Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry


ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Tetrahydrocurcumin, Curcumin, and 5-Fluorouracil Effects on Human Esophageal Carcinoma Cells

Author(s): Emily G. Pendleton, Roudabeh J. Jamasbi and Michael E. Geusz*

Volume 19 , Issue 8 , 2019

Page: [1012 - 1020] Pages: 9

DOI: 10.2174/1871520619666190116141448

Price: $65


Background: Esophageal cancer responds poorly to traditional therapies, and novel treatments are needed. The phytochemical curcumin is a potential treatment for Esophageal Squamous Cell Carcinoma (ESCC). A curcumin metabolite, tetrahydrocurcumin (THCUR), has anti-cancer effects and greater bioavailability than curcumin.

Objective: Evaluate THCUR as an anti-cancer agent relative to curcumin and a standard cancer drug, 5-fluorouracil (5-FU), along with treatment interactions.

Materials and Methods: Assay cell proliferation and viability following individual and combined delivery of the compounds to three ESSC cell lines (TE-1, TE-8, and KY-5) that have different percentages of Cancer Stem Cells (CSCs).

Results: Curcumin was significantly more effective than 5-FU in all three cell lines. It also had the greatest effect on KY-5 cells, which have the highest CSC properties, consistent with the ability of curcumin to target CSCs. Effects on ESCC cell proliferation were not detected from 40µM THCUR, a dosage above the IC50 of curcumin and 5-FU. However, THCUR at this dosage in combination with 5-FU significantly suppressed TE-1 cell proliferation, but 5-FU alone did not. As TE-1 has low CSC properties relative to the two other cell lines, it was expected to have the least resistance to chemotherapeutic treatments. Surprisingly, TE-1 was the most resistant to inhibition by 5-FU.

Conclusion: These results and the greater stability and water solubility of THCUR than curcumin support further testing of THCUR in combination with standard treatments, particularly for chemoresistant ESCC. In contrast to concerns that curcuminoids taken by patients through diet or diet supplements might interfere with chemotherapy, suppression of 5-FU efficacy by curcumin was not observed.

Keywords: Tetrahydrocurcumin, curcumin, esophagus, cancer stem cell, chemoresistance, drug interactions.

Graphical Abstract
Shishodia, S.; Chaturvedi, M.M.; Aggarwal, B.B. Role of curcumin in cancer therapy. Curr. Probl. Cancer, 2007, 31(4), 243-305.
Alexandrow, M.G.; Song, L.J.; Altiok, S.; Gray, J.; Haura, E.B.; Kumar, N.B. Curcumin: A novel Stat3 pathway inhibitor for chemoprevention of lung cancer. Eur. J. Cancer Prev., 2012, 21(5), 407-412.
Aggarwal, B.B.; Shishodia, S.; Takada, Y.; Banerjee, S.; Newman, R.A.; Bueso-Ramos, C.E.; Price, J.E. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res., 2005, 11(20), 7490-7498.
Almanaa, T.N.; Geusz, M.E.; Jamasbi, R.J. Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines. BMC Complement. Altern. Med., 2012, 12(1), 195.
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348.
Scarpa, E.S.; Ninfali, P. Phytochemicals as innovative therapeutic tools against cancer stem cells. Int. J. Mol. Sci., 2015, 16(7), 15727-15742.
Fabian, A.; Vereb, G.; Szollosi, J. The hitchhikers guide to cancer stem cell theory: markers, pathways and therapy. Cytometry Part A, 2013, 83(1), 62-71.
Lobo, N.A.; Shimono, Y.; Qian, D.; Clarke, M.F. The biology of cancer stem cells. Annu. Rev. Cell Dev. Biol., 2007, 23, 675-699.
Mukherjee, S.; Mazumdar, M.; Chakraborty, S.; Manna, A.; Saha, S.; Khan, P.; Bhattacharjee, P.; Guha, D.; Adhikary, A.; Mukhjerjee, S.; Das, T. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/beta-catenin negative feedback loop. Stem Cell Res. Ther., 2014, 5(5), 116.
Huang, Y.T.; Lin, Y.W.; Chiu, H.M.; Chiang, B.H. Curcumin induces apoptosis of colorectal cancer stem cells by coupling with CD44 marker. J. Agric. Food Chem., 2016, 64(11), 2247-2253.
Suresh, R.; Ali, S.; Ahmad, A.; Philip, P.A.; Sarkar, F.H. The role of cancer stem cells in recurrent and drug-resistant lung cancer. Adv. Exp. Med. Biol., 2016, 890, 57-74.
Mohamed, A.; El-Rayes, B.; Khuri, F.R.; Saba, N.F. Targeted therapies in metastatic esophageal cancer: Advances over the past decade. Crit. Rev. Oncol. Hematol., 2014, 91(2), 186-196.
Aaltonen, L.A.; Hamilton, S.R. World Health Organization; International Agency for Research on Cancer; Pathology and Genetics of Tumours of the Digestive System., IARC Press; Oxford University Press (distributor: Lyon Oxford). 2000.
Okamoto, M.; Fujiwara, M.; Hori, M.; Okada, K.; Yazama, F.; Konishi, H.; Xiao, Y.; Qi, G.; Shimamoto, F.; Ota, T.; Temme, A.; Tatsuka, M. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS Genet., 2014, 10(9), e1004639.
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
Balasubramanian, S.; Girija, A.R.; Nagaoka, Y.; Iwai, S.; Suzuki, M.; Kizhikkilot, V.; Yoshida, Y.; Maekawa, T.; Nair, S.D. Curcumin and 5-fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia. Int. J. Nanomedicine, 2014, 9, 437-459.
Toden, S.; Okugawa, Y.; Jascur, T.; Wodarz, D.; Komarova, N.L.; Buhrmann, C.; Shakibaei, M.; Boland, C.R.; Goel, A. Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis, 2015, 36(3), 355-367.
Bao, B.; Ali, S.; Kong, D.; Sarkar, S.H.; Wang, Z.; Banerjee, S.; Aboukameel, A.; Padhye, S.; Philip, P.A.; Sarkar, F.H. Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One, 2011, 6(3), e17850.
Cao, Y.; Xu, R.X.; Liu, Z. A high-throughput quantification method of curcuminoids and curcumin metabolites in human plasma via high-performance liquid chromatography/tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 949-950, 70-78.
Sarma, A.; Sharma, V.P.; Sarkar, A.B.; Sekar, M.C.; Samuel, K.; Geusz, M.E. The circadian clock modulates anti-cancer properties of curcumin. BMC Cancer, 2016, 16(1), 759.
Yodkeeree, S.; Chaiwangyen, W.; Garbisa, S.; Limtrakul, P. Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J. Nutr. Biochem., 2009, 20(2), 87-95.
Ravindranath, V.; Chandrasekhara, N. In vitro studies on the intestinal absorption of curcumin in rats. Toxicology, 1981, 20(2-3), 251-257.
Hassaninasab, A.; Hashimoto, Y.; Tomita-Yokotani, K.; Kobayashi, M. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proc. Natl. Acad. Sci. USA, 2011, 108(16), 6615-6620.
Wu, J.C.; Tsai, M.L.; Lai, C.S.; Wang, Y.J.; Ho, C.T.; Pan, M.H. Chemopreventative effects of tetrahydrocurcumin on human diseases. Food Funct., 2014, 5(1), 12-17.
Yodkeeree, S.; Garbisa, S.; Limtrakul, P. Tetrahydrocurcumin inhibits HT1080 cell migration and invasion via downregulation of MMPs and uPA. Acta Pharm. Sinica, 2008, 29(7), 853-860.
Wu, J.C.; Lai, C.S.; Badmaev, V.; Nagabhushanam, K.; Ho, C.T.; Pan, M.H. Tetrahydrocurcumin, a major metabolite of curcumin, induced autophagic cell death through coordinative modulation of PI3K/Akt-mTOR and MAPK signaling pathways in human leukemia HL-60 cells. Mol. Nutr. Food Res., 2011, 55(11), 1646-1654.
Kang, N.; Wang, M.M.; Wang, Y.H.; Zhang, Z.N.; Cao, H.R.; Lv, Y.H.; Yang, Y.; Fan, P.H.; Qiu, F.; Gao, X.M. Tetrahydrocurcumin induces G2/M cell cycle arrest and apoptosis involving p38 MAPK activation in human breast cancer cells. Food Chem. Toxicol., 2014, 67, 193-200.
Han, X.; Deng, S.; Wang, N.; Liu, Y.; Yang, X. Inhibitory effects and molecular mechanisms of tetrahydrocurcumin against human breast cancer MCF-7 cells. Food Nutr. Res., 2016, 60, 30616.
Yoysungnoen, B.; Bhattarakosol, P.; Changtam, C.; Patumraj, S. Effects of tetrahydrocurcumin on tumor growth and cellular signaling in cervical cancer xenografts in nude mice. BioMed Res. Int., 2016, 2016, 1781208.
Liu, W.; Zhang, Z.; Lin, G.; Luo, D.; Chen, H.; Yang, H.; Liang, J.; Liu, Y.; Xie, J.; Su, Z.; Cao, H. Tetrahydrocurcumin is more effective than curcumin in inducing the apoptosis of H22 cells via regulation of a mitochondrial apoptosis pathway in ascites tumor-bearing mice. Food Funct., 2017, 8(9), 3120-3129.
Zhou, X.; Zhang, F.; Chen, C.; Guo, Z.; Liu, J.; Yu, J.; Xu, Y.; Zhong, D.; Jiang, H. Impact of curcumin on the pharmacokinetics of rosuvastatin in rats and dogs based on the conjugated metabolites. Xenobiotica, 2017, 47(3), 267-275.
Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611.
Atsumi, T.; Tonosaki, K.; Fujisawa, S. Comparative cytotoxicity and ROS generation by curcumin and tetrahydrocurcumin following visible-light irradiation or treatment with horseradish peroxidase. Anticancer Res., 2007, 27(1A), 363-371.
Yan, D.; Geusz, M.E.; Jamasbi, R.J. Properties of lewis lung carcinoma cells surviving curcumin toxicity. J. Cancer, 2012, 3, 32-41.
Yoysungnoen, P.; Wirachwong, P.; Changtam, C.; Suksamrarn, A.; Patumraj, S. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World J. Gastroenterol., 2008, 14(13), 2003-2009.
Somasundaram, S.; Edmund, N.A.; Moore, D.T.; Small, G.W.; Shi, Y.Y.; Orlowski, R.Z. Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res., 2002, 62(13), 3868-3875.
Limtrakul, P.; Chearwae, W.; Shukla, S.; Phisalphong, C.; Ambudkar, S.V. Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol. Cell. Biochem., 2007, 296(1-2), 85-95.
Shimada, Y.; Imamura, M.; Wagata, T.; Yamaguchi, N.; Tobe, T. Characterization of 21 newly established esophageal cancer cell lines. Cancer, 1992, 69(2), 277-284.
Nishihira, T.; Hashimoto, Y.; Katayama, M.; Mori, S.; Kuroki, T. Molecular and cellular features of esophageal cancer cells. J. Cancer Res. Clin. Oncol., 1993, 119(8), 441-449.
Almanaa, T.N.; Geusz, M.E.; Jamasbi, R.J. A new method for identifying stem-like cells in esophageal cancer cell lines. J. Cancer, 2013, 4(7), 536-548.
Ireson, C.R.; Jones, D.J.; Orr, S.; Coughtrie, M.W.; Boocock, D.J.; Williams, M.L.; Farmer, P.B.; Steward, W.P.; Gescher, A.J. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol. Biomarkers Prev., 2002, 11(1), 105-111.
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
Zhang, H.; Yu, T.; Wen, L.; Wang, H.; Fei, D.; Jin, C. Curcumin enhances the effectiveness of cisplatin by suppressing CD133(+) cancer stem cells in laryngeal carcinoma treatment. Exp. Ther. Med., 2013, 6(5), 1317-1321.
Kang, J.H.; Kang, H.S.; Kim, I.K.; Lee, H.Y.; Ha, J.H.; Yeo, C.D.; Kang, H.H.; Moon, H.S.; Lee, S.H. Curcumin sensitizes human lung cancer cells to apoptosis and metastasis synergistically combined with carboplatin. Exp. Biol. Med. (Maywood), 2015, 240(11), 1416-1425.
Yu, Y.; Kanwar, S.S.; Patel, B.B.; Nautiyal, J.; Sarkar, F.H.; Majumdar, A.P. Elimination of colon cancer stem-like cells by the combination of curcumin and FOLFOX. Transl. Oncol., 2009, 2(4), 321-328.
Vijaya Saradhi, U.V.; Ling, Y.; Wang, J.; Chiu, M.; Schwartz, E.B.; Fuchs, J.R.; Chan, K.K.; Liu, Z. A liquid chromatography-tandem mass spectrometric method for quantification of curcuminoids in cell medium and mouse plasma. J. Chrom. B, 2010, 878(30), 3045-3051.
Shen, L.; Ji, H.F. The pharmacology of curcumin: Is it the degradation products? Trends Mol. Med., 2012, 18(3), 138-144.
Liu, J.; Fan, H.; Ma, Y.; Liang, D.; Huang, R.; Wang, J.; Zhou, F.; Kan, Q.; Ming, L.; Li, H.; Giercksky, K.E.; Nesland, J.M.; Suo, Z. Notch1 is a 5-fluorouracil resistant and poor survival marker in human esophagus squamous cell carcinomas. PLoS One, 2013, 8(2), e56141.
Pari, L.; Murugan, P. Protective role of tetrahydrocurcumin against erythromycin estolate-induced hepatotoxicity. Pharmacol. Res., 2004, 49(5), 481-486.
Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol. Adv., 2014, 32(6), 1053-1064.
Kim, J.M.; Araki, S.; Kim, D.J.; Park, C.B.; Takasuka, N.; Baba-Toriyama, H.; Ota, T.; Nir, Z.; Khachik, F.; Shimidzu, N.; Tanaka, Y.; Osawa, T.; Uraji, T.; Murakoshi, M.; Nishino, H.; Tsuda, H. Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine initiation. Carcinogenesis, 1998, 19(1), 81-85.
Lai, C.S.; Wu, J.C.; Yu, S.F.; Badmaev, V.; Nagabhushanam, K.; Ho, C.T.; Pan, M.H. Tetrahydrocurcumin is more effective than curcumin in preventing azoxymethane-induced colon carcinogenesis. Mol. Nutr. Food Res., 2011, 55(12), 1819-1828.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy