano-size aluminum nitride precursor. Int. J. Refract. Met. Hard Mater., 2018, 71, 301-306.
[http://dx.doi.org/10.1016/j.ijrmhm.2017.11.009]
[33]
Munir, Z.; Anselmi-Tamburini, U.; Ohyanagi, M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci., 2006, 41, 763-777.
[http://dx.doi.org/10.1007/s10853-006-6555-2]
[34]
Hussain, M.A.; Maqbool, A.; Khalid, F.A.; Farooq, M.U.; Abidi, I.H.; Bakhsh, N.; Amin, W.; Kim, J.Y. Improved sinterability of hydroxyapatite functionally graded materials strengthened with SS316L and CNTs fabricated by pressureless sintering. Ceram. Int., 2015, 41, 10125-10132.
[http://dx.doi.org/10.1016/j.ceramint.2015.04.110]
[35]
Ataollahi Oshkour, A.; Pramanik, S.; Mehrali, M.; Yau, Y.H.; Tarlochan, F.; Abu Osman, N.A. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite. J. Mech. Behav. Biomed. Mater., 2015, 49, 321-331.
[http://dx.doi.org/10.1016/j.jmbbm.2015.05.020] [PMID: 26072197]
[36]
Muralithran, G.; Ramesh, S. The effects of sintering temperature on the properties of hydroxyapatite. Ceram. Int., 2000, 26, 221-230.
[http://dx.doi.org/10.1016/S0272-8842(99)00046-2]
[37]
Hussain, M.A.; Maqbool, A.; Khalid, F.A.; Bakhsh, N.; Hussain, A.; Rahman, J.U.; Park, J.K.; Park, T.G.; Hyun, L.J.; Kim, M.H. Mechanical properties of CNT reinforced hybrid functionally graded materials for bioimplants. Trans. Nonferrous Met. Soc. China, 2014, 24, s90-s98.
[http://dx.doi.org/10.1016/S1003-6326(14)63293-3]
[38]
White, A.A.; Best, S.M.; Kinloch, I.A. Hydroxyapatite–carbon nanotube composites for biomedical applications: A review. Int. J. Appl. Ceram. Technol., 2007, 4, 1-13.
[http://dx.doi.org/10.1111/j.1744-7402.2007.02113.x]
[39]
Balani, K.; Anderson, R.; Laha, T.; Andara, M.; Tercero, J.; Crumpler, E.; Agarwal, A. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials, 2007, 28(4), 618-624.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.013] [PMID: 17007921]
[40]
Kumar, A.; Biswas, K.; Basu, B. On the toughness enhancement in hydroxyapatite-based composites. Acta Mater., 2013, 61, 5198-5215.
[http://dx.doi.org/10.1016/j.actamat.2013.05.013]
[41]
Miao, X.; Ruys, A.J.; Milthorpe, B.K. Hydroxyapatite-316L fibre composites prepared by vibration assisted slip casting. J. Mater. Sci., 2001, 36, 3323-3332.
[http://dx.doi.org/10.1023/A:1017915226015]
[42]
Cheng, J.; Zheng, Y.F. In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering. J. Biomed. Mater. Res. B Appl. Biomater., 2013, 101(4), 485-497.
[http://dx.doi.org/10.1002/jbm.b.32783] [PMID: 23359385]
[43]
Ahmad, K.; Pan, W. Microstructure-toughening relation in alumina based multiwall carbon nanotube ceramic composites. J. Eur. Ceram. Soc., 2015, 35, 663-671.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2014.08.044]
[44]
Mo, C.B.; Cha, S.I.; Kim, K.T.; Lee, K.H.; Hong, S.H. Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol–gel process. Mater. Sci. Eng. A, 2005, 395, 124-128.
[http://dx.doi.org/10.1016/j.msea.2004.12.031]
[45]
Nie, X.; Leyland, A.; Matthews, A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf. Coat. Tech., 2000, 125, 407-414.
[http://dx.doi.org/10.1016/S0257-8972(99)00612-X]
[46]
Bahraminasab, M.; Ghaffari, S.; Eslami-Shahed, H. Al2O3-Ti functionally graded material prepared by spark plasma sintering for orthopaedic applications. J. Mech. Behav. Biomed. Mater., 2017, 72, 82-89.
[http://dx.doi.org/10.1016/j.jmbbm.2017.04.024] [PMID: 28463814]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy