Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

The Biotin Biosynthetic Pathway in Mycobacterium tuberculosis is a Validated Target for the Development of Antibacterial Agents

Author(s): Matthew R. Bockman, Neeraj Mishra and Courtney C. Aldrich*

Volume 27, Issue 25, 2020

Page: [4194 - 4232] Pages: 39

DOI: 10.2174/0929867326666190119161551

Price: $65

Abstract

Mycobacterium tuberculosis, responsible for Tuberculosis (TB), remains the leading cause of mortality among infectious diseases worldwide from a single infectious agent, with an estimated 1.7 million deaths in 2016. Biotin is an essential cofactor in M. tuberculosis that is required for lipid biosynthesis and gluconeogenesis. M. tuberculosis relies on de novo biotin biosynthesis to obtain this vital cofactor since it cannot scavenge sufficient biotin from a mammalian host. The biotin biosynthetic pathway in M. tuberculosis has been well studied and rigorously genetically validated providing a solid foundation for medicinal chemistry efforts. This review examines the mechanism and structure of the enzymes involved in biotin biosynthesis and ligation, summarizes the reported genetic validation studies of the pathway, and then analyzes the most promising inhibitors and natural products obtained from structure-based drug design and phenotypic screening.

Keywords: Tuberculosis, infectious disease, Mycobacterium tuberculosis, biotin, biosynthesis, enzymology, antibiotics.

[1]
Brosch, R.; Pym, A.S.; Gordon, S.V.; Cole, S.T. The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol., 2001, 9(9), 452-458.
[http://dx.doi.org/10.1016/S0966-842X(01)02131-X] [PMID: 11553458]
[2]
Brosch, R.; Gordon, S.V.; Marmiesse, M.; Brodin, P.; Buchrieser, C.; Eiglmeier, K.; Garnier, T.; Gutierrez, C.; Hewinson, G.; Kremer, K.; Parsons, L.M.; Pym, A.S.; Samper, S.; van Soolingen, D.; Cole, S.T. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. USA, 2002, 99(6), 3684-3689.
[http://dx.doi.org/10.1073/pnas.052548299] [PMID: 11891304]
[3]
Comas, I.; Coscolla, M.; Luo, T.; Borrell, S.; Holt, K.E.; Kato-Maeda, M.; Parkhill, J.; Malla, B.; Berg, S.; Thwaites, G.; Yeboah-Manu, D.; Bothamley, G.; Mei, J.; Wei, L.; Bentley, S.; Harris, S.R.; Niemann, S.; Diel, R.; Aseffa, A.; Gao, Q.; Young, D.; Gagneux, S. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet., 2013, 45(10), 1176-1182.
[http://dx.doi.org/10.1038/ng.2744] [PMID: 23995134]
[4]
Merker, M.; Blin, C.; Mona, S.; Duforet-Frebourg, N.; Lecher, S.; Willery, E.; Blum, M.G.; Rüsch-Gerdes, S.; Mokrousov, I.; Aleksic, E.; Allix-Béguec, C.; Antierens, A.; Augustynowicz-Kopeć, E.; Ballif, M.; Barletta, F.; Beck, H.P.; Barry, C.E., III; Bonnet, M.; Borroni, E.; Campos-Herrero, I.; Cirillo, D.; Cox, H.; Crowe, S.; Crudu, V.; Diel, R.; Drobniewski, F.; Fauville-Dufaux, M.; Gagneux, S.; Ghebremichael, S.; Hanekom, M.; Hoffner, S.; Jiao, W.W.; Kalon, S.; Kohl, T.A.; Kontsevaya, I.; Lillebæk, T.; Maeda, S.; Nikolayevskyy, V.; Rasmussen, M.; Rastogi, N.; Samper, S.; Sanchez-Padilla, E.; Savic, B.; Shamputa, I.C.; Shen, A.; Sng, L.H.; Stakenas, P.; Toit, K.; Varaine, F.; Vukovic, D.; Wahl, C.; Warren, R.; Supply, P.; Niemann, S.; Wirth, T. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat. Genet., 2015, 47(3), 242-249.
[http://dx.doi.org/10.1038/ng.3195] [PMID: 25599400]
[5]
Organization, W.H. Organization W.H. Global tuberculosis report 2018, Global tuberculosis report 2017, 2017.
[6]
Horsburgh, C.R., Jr; Barry, C.E., III; Lange, C. Treatment of Tuberculosis. N. Engl. J. Med., 2015, 373(22), 2149-2160.
[http://dx.doi.org/10.1056/NEJMra1413919] [PMID: 26605929]
[7]
Luciani, F.; Sisson, S.A.; Jiang, H.; Francis, A.R.; Tanaka, M.M. The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2009, 106(34), 14711-14715.
[http://dx.doi.org/10.1073/pnas.0902437106] [PMID: 19706556]
[8]
Udwadia, Z.; Vendoti, D. Totally drug-resistant tuberculosis (TDR-TB) in India: every dark cloud has a silver lining. J. Epidemiol. Community Health, 2013, 67(6), 471-472.
[http://dx.doi.org/10.1136/jech-2012-201640] [PMID: 23155059]
[9]
Palomino, J.C.; Martin, A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel), 2014, 3(3), 317-340.
[http://dx.doi.org/10.3390/antibiotics3030317] [PMID: 27025748]
[10]
Prada-Medina, C.A.; Fukutani, K.F.; Pavan Kumar, N.; Gil-Santana, L.; Babu, S.; Lichtenstein, F.; West, K.; Sivakumar, S.; Menon, P.A.; Viswanathan, V.; Andrade, B.B.; Nakaya, H.I.; Kornfeld, H. Systems immunology of diabetes-tuberculosis comorbidity reveals signatures of disease complications. Sci. Rep., 2017, 7(1), 1999.
[http://dx.doi.org/10.1038/s41598-017-01767-4] [PMID: 28515464]
[11]
Demissie, M.; Lemma, E.; Gebeyehu, M.; Lindtjorn, B. Sensitivity to anti-tuberculosis drugs in HIV-positive and -negative patients in Addis Ababa. Scand. J. Infect. Dis., 2001, 33(12), 914-919.
[http://dx.doi.org/10.1080/00365540110076822] [PMID: 11868765]
[12]
McIlleron, H.; Meintjes, G.; Burman, W.J.; Maartens, G. Complications of antiretroviral therapy in patients with tuberculosis: drug interactions, toxicity, and immune reconstitution inflammatory syndrome. J. Infect. Dis., 2007, 196(Suppl. 1), S63-S75.
[http://dx.doi.org/10.1086/518655] [PMID: 17624828]
[13]
Rodrigues, L.C.; Mangtani, P.; Abubakar, I. How does the level of BCG vaccine protection against tuberculosis fall over time? BMJ, 2011, 343, d5974.
[http://dx.doi.org/10.1136/bmj.d5974] [PMID: 21964347]
[14]
Roy, A.; Eisenhut, M.; Harris, R.J.; Rodrigues, L.C.; Sridhar, S.; Habermann, S.; Snell, L.; Mangtani, P.; Adetifa, I.; Lalvani, A.; Abubakar, I. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ, 2014, 349, g4643.
[http://dx.doi.org/10.1136/bmj.g4643] [PMID: 25097193]
[15]
Knight, G.M.; Griffiths, U.K.; Sumner, T.; Laurence, Y.V.; Gheorghe, A.; Vassall, A.; Glaziou, P.; White, R.G. Impact and cost-effectiveness of new tuberculosis vaccines in low and middle-income countries. Proc. Natl. Acad. Sci. USA, 2014, 111(43), 15520-15525.
[http://dx.doi.org/10.1073/pnas.1404386111] [PMID: 25288770]
[16]
Sandhu, G.K. Tuberculosis: current situation, challenges and overview of its control programs in India. J. Glob. Infect. Dis., 2011, 3(2), 143-150.
[http://dx.doi.org/10.4103/0974-777X.81691] [PMID: 21731301]
[17]
Sekaggya-Wiltshire, C.; von Braun, A.; Lamorde, M.; Ledergerber, B.; Buzibye, A.; Henning, L.; Musaazi, J.; Gutteck, U.; Denti, P.; de Kock, M.; Jetter, A.; Byakika-Kibwika, P.; Eberhard, N.; Matovu, J.; Joloba, M.; Muller, D.; Manabe, Y.C.; Kamya, M.R.; Corti, N.; Kambugu, A.; Castelnuovo, B.; Fehr, J.S. Delayed sputum conversion in TB-HIV co-infected patients with low isoniazid and rifampicin concentrations. Clin. Infect. Dis., 2018.
[http://dx.doi.org/10.1093/cid/ciy179]
[18]
Volmink, J.; Garner, P. Directly observed therapy for treating tuberculosis. Cochrane Database Syst. Rev., 2007, (4)CD003343
[PMID: 17943789]
[19]
Organization, W.H. WHO treatment guidelines for drug resistant tuberculosis; World Health Organization, 2016.
[20]
Klopper, M.; Warren, R.M.; Hayes, C.; Gey van Pittius, N.C.; Streicher, E.M.; Müller, B.; Sirgel, F.A.; Chabula-Nxiweni, M.; Hoosain, E.; Coetzee, G.; David van Helden, P.; Victor, T.C.; Trollip, A.P. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg. Infect. Dis., 2013, 19(3), 449-455.
[http://dx.doi.org/10.3201/eid1903.120246] [PMID: 23622714]
[21]
Raviglione, M. XDR-TB: entering the post-antibiotic era? Int. J. Tuberc. Lung Dis., 2006, 10(11), 1185-1187.
[PMID: 17131774]
[22]
Mahajan, R. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int. J. Appl. Basic Med. Res., 2013, 3(1), 1-2.
[http://dx.doi.org/10.4103/2229-516X.112228] [PMID: 23776831]
[23]
Cox, E.; Laessig, K. FDA approval of bedaquiline--the benefit-risk balance for drug-resistant tuberculosis. N. Engl. J. Med., 2014, 371(8), 689-691.
[http://dx.doi.org/10.1056/NEJMp1314385] [PMID: 25140952]
[24]
Diacon, A.H.; Donald, P.R.; Pym, A.; Grobusch, M.; Patientia, R.F.; Mahanyele, R.; Bantubani, N.; Narasimooloo, R.; De Marez, T.; van Heeswijk, R.; Lounis, N.; Meyvisch, P.; Andries, K.; McNeeley, D.F. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug-resistant tuberculosis: long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob. Agents Chemother., 2012, 56(6), 3271-3276.
[http://dx.doi.org/10.1128/AAC.06126-11] [PMID: 22391540]
[25]
Fox, G.J.; Menzies, D. A review of the evidence for using bedaquiline (TMC207) to treat multi-drug resistant tuberculosis. Infect. Dis. Ther., 2013, 2(2), 123-144.
[http://dx.doi.org/10.1007/s40121-013-0009-3] [PMID: 25134476]
[26]
Ryan, N.J.; Lo, J.H. Delamanid: first global approval. Drugs, 2014, 74(9), 1041-1045.
[http://dx.doi.org/10.1007/s40265-014-0241-5] [PMID: 24923253]
[27]
Gillespie, S.H. Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob. Agents Chemother., 2002, 46(2), 267-274.
[http://dx.doi.org/10.1128/AAC.46.2.267-274.2002] [PMID: 11796329]
[28]
Cohen, K.A.; Bishai, W.R.; Pym, A.S. Molecular basis of drug resistance in Mycobacterium tuberculosis. Microbiol. Spectr., 2014, 2(3)
[http://dx.doi.org/10.1128/microbiolspec.MGM2-0036-2013]] [PMID: 26103975]
[29]
Koul, A.; Arnoult, E.; Lounis, N.; Guillemont, J.; Andries, K. The challenge of new drug discovery for tuberculosis. Nature, 2011, 469(7331), 483-490.
[http://dx.doi.org/10.1038/nature09657] [PMID: 21270886]
[30]
Wildiers, E. Nouvelle substance indispensable au developpement de la levure. Cellule, 1901, 18, 313-316.
[31]
Miller, W.L.; Eastcott, E.V.; Maconachie, J.E. Wildiers’ bios - The fractionation of bios from yeast. J. Am. Chem. Soc., 1933, 55, 1502-1517.
[http://dx.doi.org/10.1021/ja01331a030]
[32]
Allison, F.E.; Hoover, S.R. An accessory factor for legume nodule bacteria: I. sources and activity. J. Bacteriol., 1934, 27(6), 561-581.
[http://dx.doi.org/10.1128/JB.27.6.561-581.1934] [PMID: 16559721]
[33]
Boas, M.A. The effect of desiccation upon the nutritive properties of egg-white. Biochem. J., 1927, 21(3), 712-724.1.
[http://dx.doi.org/10.1042/bj0210712]
[34]
György, P. The curative factor (vitamin H) for egg white injury, with particular reference to its presence in different foodstuffs and in yeast. J. Biol. Chem., 1939, 131(2), 733-744.
[35]
Kögl, F.; Tönnis, B. Über das Bios-Problem. Darstellung von kristallinem Biotin aus Eigelb. Hoppe Seylers Z. Physiol. Chem., 1936, 43, 242-273.
[http://dx.doi.org/10.1515/bchm2.1936.242.1-2.43]]
[36]
Hofmann, K.; Melville, D.B.; du Vigneaud, V. Characterization of the functional groups of biotin. J. Biol. Chem., 1941, 141, 207-214.
[37]
Melville, D.B.; Moyer, A.W.; Hofmann, K.; du Vigneaud, V. The structure of biotin: The formation of thiophenevaleric acid from biotin. J. Biol. Chem., 1942, 146, 487-492.
[38]
D.U, Vigneaud V.; Melville, D.B.; György, P.; Rose, C.S. V.; Melville, D.B.; György, P.; Rose, C.S. V.; Melville, D.B.; György, P.; Rose, C.S. On the identity of vitamin H with biotin. Science, 1940, 92(2377), 62-63.
[http://dx.doi.org/10.1126/science.92.2377.62] [PMID: 17831766]
[39]
Lynen, F. The role of biotin-dependent carboxylations in biosynthetic reactions. Biochem. J., 1967, 102(2), 381-400.
[http://dx.doi.org/10.1042/bj1020381] [PMID: 5339763]
[40]
Knowles, J.R. The mechanism of biotin-dependent enzymes. Annu. Rev. Biochem., 1989, 58, 195-221.
[http://dx.doi.org/10.1146/annurev.bi.58.070189.001211] [PMID: 2673009]
[41]
Jitrapakdee, S.; Wallace, J.C. The biotin enzyme family: conserved structural motifs and domain rearrangements. Curr. Protein Pept. Sci., 2003, 4(3), 217-229.
[http://dx.doi.org/10.2174/1389203033487199] [PMID: 12769720]
[42]
Roje, S. Vitamin B biosynthesis in plants. Phytochemistry, 2007, 68(14), 1904-1921.
[http://dx.doi.org/10.1016/j.phytochem.2007.03.038] [PMID: 17512961]
[43]
Zempleni, J.; Wijeratne, S.S.; Hassan, Y.I. Biotin. Biofactors, 2009, 35(1), 36-46.
[http://dx.doi.org/10.1002/biof.8] [PMID: 19319844]
[44]
Zempleni, J. Uptake, localization, and noncarboxylase roles of biotin. Annu. Rev. Nutr., 2005, 25, 175-196.
[http://dx.doi.org/10.1146/annurev.nutr.25.121304.131724] [PMID: 16011464]
[45]
Said, H.M. Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 305(9), G601-G610.
[http://dx.doi.org/10.1152/ajpgi.00231.2013] [PMID: 23989008]
[46]
Stolz, J. Isolation and characterization of the plasma membrane biotin transporter from Schizosaccharomyces pombe. Yeast, 2003, 20(3), 221-231.
[http://dx.doi.org/10.1002/yea.959] [PMID: 12557275]
[47]
Hebbeln, P.; Rodionov, D.A.; Alfandega, A.; Eitinger, T. Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module. Proc. Natl. Acad. Sci. USA, 2007, 104(8), 2909-2914.
[http://dx.doi.org/10.1073/pnas.0609905104] [PMID: 17301237]
[48]
Rodionov, D.A.; Hebbeln, P.; Eudes, A.; ter Beek, J.; Rodionova, I.A.; Erkens, G.B.; Slotboom, D.J.; Gelfand, M.S.; Osterman, A.L.; Hanson, A.D.; Eitinger, T. A novel class of modular transporters for vitamins in prokaryotes. J. Bacteriol., 2009, 191(1), 42-51.
[http://dx.doi.org/10.1128/JB.01208-08] [PMID: 18931129]
[49]
Pai, C.H. Mutant of Escherichia coli with derepressed levels of the biotin biosynthetic enzymes. J. Bacteriol., 1972, 112(3), 1280-1287.
[http://dx.doi.org/10.1128/JB.112.3.1280-1287.1972] [PMID: 4565539]
[50]
Cicmanec, J.F.; Lichstein, H.C. Uptake of extracellular biotin by Escherichia coli biotin prototrophs. J. Bacteriol., 1978, 133(1), 270-278.
[http://dx.doi.org/10.1128/JB.133.1.270-278.1978] [PMID: 338581]
[51]
Piffeteau, A.; Gaudry, M. Biotin uptake: influx, efflux and countertransport in Escherichia coli K12. Biochim. Biophys. Acta, 1985, 816(1), 77-82.
[http://dx.doi.org/10.1016/0005-2736(85)90395-5] [PMID: 3890946]
[52]
Kondo, H.; Kazuta, Y.; Goto, T. Search for a microbial biotin transporter. Biofactors, 2000, 11(1-2), 101-102.
[http://dx.doi.org/10.1002/biof.5520110129] [PMID: 10705974]
[53]
Walker, J.R.; Altman, E. Biotinylation facilitates the uptake of large peptides by Escherichia coli and other gram negative bacteria. Appl. Environ. Microbiol., 2005, 71(4), 1850-1855.
[http://dx.doi.org/10.1128/AEM.71.4.1850-1855.2005] [PMID: 15812011]
[54]
Finkenwirth, F.; Kirsch, F.; Eitinger, T. A versatile Escherichia coli strain for identification of biotin transporters and for biotin quantification. Bioengineered, 2014, 5(2), 129-132.
[http://dx.doi.org/10.4161/bioe.26887] [PMID: 24256712]
[55]
Baker, H.; Frank, O.; Matovitch, V.B.; Pasher, I.; Aaronson, S.; Hutner, S.H.; Sobotka, H. A new assay method for biotin in blood, serum, urine, and tissues. Anal. Biochem., 1962, 3, 31-39.
[http://dx.doi.org/10.1016/0003-2697(62)90041-6] [PMID: 13864137]
[56]
Sanghvi, R.S.; Lemons, R.M.; Baker, H.; Thoene, J.G. A simple method for determination of plasma and urinary biotin. Clin. Chim. Acta, 1982, 124(1), 85-90.
[http://dx.doi.org/10.1016/0009-8981(82)90322-9] [PMID: 7127840]
[57]
Mock, D.M.; Malik, M.I. Distribution of biotin in human plasma: most of the biotin is not bound to protein. Am. J. Clin. Nutr., 1992, 56(2), 427-432.
[http://dx.doi.org/10.1093/ajcn/56.2.427] [PMID: 1636621]
[58]
Lin, S.; Hanson, R.E.; Cronan, J.E. Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat. Chem. Biol., 2010, 6(9), 682-688.
[http://dx.doi.org/10.1038/nchembio.420] [PMID: 20693992]
[59]
Lin, S.; Cronan, J.E. Closing in on complete pathways of biotin biosynthesis. Mol. Biosyst., 2011, 7(6), 1811-1821.
[http://dx.doi.org/10.1039/c1mb05022b] [PMID: 21437340]
[60]
Rolfe, B.; Eisenberg, M.A. Genetic and biochemical analysis of the biotin loci of Escherichia coli K-12. J. Bacteriol., 1968, 96(2), 515-524.
[http://dx.doi.org/10.1128/JB.96.2.515-524.1968] [PMID: 4877129]
[61]
Cleary, P.P.; Campbell, A. Deletion and complementation analysis of biotin gene cluster of Escherichia coli. J. Bacteriol., 1972, 112(2), 830-839.
[http://dx.doi.org/10.1128/JB.112.2.830-839.1972] [PMID: 4563978]
[62]
Dey, S.; Lane, J.M.; Lee, R.E.; Rubin, E.J.; Sacchettini, J.C. Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase. Biochemistry, 2010, 49(31), 6746-6760.
[http://dx.doi.org/10.1021/bi902097j] [PMID: 20565114]
[63]
Bower, S.; Perkins, J.B.; Yocum, R.R.; Howitt, C.L.; Rahaim, P.; Pero, J. Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J. Bacteriol., 1996, 178(14), 4122-4130.
[http://dx.doi.org/10.1128/JB.178.14.4122-4130.1996] [PMID: 8763940]
[64]
Harrison, F.H.; Harwood, C.S. The pimFABCDE operon from Rhodopseudomonas palustris mediates dicarboxylic acid degradation and participates in anaerobic benzoate degradation. Microbiology, 2005, 151(Pt 3), 727-736.
[http://dx.doi.org/10.1099/mic.0.27731-0] [PMID: 15758219]
[65]
Lin, S.; Cronan, J.E. The BioC O-methyltransferase catalyzes methyl esterification of malonyl-acyl carrier protein, an essential step in biotin synthesis. J. Biol. Chem., 2012, 287(44), 37010-37020.
[http://dx.doi.org/10.1074/jbc.M112.410290] [PMID: 22965231]
[66]
Gloeckler, R.; Ohsawa, I.; Speck, D.; Ledoux, C.; Bernard, S.; Zinsius, M.; Villeval, D.; Kisou, T.; Kamogawa, K.; Lemoine, Y. Cloning and characterization of the Bacillus sphaericus genes controlling the bioconversion of pimelate into dethiobiotin. Gene, 1990, 87(1), 63-70.
[http://dx.doi.org/10.1016/0378-1119(90)90496-E] [PMID: 2110099]
[67]
Ploux, O.; Soularue, P.; Marquet, A.; Gloeckler, R.; Lemoine, Y. Investigation of the first step of biotin biosynthesis in Bacillus sphaericus. Purification and characterization of the pimeloyl-CoA synthase, and uptake of pimelate. Biochem. J., 1992, 287(Pt 3), 685-690.
[http://dx.doi.org/10.1042/bj2870685] [PMID: 1445232]
[68]
Wang, M.; Moynié, L.; Harrison, P.J.; Kelly, V.; Piper, A.; Naismith, J.H.; Campopiano, D.J. Using the pimeloyl-CoA synthetase adenylation fold to synthesize fatty acid thioesters. Nat. Chem. Biol., 2017, 13(6), 660-667.
[http://dx.doi.org/10.1038/nchembio.2361] [PMID: 28414710]
[69]
Estrada, P.; Manandhar, M.; Dong, S.H.; Deveryshetty, J.; Agarwal, V.; Cronan, J.E.; Nair, S.K. The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes. Nat. Chem. Biol., 2017, 13(6), 668-674.
[http://dx.doi.org/10.1038/nchembio.2359] [PMID: 28414711]
[70]
Thompson, A.P.; Wegener, K.L.; Booker, G.W.; Polyak, S.W.; Bruning, J.B. Precipitant-ligand exchange technique reveals the ADP binding mode in Mycobacterium tuberculosis dethiobiotin synthetase. Acta Crystallogr. D Struct. Biol., 2018, 74(Pt 10), 965-972.
[http://dx.doi.org/10.1107/S2059798318010136] [PMID: 30289406]
[71]
Salaemae, W.; Azhar, A.; Booker, G.W.; Polyak, S.W. Biotin biosynthesis in Mycobacterium tuberculosis: physiology, biochemistry and molecular intervention. Protein Cell, 2011, 2(9), 691-695.
[http://dx.doi.org/10.1007/s13238-011-1100-8] [PMID: 21976058]
[72]
Sanishvili, R.; Yakunin, A.F.; Laskowski, R.A.; Skarina, T.; Evdokimova, E.; Doherty-Kirby, A.; Lajoie, G.A.; Thornton, J.M.; Arrowsmith, C.H.; Savchenko, A.; Joachimiak, A.; Edwards, A.M. Integrating structure, bioinformatics, and enzymology to discover function: BioH, a new carboxylesterase from Escherichia coli. J. Biol. Chem., 2003, 278(28), 26039-26045.
[http://dx.doi.org/10.1074/jbc.M303867200] [PMID: 12732651]
[73]
Cronan, J.E.; Lin, S. Synthesis of the α,ω-dicarboxylic acid precursor of biotin by the canonical fatty acid biosynthetic pathway. Curr. Opin. Chem. Biol., 2011, 15(3), 407-413.
[http://dx.doi.org/10.1016/j.cbpa.2011.03.001] [PMID: 21435937]
[74]
Marquet, A.; Bui, B.T.; Florentin, D. Biosynthesis of biotin and lipoic acid. Vitam. Horm., 2001, 61, 51-101.
[http://dx.doi.org/10.1016/S0083-6729(01)61002-1] [PMID: 11153271]
[75]
Berkovitch, F.; Nicolet, Y.; Wan, J.T.; Jarrett, J.T.; Drennan, C.L. Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science, 2004, 303(5654), 76-79.
[http://dx.doi.org/10.1126/science.1088493] [PMID: 14704425]
[76]
Lu, J.P.; Chai, S.C.; Ye, Q.Z. Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase. J. Med. Chem., 2010, 53(3), 1329-1337.
[http://dx.doi.org/10.1021/jm901624n] [PMID: 20038112]
[77]
Berney, M.; Berney-Meyer, L.; Wong, K.W.; Chen, B.; Chen, M.; Kim, J.; Wang, J.; Harris, D.; Parkhill, J.; Chan, J.; Wang, F.; Jacobs, W.R. Jr Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2015, 112(32), 10008-10013.
[http://dx.doi.org/10.1073/pnas.1513033112] [PMID: 26221021]
[78]
Purushothaman, S.; Gupta, G.; Srivastava, R.; Ramu, V.G.; Surolia, A. Ligand specificity of group I biotin protein ligase of Mycobacterium tuberculosis. PLoS One, 2008, 3(5)e2320
[http://dx.doi.org/10.1371/journal.pone.0002320]] [PMID: 18509457]
[79]
Beckett, D. The Escherichia coli biotin regulatory system: a transcriptional switch. J. Nutr. Biochem., 2005, 16(7), 411-415.
[http://dx.doi.org/10.1016/j.jnutbio.2005.03.019] [PMID: 15992680]
[80]
Beckett, D. Regulating transcription regulators via allostery and flexibility. Proc. Natl. Acad. Sci. USA, 2009, 106(52), 22035-22036.
[http://dx.doi.org/10.1073/pnas.0912300107] [PMID: 20080782]
[81]
Sternicki, L.M.; Wegener, K.L.; Bruning, J.B.; Booker, G.W.; Polyak, S.W. Mechanisms governing precise protein biotinylation. Trends Biochem. Sci., 2017, 42(5), 383-394.
[http://dx.doi.org/10.1016/j.tibs.2017.02.001] [PMID: 28268045]
[82]
Bagautdinov, B.; Kuroishi, C.; Sugahara, M.; Kunishima, N. Crystal structures of biotin protein ligase from Pyrococcus horikoshii OT3 and its complexes: structural basis of biotin activation. J. Mol. Biol., 2005, 353(2), 322-333.
[http://dx.doi.org/10.1016/j.jmb.2005.08.032] [PMID: 16169557]
[83]
Duckworth, B.P.; Geders, T.W.; Tiwari, D.; Boshoff, H.I.; Sibbald, P.A.; Barry, C.E., III; Schnappinger, D.; Finzel, B.C.; Aldrich, C.C. Bisubstrate adenylation inhibitors of biotin protein ligase from Mycobacterium tuberculosis. Chem. Biol., 2011, 18(11), 1432-1441.
[http://dx.doi.org/10.1016/j.chembiol.2011.08.013] [PMID: 22118677]
[84]
Tron, C.M.; McNae, I.W.; Nutley, M.; Clarke, D.J.; Cooper, A.; Walkinshaw, M.D.; Baxter, R.L.; Campopiano, D.J. Structural and functional studies of the biotin protein ligase from Aquifex aeolicus reveal a critical role for a conserved residue in target specificity. J. Mol. Biol., 2009, 387(1), 129-146.
[http://dx.doi.org/10.1016/j.jmb.2008.12.086] [PMID: 19385043]
[85]
Chakravartty, V.; Cronan, J.E. Altered regulation of Escherichia coli biotin biosynthesis in BirA superrepressor mutant strains. J. Bacteriol., 2012, 194(5), 1113-1126.
[http://dx.doi.org/10.1128/JB.06549-11] [PMID: 22210766]
[86]
Pendini, N.R.; Yap, M.Y.; Traore, D.A.; Polyak, S.W.; Cowieson, N.P.; Abell, A.; Booker, G.W.; Wallace, J.C.; Wilce, J.A.; Wilce, M.C. Structural characterization of Staphylococcus aureus biotin protein ligase and interaction partners: an antibiotic target. Protein Sci., 2013, 22(6), 762-773.
[http://dx.doi.org/10.1002/pro.2262] [PMID: 23559560]
[87]
Henke, S.K.; Cronan, J.E. Successful conversion of the Bacillus subtilis BirA Group II biotin protein ligase into a Group I ligase. PLoS One, 2014, 9(5)e96757
[http://dx.doi.org/10.1371/journal.pone.0096757]] [PMID: 24816803]
[88]
Soares da Costa, T.P.; Yap, M.Y.; Perugini, M.A.; Wallace, J.C.; Abell, A.D.; Wilce, M.C.; Polyak, S.W.; Booker, G.W. Dual roles of F123 in protein homodimerization and inhibitor binding to biotin protein ligase from Staphylococcus aureus. Mol. Microbiol., 2014, 91(1), 110-120.
[http://dx.doi.org/10.1111/mmi.12446] [PMID: 24261685]
[89]
Daniels, K.G.; Beckett, D. Biochemical properties and biological function of a monofunctional microbial biotin protein ligase. Biochemistry, 2010, 49(25), 5358-5365.
[http://dx.doi.org/10.1021/bi1003958] [PMID: 20499837]
[90]
Mayende, L.; Swift, R.D.; Bailey, L.M.; Soares da Costa, T.P.; Wallace, J.C.; Booker, G.W.; Polyak, S.W. A novel molecular mechanism to explain biotin-unresponsive holocarboxylase synthetase deficiency. J. Mol. Med. (Berl.), 2012, 90(1), 81-88.
[http://dx.doi.org/10.1007/s00109-011-0811-x] [PMID: 21894551]
[91]
Tong, L. Structure and function of biotin-dependent carboxylases. Cell. Mol. Life Sci., 2013, 70(5), 863-891.
[http://dx.doi.org/10.1007/s00018-012-1096-0] [PMID: 22869039]
[92]
Jitrapakdee, S.; St Maurice, M.; Rayment, I.; Cleland, W.W.; Wallace, J.C.; Attwood, P.V. Structure, mechanism and regulation of pyruvate carboxylase. Biochem. J., 2008, 413(3), 369-387.
[http://dx.doi.org/10.1042/BJ20080709] [PMID: 18613815]
[93]
Portevin, D.; de Sousa-D’Auria, C.; Montrozier, H.; Houssin, C.; Stella, A.; Lanéelle, M.A.; Bardou, F.; Guilhot, C.; Daffé, M. The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J. Biol. Chem., 2005, 280(10), 8862-8874.
[http://dx.doi.org/10.1074/jbc.M408578200] [PMID: 15632194]
[94]
Gago, G.; Kurth, D.; Diacovich, L.; Tsai, S.C.; Gramajo, H. Biochemical and structural characterization of an essential acyl coenzyme A carboxylase from Mycobacterium tuberculosis. J. Bacteriol., 2006, 188(2), 477-486.
[http://dx.doi.org/10.1128/JB.188.2.477-486.2006] [PMID: 16385038]
[95]
Kurth, D.G.; Gago, G.M.; de la Iglesia, A.; Bazet Lyonnet, B.; Lin, T.W.; Morbidoni, H.R.; Tsai, S.C.; Gramajo, H. ACCase 6 is the essential acetyl-CoA carboxylase involved in fatty acid and mycolic acid biosynthesis in mycobacteria. Microbiology, 2009, 155(Pt 8), 2664-2675.
[http://dx.doi.org/10.1099/mic.0.027714-0] [PMID: 19423629]
[96]
Paparella, A.S.; Soares da Costa, T.P.; Yap, M.Y.; Tieu, W.; Wilce, M.C.; Booker, G.W.; Abell, A.D.; Polyak, S.W. Structure guided design of biotin protein ligase inhibitors for antibiotic discovery. Curr. Top. Med. Chem., 2014, 14(1), 4-20.
[http://dx.doi.org/10.2174/1568026613666131111103149] [PMID: 24236729]
[97]
Salaemae, W.; Booker, G.W.; Polyak, S.W. The role of biotin in bacterial physiology and virulence: A novel antibiotic target for Mycobacterium tuberculosis. Microbiol. Spectr., 2016, 4(2), 1-20.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0008-2015] [PMID: 27227307]
[98]
Triccas, J.A.; Parish, T.; Britton, W.J.; Gicquel, B. An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol. Lett., 1998, 167(2), 151-156.
[http://dx.doi.org/10.1111/j.1574-6968.1998.tb13221.x] [PMID: 9809415]
[99]
Gomez, J.E.; Bishai, W.R. whmD is an essential mycobacterial gene required for proper septation and cell division. Proc. Natl. Acad. Sci. USA, 2000, 97(15), 8554-8559.
[http://dx.doi.org/10.1073/pnas.140225297] [PMID: 10880571]
[100]
Schnappinger, D.; Ehrt, S. Regulated expression systems for Mycobacteria and their applications. Microbiol. Spectr., 2014, 2(1)
[http://dx.doi.org/10.1128/microbiolspec.MGM2-0018-2013]]
[101]
Bardarov, S.; Bardarov, S., Jr; Pavelka, M.S., Jr; Sambandamurthy, V.; Larsen, M.; Tufariello, J.; Chan, J.; Hatfull, G.; Jacobs, W.R. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology, 2002, 148(Pt 10), 3007-3017.
[http://dx.doi.org/10.1099/00221287-148-10-3007] [PMID: 12368434]
[102]
Tufariello, J.M.; Malek, A.A.; Vilchèze, C.; Cole, L.E.; Ratner, H.K.; González, P.A.; Jain, P.; Hatfull, G.F.; Larsen, M.H.; Jacobs, W.R. Jr Enhanced specialized transduction using recombineering in Mycobacterium tuberculosis. MBio, 2014, 5(3), e01179-e14.
[http://dx.doi.org/10.1128/mBio.01179-14] [PMID: 24865558]
[103]
Murphy, K.C.; Papavinasasundaram, K.; Sassetti, C.M. Mycobacterial recombineering. Methods Mol. Biol., 2015, 1285, 177-199.
[http://dx.doi.org/10.1007/978-1-4939-2450-9_10] [PMID: 25779316]
[104]
Long, J.E.; DeJesus, M.; Ward, D.; Baker, R.E.; Ioerger, T.; Sassetti, C.M. Identifying essential genes in Mycobacterium tuberculosis by global phenotypic profiling. Methods Mol. Biol., 2015, 1279, 79-95.
[http://dx.doi.org/10.1007/978-1-4939-2398-4_6] [PMID: 25636614]
[105]
Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol., 2003, 48(1), 77-84.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03425.x] [PMID: 12657046]
[106]
Sassetti, C.M.; Rubin, E.J. Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA, 2003, 100(22), 12989-12994.
[http://dx.doi.org/10.1073/pnas.2134250100] [PMID: 14569030]
[107]
Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA, 2001, 98(22), 12712-12717.
[http://dx.doi.org/10.1073/pnas.231275498] [PMID: 11606763]
[108]
Klotzsche, M.; Ehrt, S.; Schnappinger, D. Improved tetracycline repressors for gene silencing in mycobacteria. Nucleic Acids Res., 2009, 37(6), 1778-1788.
[http://dx.doi.org/10.1093/nar/gkp015] [PMID: 19174563]
[109]
Wei, J.R.; Krishnamoorthy, V.; Murphy, K.; Kim, J.H.; Schnappinger, D.; Alber, T.; Sassetti, C.M.; Rhee, K.Y.; Rubin, E.J. Depletion of antibiotic targets has widely varying effects on growth. Proc. Natl. Acad. Sci. USA, 2011, 108(10), 4176-4181.
[http://dx.doi.org/10.1073/pnas.1018301108] [PMID: 21368134]
[110]
Woong Park, S.; Klotzsche, M.; Wilson, D.J.; Boshoff, H.I.; Eoh, H.; Manjunatha, U.; Blumenthal, A.; Rhee, K.; Barry, C.E., III; Aldrich, C.C.; Ehrt, S.; Schnappinger, D. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog., 2011, 7(9)e1002264
[http://dx.doi.org/10.1371/journal.ppat.1002264]] [PMID: 21980288]
[111]
Baughn, A.D.; Rhee, K.Y. Metabolomics of central carbon metabolism in Mycobacterium tuberculosis. Microbiol. Spectr., 2014, 2(3)
[http://dx.doi.org/10.1128/microbiolspec.MGM2-0026-2013]] [PMID: 26103978]
[112]
Schnappinger, D.; O’Brien, K.M.; Ehrt, S. Construction of conditional knockdown mutants in mycobacteria. Methods Mol. Biol., 2015, 1285, 151-175.
[http://dx.doi.org/10.1007/978-1-4939-2450-9_9] [PMID: 25779315]
[113]
Minato, Y.; Baughn, A.D. Subversion of metabolic wasting as the mechanism for folM-linked sulfamethoxazole resistance. MBio, 2017, 8(6), e01769-e17.
[http://dx.doi.org/10.1128/mBio.01769-17] [PMID: 29184016]
[114]
Minato, Y.; Dawadi, S.; Kordus, S.L.; Sivanandam, A.; Aldrich, C.C.; Baughn, A.D. Mutual potentiation drives synergy between trimethoprim and sulfamethoxazole. Nat. Commun., 2018, 9(1), 1003.
[http://dx.doi.org/10.1038/s41467-018-03447-x] [PMID: 29520101]
[115]
Ehrt, S.; Schnappinger, D.; Rhee, K.Y. Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat. Rev. Microbiol., 2018, 16(8), 496-507.
[http://dx.doi.org/10.1038/s41579-018-0013-4] [PMID: 29691481]
[116]
Tiwari, D.; Park, S.W.; Essawy, M.M.; Dawadi, S.; Mason, A.; Nandakumar, M.; Zimmerman, M.; Mina, M.; Ho, H.P.; Engelhart, C.A.; Ioerger, T.; Sacchettini, J.C.; Rhee, K.; Ehrt, S.; Aldrich, C.C.; Dartois, V.; Schnappinger, D. Targeting protein biotinylation enhances tuberculosis chemotherapy Sci Transl. Med, 2018, 438 >(10) eaal1803.
[117]
Cole, S.T.; Barrell, B.G. Analysis of the genome of Mycobacterium tuberculosis H37Rv. Novartis Found. Symp., 1998, 217, 160-172.
[http://dx.doi.org/10.1002/0470846526.ch12] [PMID: 9949807]
[118]
Fan, X.; Abd Alla, A.A.; Xie, J. Distribution and function of prophage phiRv1 and phiRv2 among Mycobacterium tuberculosis complex. J. Biomol. Struct. Dyn., 2016, 34(2), 233-238.
[http://dx.doi.org/10.1080/07391102.2015.1022602] [PMID: 25855385]
[119]
Sassetti, C.; Rubin, E.J. Genomic analyses of microbial virulence. Curr. Opin. Microbiol., 2002, 5(1), 27-32.
[http://dx.doi.org/10.1016/S1369-5274(02)00281-3] [PMID: 11834365]
[120]
Satiaputra, J.; Shearwin, K.E.; Booker, G.W.; Polyak, S.W. Mechanisms of biotin-regulated gene expression in microbes. Synth Syst Biotechnol, 2016, 1(1), 17-24.
[http://dx.doi.org/10.1016/j.synbio.2016.01.005] [PMID: 29062923]
[121]
Russell, D.G. Mycobacterium tuberculosis: here today, and here tomorrow. Nat. Rev. Mol. Cell Biol., 2001, 2(8), 569-577.
[http://dx.doi.org/10.1038/35085034] [PMID: 11483990]
[122]
Rengarajan, J.; Bloom, B.R.; Rubin, E.J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl. Acad. Sci. USA, 2005, 102(23), 8327-8332.
[http://dx.doi.org/10.1073/pnas.0503272102] [PMID: 15928073]
[123]
Guo, X.V.; Monteleone, M.; Klotzsche, M.; Kamionka, A.; Hillen, W.; Braunstein, M.; Ehrt, S.; Schnappinger, D. Silencing Mycobacterium smegmatis by using tetracycline repressors. J. Bacteriol., 2007, 189(13), 4614-4623.
[http://dx.doi.org/10.1128/JB.00216-07] [PMID: 17483222]
[124]
Barry, C.E., III; Boshoff, H.I.; Dartois, V.; Dick, T.; Ehrt, S.; Flynn, J.; Schnappinger, D.; Wilkinson, R.J.; Young, D. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol., 2009, 7(12), 845-855.
[http://dx.doi.org/10.1038/nrmicro2236] [PMID: 19855401]
[125]
Wilson, M.; DeRisi, J.; Kristensen, H.H.; Imboden, P.; Rane, S.; Brown, P.O.; Schoolnik, G.K. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA, 1999, 96(22), 12833-12838.
[http://dx.doi.org/10.1073/pnas.96.22.12833] [PMID: 10536008]
[126]
Guilhot, C.; Otal, I.; Van Rompaey, I.; Martìn, C.; Gicquel, B. Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J. Bacteriol., 1994, 176(2), 535-539.
[http://dx.doi.org/10.1128/JB.176.2.535-539.1994] [PMID: 8288551]
[127]
Keer, J.; Smeulders, M.J.; Gray, K.M.; Williams, H.D. Mutants of Mycobacterium smegmatis impaired in stationary-phase survival. Microbiology, 2000, 146(Pt 9), 2209-2217.
[http://dx.doi.org/10.1099/00221287-146-9-2209] [PMID: 10974108]
[128]
Kim, J.H.; O’Brien, K.M.; Sharma, R.; Boshoff, H.I.; Rehren, G.; Chakraborty, S.; Wallach, J.B.; Monteleone, M.; Wilson, D.J.; Aldrich, C.C.; Barry, C.E., III; Rhee, K.Y.; Ehrt, S.; Schnappinger, D. A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proc. Natl. Acad. Sci. USA, 2013, 110(47), 19095-19100.
[http://dx.doi.org/10.1073/pnas.1315860110] [PMID: 24191058]
[129]
Tang, Q.; Li, X.; Zou, T.; Zhang, H.; Wang, Y.; Gao, R.; Li, Z.; He, J.; Feng, Y. Mycobacterium smegmatis BioQ defines a new regulatory network for biotin metabolism. Mol. Microbiol., 2014.
[http://dx.doi.org/10.1111/mmi.12817] [PMID: 25287944]
[130]
Brune, I.; Götker, S.; Schneider, J.; Rodionov, D.A.; Tauch, A. Negative transcriptional control of biotin metabolism genes by the TetR-type regulator BioQ in biotin-auxotrophic Corynebacterium glutamicum ATCC 13032. J. Biotechnol., 2012, 159(3), 225-234.
[http://dx.doi.org/10.1016/j.jbiotec.2011.12.001] [PMID: 22178235]
[131]
Wei, W.; Zhang, Y.; Gao, R.; Li, J.; Xu, Y.; Wang, S.; Ji, Q.; Feng, Y. Crystal structure and acetylation of BioQ suggests a novel regulatory switch for biotin biosynthesis in Mycobacterium smegmatis. Mol. Microbiol., 2018, 109(5), 642-662.
[http://dx.doi.org/10.1111/mmi.14066] [PMID: 29995988]
[132]
Yan, L.; Tang, Q.; Guan, Z.; Pei, K.; Zou, T.; He, J. Structural insights into operator recognition by BioQ in the Mycobacterium smegmatis biotin synthesis pathway. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(9), 1843-1851.
[http://dx.doi.org/10.1016/j.bbagen.2018.05.015] [PMID: 29852200]
[133]
Sanyal, I.; Lee, S.L.; Flint, D.H. Biosynthesis of pimeloyl-CoA, a biotin precursor in Escherichia coli, follows a modified fatty acid synthesis pathway: 13C-labeling studies. J. Am. Chem. Soc., 1994, 116(6), 2637-2638.
[http://dx.doi.org/10.1021/ja00085a061]
[134]
Ifuku, O.; Miyaoka, H.; Koga, N.; Kishimoto, J.; Haze, S.; Wachi, Y.; Kajiwara, M. Origin of carbon atoms of biotin. 13C-NMR studies on biotin biosynthesis in Escherichia coli. Eur. J. Biochem., 1994, 220(2), 585-591.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb18659.x] [PMID: 8125118]
[135]
Lemoine, Y.; Wach, A.; Jeltsch, J.M. To be free or not: the fate of pimelate in Bacillus sphaericus and in Escherichia coli. Mol. Microbiol., 1996, 19(3), 645-647.
[http://dx.doi.org/10.1046/j.1365-2958.1996.t01-4-442924.x] [PMID: 8830257]
[136]
Yu, J.; Niu, C.; Wang, D.; Li, M.; Teo, W.; Sun, G.; Wang, J.; Liu, J.; Gao, Q. MMAR_2770, a new enzyme involved in biotin biosynthesis, is essential for the growth of Mycobacterium marinum in macrophages and zebrafish. Microbes Infect., 2011, 13(1), 33-41.
[http://dx.doi.org/10.1016/j.micinf.2010.08.010] [PMID: 20974274]
[137]
Martin, J.L.; McMillan, F.M. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr. Opin. Struct. Biol., 2002, 12(6), 783-793.
[http://dx.doi.org/10.1016/S0959-440X(02)00391-3] [PMID: 12504684]
[138]
Agarwal, V.; Lin, S.; Lukk, T.; Nair, S.K.; Cronan, J.E. Structure of the enzyme-acyl carrier protein (ACP) substrate gatekeeper complex required for biotin synthesis. Proc. Natl. Acad. Sci. USA, 2012, 109(43), 17406-17411.
[http://dx.doi.org/10.1073/pnas.1207028109] [PMID: 23045647]
[139]
Xue, Q.; Cui, Y.L.; Zheng, Q.C.; Zhang, H.X. Molecular dynamics investigations of BioH protein substrate specificity for biotin synthesis. J. Biomol. Struct. Dyn., 2016, 34(5), 1052-1060.
[http://dx.doi.org/10.1080/07391102.2015.1068223] [PMID: 26132538]
[140]
Shi, Y.; Pan, Y.; Li, B.; He, W.; She, Q.; Chen, L. Molecular cloning of a novel bioH gene from an environmental metagenome encoding a carboxylesterase with exceptional tolerance to organic solvents. BMC Biotechnol., 2013, 13, 13.
[http://dx.doi.org/10.1186/1472-6750-13-13] [PMID: 23413993]
[141]
Tomczyk, N.H.; Nettleship, J.E.; Baxter, R.L.; Crichton, H.J.; Webster, S.P.; Campopiano, D.J. Purification and characterisation of the BIOH protein from the biotin biosynthetic pathway. FEBS Lett., 2002, 513(2-3), 299-304.
[http://dx.doi.org/10.1016/S0014-5793(02)02342-6] [PMID: 11904168]
[142]
Cao, X.; Zhu, L.; Hu, Z.; Cronan, J.E. Expression and activity of the BioH esterase of Biotin synthesis is independent of genome context. Sci. Rep., 2017, 7(1), 2141.
[http://dx.doi.org/10.1038/s41598-017-01490-0] [PMID: 28526858]
[143]
Cronan, J.E. Biotin and lipoic acid: Synthesis, attachment, and regulation. Ecosal Plus, 2008, 3(1)
[http://dx.doi.org/10.1128/ecosalplus.3.6.3.5]] [PMID: 26443737]
[144]
Schneider, G.; Lindqvist, Y. Structural enzymology of biotin biosynthesis. FEBS Lett., 2001, 495(1-2), 7-11.
[http://dx.doi.org/10.1016/S0014-5793(01)02325-0] [PMID: 11322938]
[145]
Mann, S.; Ploux, O. Pyridoxal-5′-phosphate-dependent enzymes involved in biotin biosynthesis: structure, reaction mechanism and inhibition. Biochim. Biophys. Acta, 2011, 1814(11), 1459-1466.
[http://dx.doi.org/10.1016/j.bbapap.2010.12.004] [PMID: 21182990]
[146]
Alexeev, D.; Alexeeva, M.; Baxter, R.L.; Campopiano, D.J.; Webster, S.P.; Sawyer, L. The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. J. Mol. Biol., 1998, 284(2), 401-419.
[http://dx.doi.org/10.1006/jmbi.1998.2086] [PMID: 9813126]
[147]
Ploux, O.; Breyne, O.; Carillon, S.; Marquet, A. Slow-binding and competitive inhibition of 8-amino-7-oxopelargonate synthase, a pyridoxal-5′-phosphate-dependent enzyme involved in biotin biosynthesis, by substrate and intermediate analogs. Kinetic and binding studies. Eur. J. Biochem., 1999, 259(1-2), 63-70.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00006.x] [PMID: 9914476]
[148]
Ploux, O.; Marquet, A. Mechanistic studies on the 8-amino-7-oxopelargonate synthase, a pyridoxal-5′-phosphate-dependent enzyme involved in biotin biosynthesis. Eur. J. Biochem., 1996, 236(1), 301-308.
[http://dx.doi.org/10.1111/j.1432-1033.1996.00301.x] [PMID: 8617279]
[149]
Camus, J.C.; Pryor, M.J.; Médigue, C.; Cole, S.T. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology, 2002, 148(Pt 10), 2967-2973.
[http://dx.doi.org/10.1099/00221287-148-10-2967] [PMID: 12368430]
[150]
Alexeev, D.; Baxter, R.L.; Campopiano, D.J.; Kerbarh, O.; Sawyer, L.; Tomczyk, N.; Watt, R.; Webster, S.P. Suicide inhibition of alpha-oxamine synthases: structures of the covalent adducts of 8-amino-7-oxononanoate synthase with trifluoroalanine. Org. Biomol. Chem., 2006, 4(7), 1209-1212.
[http://dx.doi.org/10.1039/b517922j] [PMID: 16557306]
[151]
Alexeev, D.; Baxter, R.L.; Campopiano, D.J.; McAlpine, R.S.; McIver, L.; Sawyer, L. Rational design of an inhibitor of dethiobiotin synthetase; interaction of 6-hydroxypyrimindin-4(3H)-one with the adenine base binding site. Tetrahedron, 1998, 54(52), 15891-15898.
[http://dx.doi.org/10.1016/S0040-4020(98)00999-5]
[152]
Webster, S.P.; Alexeev, D.; Campopiano, D.J.; Watt, R.M.; Alexeeva, M.; Sawyer, L.; Baxter, R.L. Mechanism of 8-amino-7-oxononanoate synthase: spectroscopic, kinetic, and crystallographic studies. Biochemistry, 2000, 39(3), 516-528.
[http://dx.doi.org/10.1021/bi991620j] [PMID: 10642176]
[153]
Ploux, O.; Marquet, A. The 8-amino-7-oxopelargonate synthase from Bacillus sphaericus. Purification and preliminary characterization of the cloned enzyme overproduced in Escherichia coli. Biochem. J., 1992, 283(Pt 2), 327-331.
[http://dx.doi.org/10.1042/bj2830327] [PMID: 1575677]
[154]
Spinelli, S.; Ploux, O.; Marquet, A.; Anguille, C.; Jelsch, C.; Cambillau, C.; Martinez, C. Crystallization and preliminary X-ray study of the 8-amino-7-oxopelargonate synthase from Bacillus sphaericus. Acta Crystallogr. D Biol. Crystallogr., 1996, 52(Pt 4), 866-868.
[http://dx.doi.org/10.1107/S0907444996001448] [PMID: 15299653]
[155]
Bhor, V.M.; Dev, S.; Vasanthakumar, G.R.; Kumar, P.; Sinha, S.; Surolia, A. Broad substrate stereospecificity of the Mycobacterium tuberculosis 7-keto-8-aminopelargonic acid synthase: Spectroscopic and kinetic studies. J. Biol. Chem., 2006, 281(35), 25076-25088.
[http://dx.doi.org/10.1074/jbc.M604477200] [PMID: 16769720]
[156]
Fan, S.; Li, D.F.; Wang, D.C.; Fleming, J.; Zhang, H.; Zhou, Y.; Zhou, L.; Zhou, J.; Chen, T.; Chen, G.; Zhang, X.E.; Bi, L. Structure and function of Mycobacterium smegmatis 7-keto-8-aminopelargonic acid (KAPA) synthase. Int. J. Biochem. Cell Biol., 2015, 58, 71-80.
[http://dx.doi.org/10.1016/j.biocel.2014.11.006] [PMID: 25462832]
[157]
Käck, H.; Sandmark, J.; Gibson, K.; Schneider, G.; Lindqvist, Y. Crystal structure of diaminopelargonic acid synthase: evolutionary relationships between pyridoxal-5′-phosphate-dependent enzymes. J. Mol. Biol., 1999, 291(4), 857-876.
[http://dx.doi.org/10.1006/jmbi.1999.2997] [PMID: 10452893]
[158]
Eliot, A.C.; Sandmark, J.; Schneider, G.; Kirsch, J.F. The dual-specific active site of 7,8-diaminopelargonic acid synthase and the effect of the R391A mutation. Biochemistry, 2002, 41(42), 12582-12589.
[http://dx.doi.org/10.1021/bi026339a] [PMID: 12379100]
[159]
Mann, S.; Ploux, O. 7,8-Diaminoperlargonic acid aminotransferase from Mycobacterium tuberculosis, a potential therapeutic target. Characterization and inhibition studies. FEBS J., 2006, 273(20), 4778-4789.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05479.x] [PMID: 16984394]
[160]
Sandmark, J.; Mann, S.; Marquet, A.; Schneider, G. Structural basis for the inhibition of the biosynthesis of biotin by the antibiotic amiclenomycin. J. Biol. Chem., 2002, 277(45), 43352-43358.
[http://dx.doi.org/10.1074/jbc.M207239200] [PMID: 12218056]
[161]
Shi, C.; Aldrich, C.C. Design and synthesis of potential mechanism-based inhibitors of the aminotransferase BioA involved in biotin biosynthesis. J. Org. Chem., 2012, 77(14), 6051-6058.
[http://dx.doi.org/10.1021/jo3008435] [PMID: 22724679]
[162]
Shi, C.; Geders, T.W.; Park, S.W.; Wilson, D.J.; Boshoff, H.I.; Abayomi, O.; Barry, C.E., III; Schnappinger, D.; Finzel, B.C.; Aldrich, C.C. Mechanism-based inactivation by aromatization of the transaminase BioA involved in biotin biosynthesis in Mycobaterium tuberculosis. J. Am. Chem. Soc., 2011, 133(45), 18194-18201.
[http://dx.doi.org/10.1021/ja204036t] [PMID: 21988601]
[163]
Dai, R.; Wilson, D.J.; Geders, T.W.; Aldrich, C.C.; Finzel, B.C. Inhibition of Mycobacterium tuberculosis transaminase BioA by aryl hydrazines and hydrazides. ChemBioChem, 2014, 15(4), 575-586.
[http://dx.doi.org/10.1002/cbic.201300748] [PMID: 24482078]
[164]
Sandmark, J.; Eliot, A.C.; Famm, K.; Schneider, G.; Kirsch, J.F. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis. Biochemistry, 2004, 43(5), 1213-1222.
[http://dx.doi.org/10.1021/bi0358059] [PMID: 14756557]
[165]
Huang, W.; Jia, J.; Gibson, K.J.; Taylor, W.S.; Rendina, A.R.; Schneider, G.; Lindqvist, Y. Mechanism of an ATP-dependent carboxylase, dethiobiotin synthetase, based on crystallographic studies of complexes with substrates and a reaction intermediate. Biochemistry, 1995, 34(35), 10985-10995.
[http://dx.doi.org/10.1021/bi00035a004] [PMID: 7669756]
[166]
Gibson, K.J.; Lorimer, G.H.; Rendina, A.R.; Taylor, W.S.; Cohen, G.; Gatenby, A.A.; Payne, W.G.; Roe, D.C.; Lockett, B.A.; Nudelman, A. Dethiobiotin synthetase: the carbonylation of 7,8-diaminonanoic acid proceeds regiospecifically via the N7-carbamate. Biochemistry, 1995, 34(35), 10976-10984.
[http://dx.doi.org/10.1021/bi00035a003] [PMID: 7669755]
[167]
Käck, H.; Gibson, K.J.; Lindqvist, Y.; Schneider, G. Snapshot of a phosphorylated substrate intermediate by kinetic crystallography. Proc. Natl. Acad. Sci. USA, 1998, 95(10), 5495-5500.
[http://dx.doi.org/10.1073/pnas.95.10.5495] [PMID: 9576910]
[168]
Porebski, P.J.; Klimecka, M.; Chruszcz, M.; Nicholls, R.A.; Murzyn, K.; Cuff, M.E.; Xu, X.; Cymborowski, M.; Murshudov, G.N.; Savchenko, A.; Edwards, A.; Minor, W. Structural characterization of Helicobacter pylori dethiobiotin synthetase reveals differences between family members. FEBS J., 2012, 279(6), 1093-1105.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08506.x] [PMID: 22284390]
[169]
Sandalova, T.; Schneider, G.; Käck, H.; Lindqvist, Y. Structure of dethiobiotin synthetase at 0.97 A resolution. Acta Crystallogr. D Biol. Crystallogr., 1999, 55(Pt 3), 610-624.
[http://dx.doi.org/10.1107/S090744499801381X] [PMID: 10089457]
[170]
Salaemae, W.; Yap, M.Y.; Wegener, K.L.; Booker, G.W.; Wilce, M.C.; Polyak, S.W. Nucleotide triphosphate promiscuity in Mycobacterium tuberculosis dethiobiotin synthetase. Tuberculosis (Edinb.), 2015, 95(3), 259-266.
[http://dx.doi.org/10.1016/j.tube.2015.02.046] [PMID: 25801336]
[171]
Thompson, A.P.; Salaemae, W.; Pederick, J.L.; Abell, A.D.; Booker, G.W.; Bruning, J.B.; Wegener, K.L.; Polyak, S.W. Mycobacterium tuberculosis dethiobiotin synthetase facilitates nucleoside triphosphate promiscuity through alternate binding modes. ACS Catal., 2018.
[http://dx.doi.org/10.1021/acscatal.8b03475]
[172]
Huang, W.; Lindqvist, Y.; Schneider, G.; Gibson, K.J.; Flint, D.; Lorimer, G. Crystal structure of an ATP dependent carboxylase, dethiobiotin synthetase, at 1.65 A resolution. Structure, 1994, 2(5), 407-414.
[http://dx.doi.org/10.1016/S0969-2126(00)00042-3] [PMID: 8081756]
[173]
Yang, G.; Sandalova, T.; Lohman, K.; Lindqvist, Y.; Rendina, A.R. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties. Biochemistry, 1997, 36(16), 4751-4760.
[http://dx.doi.org/10.1021/bi9631677] [PMID: 9125495]
[174]
Ifuku, O.; Kishimoto, J.; Haze, S.; Yanagi, M.; Fukushima, S. Conversion of dethiobiotin to biotin in cell-free extracts of Escherichia coli. Biosci. Biotechnol. Biochem., 1992, 56(11), 1780-1785.
[http://dx.doi.org/10.1271/bbb.56.1780] [PMID: 1369072]
[175]
Ohshiro, T.; Yamamoto, M.; Izumi, Y.; Bui, B.T.; Florentin, D.; Marquet, A. Enzymatic conversion of dethiobiotin to biotin in cell-free extracts of a Bacillus sphaericus bioB transformant. Biosci. Biotechnol. Biochem., 1994, 58(9), 1738-1741.
[http://dx.doi.org/10.1271/bbb.58.1738] [PMID: 7765490]
[176]
Broderick, J.B.; Duffus, B.R.; Duschene, K.S.; Shepard, E.M. Radical S-adenosylmethionine enzymes. Chem. Rev., 2014, 114(8), 4229-4317.
[http://dx.doi.org/10.1021/cr4004709] [PMID: 24476342]
[177]
Ugulava, N.B.; Gibney, B.R.; Jarrett, J.T. Biotin synthase contains two distinct iron-sulfur cluster binding sites: chemical and spectroelectrochemical analysis of iron-sulfur cluster interconversions. Biochemistry, 2001, 40(28), 8343-8351.
[http://dx.doi.org/10.1021/bi0104625] [PMID: 11444981]
[178]
Frappier, F.; Guillerm, G.; Salib, A.G.; Marquet, A. On the mechanism of conversion of dethiobiotin to biotin in Escherichia coli. Discussion of the occurrence of an intermediate hydroxylation. Biochem. Biophys. Res. Commun., 1979, 91(2), 521-527.
[http://dx.doi.org/10.1016/0006-291X(79)91553-5] [PMID: 391234]
[179]
Guillerm, G.; Frappier, F.; Gaudry, M.; Marquet, A. On the mechanism of conversion of dethiobiotin to biotin in Escherichia coli. Biochimie, 1977, 59(1), 119-121.
[http://dx.doi.org/10.1016/S0300-9084(77)80096-5] [PMID: 322726]
[180]
Lotierzo, M.; Bui, B.T.; Leech, H.K.; Warren, M.J.; Marquet, A.; Rigby, S.E. Iron-sulfur cluster dynamics in biotin synthase: a new [2Fe-2S](1+) cluster. Biochem. Biophys. Res. Commun., 2009, 381(4), 487-490.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.089] [PMID: 19245793]
[181]
Lotierzo, M.; Raux, E.; Tse Sum Bui, B.; Goasdoue, N.; Libot, F.; Florentin, D.; Warren, M.J.; Marquet, A. Biotin synthase mechanism: mutagenesis of the YNHNLD conserved motif. Biochemistry, 2006, 45(40), 12274-12281.
[http://dx.doi.org/10.1021/bi060662m] [PMID: 17014080]
[182]
Lotierzo, M.; Tse Sum Bui, B.; Florentin, D.; Escalettes, F.; Marquet, A. Biotin synthase mechanism: an overview. Biochem. Soc. Trans., 2005, 33(Pt 4), 820-823.
[http://dx.doi.org/10.1042/BST0330820] [PMID: 16042606]
[183]
Salib, A.G.; Frappier, F.; Guillerm, G.; Marquet, A. On the mechanism of conversion of dethiobiotin to biotin in Escherichia coli. III. Isolation of an intermediate in the biosynthesis of biotin from dethiobiotin. Biochem. Biophys. Res. Commun., 1979, 88(1), 312-319.
[http://dx.doi.org/10.1016/0006-291X(79)91731-5] [PMID: 378232]
[184]
Tse Sum Bui, B.; Lotierzo, M.; Escalettes, F.; Florentin, D.; Marquet, A. Further investigation on the turnover of Escherichia coli biotin synthase with dethiobiotin and 9-mercaptodethiobiotin as substrates. Biochemistry, 2004, 43(51), 16432-16441.
[http://dx.doi.org/10.1021/bi048040t] [PMID: 15610037]
[185]
Farrar, C.E.; Siu, K.K.; Howell, P.L.; Jarrett, J.T. Biotin synthase exhibits burst kinetics and multiple turnovers in the absence of inhibition by products and product-related biomolecules. Biochemistry, 2010, 49(46), 9985-9996.
[http://dx.doi.org/10.1021/bi101023c] [PMID: 20961145]
[186]
Fugate, C.J.; Jarrett, J.T. Biotin synthase: insights into radical-mediated carbon-sulfur bond formation. Biochim. Biophys. Acta, 2012, 1824(11), 1213-1222.
[http://dx.doi.org/10.1016/j.bbapap.2012.01.010] [PMID: 22326745]
[187]
Fugate, C.J.; Stich, T.A.; Kim, E.G.; Myers, W.K.; Britt, R.D.; Jarrett, J.T. 9-Mercaptodethiobiotin is generated as a ligand to the [2Fe-2S]+ cluster during the reaction catalyzed by biotin synthase from Escherichia coli. J. Am. Chem. Soc., 2012, 134(22), 9042-9045.
[http://dx.doi.org/10.1021/ja3012963] [PMID: 22607542]
[188]
Jarrett, J.T. The novel structure and chemistry of iron-sulfur clusters in the adenosylmethionine-dependent radical enzyme biotin synthase. Arch. Biochem. Biophys., 2005, 433(1), 312-321.
[http://dx.doi.org/10.1016/j.abb.2004.10.003] [PMID: 15581586]
[189]
Reyda, M.R.; Dippold, R.; Dotson, M.E.; Jarrett, J.T. Loss of iron-sulfur clusters from biotin synthase as a result of catalysis promotes unfolding and degradation. Arch. Biochem. Biophys., 2008, 471(1), 32-41.
[http://dx.doi.org/10.1016/j.abb.2007.12.001] [PMID: 18155152]
[190]
Taylor, A.M.; Farrar, C.E.; Jarrett, J.T. 9-Mercaptodethiobiotin is formed as a competent catalytic intermediate by Escherichia coli biotin synthase. Biochemistry, 2008, 47(35), 9309-9317.
[http://dx.doi.org/10.1021/bi801035b] [PMID: 18690713]
[191]
Taylor, A.M.; Stoll, S.; Britt, R.D.; Jarrett, J.T. Reduction of the [2Fe-2S] cluster accompanies formation of the intermediate 9-mercaptodethiobiotin in Escherichia coli biotin synthase. Biochemistry, 2011, 50(37), 7953-7963.
[http://dx.doi.org/10.1021/bi201042r] [PMID: 21859080]
[192]
Ugulava, N.B.; Frederick, K.K.; Jarrett, J.T. Control of adenosylmethionine-dependent radical generation in biotin synthase: a kinetic and thermodynamic analysis of substrate binding to active and inactive forms of BioB. Biochemistry, 2003, 42(9), 2708-2719.
[http://dx.doi.org/10.1021/bi0261084] [PMID: 12614166]
[193]
Ugulava, N.B.; Gibney, B.R.; Jarrett, J.T. Iron-sulfur cluster interconversions in biotin synthase: dissociation and reassociation of iron during conversion of [2Fe-2S] to [4Fe-4S] clusters. Biochemistry, 2000, 39(17), 5206-5214.
[http://dx.doi.org/10.1021/bi9926227] [PMID: 10819988]
[194]
Ugulava, N.B.; Sacanell, C.J.; Jarrett, J.T. Spectroscopic changes during a single turnover of biotin synthase: destruction of a [2Fe-2S] cluster accompanies sulfur insertion. Biochemistry, 2001, 40(28), 8352-8358.
[http://dx.doi.org/10.1021/bi010463x] [PMID: 11444982]
[195]
Ugulava, N.B.; Surerus, K.K.; Jarrett, J.T. Evidence from Mössbauer spectroscopy for distinct [2Fe-2S](2+) and [4Fe-4S](2+) cluster binding sites in biotin synthase from Escherichia coli. J. Am. Chem. Soc., 2002, 124(31), 9050-9051.
[http://dx.doi.org/10.1021/ja027004j] [PMID: 12148999]
[196]
Wan, J.T.; Jarrett, J.T. Electron acceptor specificity of ferredoxin (flavodoxin):NADP+ oxidoreductase from Escherichia coli. Arch. Biochem. Biophys., 2002, 406(1), 116-126.
[http://dx.doi.org/10.1016/S0003-9861(02)00421-6] [PMID: 12234497]
[197]
Jarrett, J.T. Biotin synthase: A role for iron-sulfur clusters in the radical-mediated generation of carbon-sulfur bonds., 2014.
[http://dx.doi.org/10.1515/9783110308426.107]
[198]
Jarrett, J.T. Biotin synthase: enzyme or reactant? Chem. Biol., 2005, 12(4), 409-410.
[http://dx.doi.org/10.1016/j.chembiol.2005.04.003] [PMID: 15850974]
[199]
Choi-Rhee, E.; Cronan, J.E. A nucleosidase required for in vivo function of the S-adenosyl-L-methionine radical enzyme, biotin synthase. Chem. Biol., 2005, 12(5), 589-593.
[http://dx.doi.org/10.1016/j.chembiol.2005.04.012] [PMID: 15911379]
[200]
Mühlenhoff, U.; Gerl, M.J.; Flauger, B.; Pirner, H.M.; Balser, S.; Richhardt, N.; Lill, R.; Stolz, J. The ISC [corrected] proteins Isa1 and Isa2 are required for the function but not for the de novo synthesis of the Fe/S clusters of biotin synthase in Saccharomyces cerevisiae. Eukaryot. Cell, 2007, 6(3), 495-504.
[http://dx.doi.org/10.1128/EC.00191-06] [PMID: 17259550]
[201]
Sanyal, I.; Gibson, K.J.; Flint, D.H. Escherichia coli biotin synthase: an investigation into the factors required for its activity and its sulfur donor. Arch. Biochem. Biophys., 1996, 326(1), 48-56.
[http://dx.doi.org/10.1006/abbi.1996.0045] [PMID: 8579371]
[202]
Méjean, A.; Bui, B.T.; Florentin, D.; Ploux, O.; Izumi, Y.; Marquet, A. Highly purified biotin synthase can transform dethiobiotin into biotin in the absence of any other protein, in the presence of photoreduced deazaflavin. Biochem. Biophys. Res. Commun., 1995, 217(3), 1231-1237.
[http://dx.doi.org/10.1006/bbrc.1995.2900] [PMID: 8554581]
[203]
Lu, Y.; Qiao, F.; Li, Y.; Sang, X.H.; Li, C.R.; Jiang, J.D.; Yang, X.Y.; You, X.F. Recombinant expression and biochemical characterization of Mycobacterium tuberculosis 3Fe-4S ferredoxin Rv1786. Appl. Microbiol. Biotechnol., 2017, 101(19), 7201-7212.
[http://dx.doi.org/10.1007/s00253-017-8454-7] [PMID: 28812125]
[204]
Broach, R.B.; Jarrett, J.T. Role of the [2Fe-2S]2+ cluster in biotin synthase: mutagenesis of the atypical metal ligand arginine 260. Biochemistry, 2006, 45(47), 14166-14174.
[http://dx.doi.org/10.1021/bi061576p] [PMID: 17115711]
[205]
Pendini, N.R.; Bailey, L.M.; Booker, G.W.; Wilce, M.C.; Wallace, J.C.; Polyak, S.W. Microbial biotin protein ligases aid in understanding holocarboxylase synthetase deficiency. Biochim. Biophys. Acta, 2008, 1784(7-8), 973-982.
[http://dx.doi.org/10.1016/j.bbapap.2008.03.011] [PMID: 18442489]
[206]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2007, 6(1), 29-40.
[http://dx.doi.org/10.1038/nrd2201] [PMID: 17159923]
[207]
Forsyth, R.A.; Haselbeck, R.J.; Ohlsen, K.L.; Yamamoto, R.T.; Xu, H.; Trawick, J.D.; Wall, D.; Wang, L.; Brown-Driver, V.; Froelich, J.M. C, K.G.; King, P.; McCarthy, M.; Malone, C.; Misiner, B.; Robbins, D.; Tan, Z.; Zhu Zy, Z.Y.; Carr, G.; Mosca, D.A.; Zamudio, C.; Foulkes, J.G.; Zyskind, J.W. A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol. Microbiol., 2002, 43(6), 1387-1400.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02832.x] [PMID: 11952893]
[208]
Barker, D.F.; Campbell, A.M. Genetic and biochemical characterization of the birA gene and its product: evidence for a direct role of biotin holoenzyme synthetase in repression of the biotin operon in Escherichia coli. J. Mol. Biol., 1981, 146(4), 469-492.
[http://dx.doi.org/10.1016/0022-2836(81)90043-7] [PMID: 6456358]
[209]
Chapman-Smith, A.; Turner, D.L.; Cronan, J.E., Jr; Morris, T.W.; Wallace, J.C. Expression, biotinylation and purification of a biotin-domain peptide from the biotin carboxy carrier protein of Escherichia coli acetyl-CoA carboxylase. Biochem. J., 1994, 302(Pt 3), 881-887.
[http://dx.doi.org/10.1042/bj3020881] [PMID: 7945216]
[210]
Ma, Q.; Akhter, Y.; Wilmanns, M.; Ehebauer, M.T. Active site conformational changes upon reaction intermediate biotinyl-5′-AMP binding in biotin protein ligase from Mycobacterium tuberculosis. Protein Sci., 2014, 23(7), 932-939.
[http://dx.doi.org/10.1002/pro.2475] [PMID: 24723382]
[211]
Wood, Z.A.; Weaver, L.H.; Brown, P.H.; Beckett, D.; Matthews, B.W. Co-repressor induced order and biotin repressor dimerization: a case for divergent followed by convergent evolution. J. Mol. Biol., 2006, 357(2), 509-523.
[http://dx.doi.org/10.1016/j.jmb.2005.12.066] [PMID: 16438984]
[212]
Soares da Costa, T.P.; Tieu, W.; Yap, M.Y.; Pendini, N.R.; Polyak, S.W.; Sejer Pedersen, D.; Morona, R.; Turnidge, J.D.; Wallace, J.C.; Wilce, M.C.J.; Booker, G.W.; Abell, A.D. Selective inhibition of biotin protein ligase from Staphylococcus aureus. J. Biol. Chem., 2012, 287(21), 17823-17832.
[http://dx.doi.org/10.1074/jbc.M112.356576] [PMID: 22437830]
[213]
Borchardt, R.T.; Eiden, L.E.; Wu, B.; Rutledge, C.O. Sinefungin, a potent inhibitor or S-adenosylmethionine: protein O-methyltransferase. Biochem. Biophys. Res. Commun., 1979, 89(3), 919-924.
[http://dx.doi.org/10.1016/0006-291X(79)91866-7] [PMID: 486211]
[214]
Jiang, L.; Yu, H.W. An example of enzymatic promiscuity: the Baylis-Hillman reaction catalyzed by a biotin esterase (BioH) from Escherichia coli. Biotechnol. Lett., 2014, 36(1), 99-103.
[http://dx.doi.org/10.1007/s10529-013-1329-9] [PMID: 24068501]
[215]
Kadisch, M.; Schmid, A.; Bühler, B. Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing. J. Ind. Microbiol. Biotechnol., 2017, 44(3), 339-351.
[http://dx.doi.org/10.1007/s10295-016-1890-z] [PMID: 28012009]
[216]
Kang, L.; Bai, Y.; Cai, Y.; Zheng, X. Discovery of novel feruloyl esterase activity of BioH in Escherichia coli BL21(DE3). Biotechnol. Lett., 2016, 38(6), 1009-1013.
[http://dx.doi.org/10.1007/s10529-016-2075-6] [PMID: 26956238]
[217]
Hahn, H.G.; Choi, J.S.; Lim, H.K.; Lee, K.I.; Hwang, I.T. Triazolyl phenyl disulfides: 8-Amino-7-oxononanoate synthase inhibitors as potential herbicides. Pestic. Biochem. Physiol., 2015, 125, 78-83.
[http://dx.doi.org/10.1016/j.pestbp.2015.05.006] [PMID: 26615154]
[218]
Kitahara, T.; Hotta, K.; Yoshida, M.; Okami, Y. Biological studies of amiclenomycin. J. Antibiot. (Tokyo), 1975, 28(3), 215-221.
[http://dx.doi.org/10.7164/antibiotics.28.215] [PMID: 805118]
[219]
Mann, S.; Carillon, S.; Breyne, O.; Duhayon, C.; Hamon, L.; Marquet, A. Synthesis and stereochemical assignments of cis- and trans-1-amino-4-ethyleyclohexa-2,5-diene as models for amiclenomycin. Eur. J. Org. Chem., 2002, (4), 736-744.
[http://dx.doi.org/10.1002/1099-0690(200202)2002:4<736:AID-EJOC736>3.0.CO;2-6]
[220]
Mann, S.; Carillon, S.; Breyne, O.; Marquet, A. Total synthesis of amiclenomycin, an inhibitor of biotin biosynthesis. Chemistry, 2002, 8(2), 439-450.
[http://dx.doi.org/10.1002/1521-3765(20020118)8:2<439:AID-CHEM439>3.0.CO;2-5] [PMID: 11843156]
[221]
Mann, S.; Colliandre, L.; Labesse, G.; Ploux, O. Inhibition of 7,8-diaminopelargonic acid aminotransferase from Mycobacterium tuberculosis by chiral and achiral anologs of its substrate: biological implications. Biochimie, 2009, 91(7), 826-834.
[http://dx.doi.org/10.1016/j.biochi.2009.03.019] [PMID: 19345718]
[222]
Poetsch, M.; Zähner, H.; Werner, R.G.; Kern, A.; Jung, G. Metabolic products from microorganisms. 230. Amiclenomycin-peptides, new antimetabolites of biotin. Taxonomy, fermentation and biological properties. J. Antibiot. (Tokyo), 1985, 38(3), 312-320.
[http://dx.doi.org/10.7164/antibiotics.38.312] [PMID: 3891702]
[223]
Eiden, C.G.; Maize, K.M.; Finzel, B.C.; Lipscomb, J.D.; Aldrich, C.C. Rational optimization of mechanism-based inhibitors through determination of the microscopic rate constants of inactivation. J. Am. Chem. Soc., 2017, 139(21), 7132-7135.
[http://dx.doi.org/10.1021/jacs.7b00962] [PMID: 28510452]
[224]
Eiden, C.G.; Aldrich, C.C. Synthesis of a 3-Amino-2,3-dihydropyrid-4-one and related heterocyclic analogues as mechanism-based inhibitors of BioA, a pyridoxal phosphate-dependent enzyme. J. Org. Chem., 2017, 82(15), 7806-7819.
[http://dx.doi.org/10.1021/acs.joc.7b00847] [PMID: 28682613]
[225]
Zlitni, S.; Ferruccio, L.F.; Brown, E.D. Metabolic suppression identifies new antibacterial inhibitors under nutrient limitation. Nat. Chem. Biol., 2013, 9(12), 796-804.
[http://dx.doi.org/10.1038/nchembio.1361] [PMID: 24121552]
[226]
Dai, R.; Geders, T.W.; Liu, F.; Park, S.W.; Schnappinger, D.; Aldrich, C.C.; Finzel, B.C. Fragment-based exploration of binding site flexibility in Mycobacterium tuberculosis BioA. J. Med. Chem., 2015, 58(13), 5208-5217.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00092] [PMID: 26068403]
[227]
Singh, S.; Khare, G.; Bahal, R.K.; Ghosh, P.C.; Tyagi, A.K. Identification of Mycobacterium tuberculosis BioA inhibitors by using structure-based virtual screening. Drug Des. Devel. Ther., 2018, 12, 1065-1079.
[http://dx.doi.org/10.2147/DDDT.S144240] [PMID: 29750019]
[228]
Okami, Y.; Kitahara, T.; Hamada, M.; Naganawa, H.; Kondo, S. Studies on a new amino acid antibiotic, amiclenomycin. J. Antibiot. (Tokyo), 1974, 27(9), 656-664.
[http://dx.doi.org/10.7164/antibiotics.27.656] [PMID: 4436150]
[229]
Mann, S.; Marquet, A.; Ploux, O. Inhibition of 7,8-diaminopelargonic acid aminotransferase by amiclenomycin and analogues. Biochem. Soc. Trans., 2005, 33(Pt 4), 802-805.
[http://dx.doi.org/10.1042/BST0330802] [PMID: 16042602]
[230]
Mann, S.; Florentin, D.; Lesage, D.; Drujon, T.; Ploux, O.; Marquet, A. Inhibition of diamino pelargonic acid aminotransferase, an enzyme of the biotin biosynthetic pathway, by amiclenomycin: A mechanistic study. Helv. Chim. Acta, 2003, 86(11), 3836-3850.
[http://dx.doi.org/10.1002/hlca.200390322]
[231]
Breen, R.S.; Campopiano, D.J.; Webster, S.; Brunton, M.; Watt, R.; Baxter, R.L. The mechanism of 7,8-diaminopelargonate synthase; the role of S-adenosylmethionine as the amino donor. Org. Biomol. Chem., 2003, 1(20), 3498-3499.
[http://dx.doi.org/10.1039/b310443p] [PMID: 14599009]
[232]
Copeland, R.A. Evaluation of enzyme inhibitors in drug discovery: A guide for medicinal chemists and pharmacologists, 2nd ed; , 2013.
[http://dx.doi.org/10.1002/9781118540398]
[233]
Silverman, R.B.; Hoffman, S.J. The organic chemistry of mechanism-based enzyme inhibition: a chemical approach to drug design. Med. Res. Rev., 1984, 4(3), 415-447.
[http://dx.doi.org/10.1002/med.2610040305] [PMID: 6087044]
[234]
Liu, F.; Dawadi, S.; Maize, K.M.; Dai, R.; Park, S.W.; Schnappinger, D.; Finzel, B.C.; Aldrich, C.C. Structure-based optimization of pyridoxal 5′-phosphate-dependent transaminase enzyme (BioA) inhibitors that target Biotin biosynthesis in Mycobacterium tuberculosis. J. Med. Chem., 2017, 60(13), 5507-5520.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00189] [PMID: 28594172]
[235]
Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A.J. Recent developments in fragment-based drug discovery. J. Med. Chem., 2008, 51(13), 3661-3680.
[http://dx.doi.org/10.1021/jm8000373] [PMID: 18457385]
[236]
Erlanson, D.A.; McDowell, R.S.; O’Brien, T. Fragment based drug discovery. J. Med. Chem., 2004, 47(14), 3463-3482.
[http://dx.doi.org/10.1021/jm040031v] [PMID: 15214773]
[237]
Marchetti, C.; Chan, D.S.H.; Coyne, A.G.; Abell, C. Fragment-based approaches to TB drugs. Parasitology, 2018, 145(2), 184-195.
[http://dx.doi.org/10.1017/S0031182016001876] [PMID: 27804891]
[238]
Park, S.W.; Casalena, D.E.; Wilson, D.J.; Dai, R.; Nag, P.P.; Liu, F.; Boyce, J.P.; Bittker, J.A.; Schreiber, S.L.; Finzel, B.C.; Schnappinger, D.; Aldrich, C.C. Target-based identification of whole-cell active inhibitors of biotin biosynthesis in Mycobacterium tuberculosis. Chem. Biol., 2015, 22(1), 76-86.
[http://dx.doi.org/10.1016/j.chembiol.2014.11.012] [PMID: 25556942]
[239]
Rendina, A.R.; Taylor, W.S.; Gibson, K.; Lorimer, G.; Rayner, D.; Lockett, B.; Kranis, K.; Wexler, B.; Marcovici-Mizrahi, D.; Nudelman, A.; Nudelman, A.; Marsilii, E.; Chi, H.J.; Wawrzak, Z.; Calabrese, J.; Huang, W.J.; Jia, J.; Schneider, G.; Lindqvist, Y.; Yang, G. The design and synthesis of inhibitors of dethiobiotin synthetase as potential herbicides. Pestic. Sci., 1999, 55(3), 236-247.
[http://dx.doi.org/10.1002/(SICI)1096-9063(199903)55:3<236:AID-PS888>3.0.CO;2-0]
[240]
Hanka, L.J.; Martin, D.G.; Reineke, L.M. Two new antimetabolites of biotin: alpha-methyldethiobiotin and alpha methylbiotin. Antimicrob. Agents Chemother., 1972, 1(2), 135-138.
[http://dx.doi.org/10.1128/AAC.1.2.135] [PMID: 4680803]
[241]
Grundy, W.E.; Whitman, A.L.; Rdzok, E.G.; Rdzok, E.J.; Hanes, M.E.; Sylvester, J.C. Actithiazic acid. I. Microbiological studies. Antibiot Chemother (Northfield), 1952, 2(8), 399-408.
[PMID: 24542060]
[242]
Bockman, M.R.; Engelhart, C.A.; Cramer, J.D.; Howe, M.D.; Mishra, N.K.; Zimmerman, M.; Larson, P.; Alvarez-Cabrera, N.; Park, S-W.; Boshoff, H.I.M.; Bean, J.M.; Young, V.G., Jr; Ferguson, D.M.; Dartois, V.; Jarrett, J.T.; Schnappinger, D.; Aldrich, C.C. Investigation of (S)-(-)-Acidomycin: A Selective Antimycobacterial Natural Product That Inhibits Biotin Synthase. ACS Infect. Dis., 2019, 5(4), 598-617.
[http://dx.doi.org/10.1021/acsinfecdis.8b00345] [PMID: 30652474]
[243]
Bockman, M.R.; Engelhart, C.A.; Dawadi, S.; Larson, P.; Tiwari, D.; Ferguson, D.M.; Schnappinger, D.; Aldrich, C.C. Avoiding antibiotic inactivation in Mycobacterium tuberculosis by Rv3406 through strategic nucleoside modification. ACS Infect. Dis., 2018, 4(7), 1102-1113.
[http://dx.doi.org/10.1021/acsinfecdis.8b00038] [PMID: 29663798]
[244]
Bockman, M.R.; Kalinda, A.S.; Petrelli, R.; De la Mora-Rey, T.; Tiwari, D.; Liu, F.; Dawadi, S.; Nandakumar, M.; Rhee, K.Y.; Schnappinger, D.; Finzel, B.C.; Aldrich, C.C. Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with nucleoside-based bisubstrate adenylation inhibitors. J. Med. Chem., 2015, 58(18), 7349-7369.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00719] [PMID: 26299766]
[245]
Brown, P.H.; Cronan, J.E.; Grøtli, M.; Beckett, D. The biotin repressor: modulation of allostery by corepressor analogs. J. Mol. Biol., 2004, 337(4), 857-869.
[http://dx.doi.org/10.1016/j.jmb.2004.01.041] [PMID: 15033356]
[246]
Paparella, A.S.; Lee, K.J.; Hayes, A.J.; Feng, J.; Feng, Z.; Cini, D.; Deshmukh, S.; Booker, G.W.; Wilce, M.C.J.; Polyak, S.W.; Abell, A.D. Halogenation of biotin protein ligase inhibitors improves whole cell activity against Staphylococcus aureus. ACS Infect. Dis., 2018, 4(2), 175-184.
[http://dx.doi.org/10.1021/acsinfecdis.7b00134] [PMID: 29131575]
[247]
Sittiwong, W.; Cordonier, E.L.; Zempleni, J.; Dussault, P.H. β-Keto and β-hydroxyphosphonate analogs of biotin-5′-AMP are inhibitors of holocarboxylase synthetase. Bioorg. Med. Chem. Lett., 2014, 24(24), 5568-5571.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.010] [PMID: 25466176]
[248]
Tieu, W.; Polyak, S.W.; Paparella, A.S.; Yap, M.Y.; Soares da Costa, T.P.; Ng, B.; Wang, G.; Lumb, R.; Bell, J.M.; Turnidge, J.D.; Wilce, M.C.; Booker, G.W.; Abell, A.D. Improved synthesis of biotinol-5′-AMP: Implications for antibacterial discovery. ACS Med. Chem. Lett., 2014, 6(2), 216-220.
[http://dx.doi.org/10.1021/ml500475n] [PMID: 25699152]
[249]
Soares da Costa, T.P.; Tieu, W.; Yap, M.Y.; Zvarec, O.; Bell, J.M.; Turnidge, J.D.; Wallace, J.C.; Booker, G.W.; Wilce, M.C.J.; Abell, A.D.; Polyak, S.W. Biotin analogues with antibacterial activity are potent inhibitors of biotin protein ligase. ACS Med. Chem. Lett., 2012, 3(6), 509-514.
[http://dx.doi.org/10.1021/ml300106p] [PMID: 24900501]
[250]
Shi, C.; Tiwari, D.; Wilson, D.J.; Seiler, C.L.; Schnappinger, D.; Aldrich, C.C. Bisubstrate inhibitors of biotin protein ligase in Mycobacterium tuberculosis resistant to cyclonucleoside formation. ACS Med. Chem. Lett., 2013, 4(12), 1213-1217.
[http://dx.doi.org/10.1021/ml400328a] [PMID: 24363833]
[251]
Sogi, K.M.; Gartner, Z.J.; Breidenbach, M.A.; Appel, M.J.; Schelle, M.W.; Bertozzi, C.R. Mycobacterium tuberculosis Rv3406 is a type II alkyl sulfatase capable of sulfate scavenging. PLoS One, 2013, 8(6) e65080
[http://dx.doi.org/10.1371/journal.pone.0065080]] [PMID: 23762287]
[252]
Tieu, W.; Jarrad, A.M.; Paparella, A.S.; Keeling, K.A.; Soares da Costa, T.P.; Wallace, J.C.; Booker, G.W.; Polyak, S.W.; Abell, A.D. Heterocyclic acyl-phosphate bioisostere-based inhibitors of Staphylococcus aureus biotin protein ligase. Bioorg. Med. Chem. Lett., 2014, 24(19), 4689-4693.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.030] [PMID: 25193234]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy