Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry


ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Impact of Hybrid-polar Histone Deacetylase Inhibitor m-Carboxycinnamic Acid bis-Hydroxyamide on Human Pancreatic Adenocarcinoma Cells

Author(s): Dinesh Kumar, Pranjal Sarma, Manika P. Bhadra* and Anjana D. Tangutur*

Volume 19 , Issue 6 , 2019

Page: [750 - 759] Pages: 10

DOI: 10.2174/1871520619666190101115034

Price: $65


Background: Histone deacetylase inhibitors (HDACIs) have got immense importance as promising drugs for cancer treatment as these inhibitors regulate cellular differentiation, gene expression, cell cycle arrest and apoptosis. The current study investigates the effect of the hybrid-polar HDACI m-carboxycinnamic acid bishydroxyamide (CBHA) on the growth of human pancreatic adenocarcinoma cells, using the cell line MIA PaCa- 2 as an in vitro model.

Methods: Following CBHA treatment of the MIA PaCa-2 cells, we characterized the effect of CBHA by in vitro cytotoxicity evaluation, clonogenic assay, cell cycle analysis, immunoblotting for soluble and insoluble fractions of tubulin, immunofluorescence and caspase-3 assay.

Results: We observed that the histone deacetylase inhibitor CBHA markedly impaired growth of the pancreatic cancer cells by resulting in dose-dependent G2/M arrest, disruption of microtubule organization, induction of caspase-mediated apoptosis and in vitro suppression of HDAC6. Our study also shows that inhibition of HDAC6 by CBHA induced acetylation of α-tubulin.

Conclusion: Together, our findings show that CBHA can be a potential plausible therapeutic that could be exploited for pancreatic cancer therapy.

Keywords: m-carboxycinnamic acid bis-hydroxyamide (CBHA), pancreatic ductal adenocarcinoma (PDAC), HDAC inhibitors (HDACIs), cytotoxicity, human pancreatic adenocarcinoma, MIA PaCa-2 cells.

Graphical Abstract
Ryan, D.P.; Hong, T.S.; Bardeesy, N. Pancreatic adenocarcinoma. N. Engl. J. Med., 2014, 371(11), 1039-1049.
Kayahara, M.; Funaki, K.; Tajima, H.; Takamura, H.; Ninomiya, I.; Kitagawa, H.; Ohta, T. Surgical implication of micrometastasis for pancreatic cancer. Pancreas, 2010, 39(6), 884-888.
Mayo, S.C.; Austin, D.F.; Sheppard, B.C.; Mori, M.; Shipley, D.K.; Billingsley, K.G. Adjuvant therapy and survival after resection of pancreatic adenocarcinoma: A population-based analysis. Cancer, 2010, 116(12), 2932-2940.
Singh, D.; Upadhyay, G.; Srivastava, R.K.; Shankar, S. Recent advances in pancreatic cancer: biology, treatment, and prevention. Biochim. Biophys. Acta, 2015, 1856(1), 13-27.
Matsuoka, T.; Yashiro, M. Molecular targets for the treatment of pancreatic cancer: Clinical and experimental studies. World J. Gastroenterol., 2016, 22(2), 776-789.
Tinari, N.; de Tursi, M.; Grassadonia, A.; Zilli, M.; Stuppia, L.; Iacobelli, S.; Natolie, C. An epigenetic approach to pancreatic cancer treatment: The prospective role of histone deacetylase inhibitors. Curr. Cancer Drug Targets, 2012, 12, 439-452.
Di Cerbo, V.; Schneider, R. Cancers with wrong HATs: The impact of acetylation. Brief. Funct. Genomics, 2013, 12(3), 231-243.
Fraga, M.F.; Ballestar, E.; Villar-Garea, A.; Boix-Chornet, M.; Espada, J.; Schotta, G.; Bonaldi, T.; Haydon, C.; Ropero, S.; Petrie, K.; Iyer, N.G.; Pérez-Rosado, A.; Calvo, E.; Lopez, J.A.; Cano, A.; Calasanz, M.J.; Colomer, D.; Piris, M.A.; Ahn, N.; Imhof, A.; Caldas, C.; Jenuwein, T.; Esteller, M. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet., 2005, 37(4), 391-400.
Conley, B.A.; Wright, J.J.; Kummar, S. Targeting epigenetic abnormalities with histone deacetylase inhibitors. Cancer, 2006, 107(4), 832-840.
Carew, J.S.; Giles, F.J.; Nawrocki, S.T. Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett., 2008, 269(1), 7-17.
Fritsche, P.; Seidler, B.; Schüler, S.; Schnieke, A.; Göttlicher, M.; Schmid, R.M.; Saur, D.; Schneider, G. HDAC2 mediates therapeutic resistance of pancreatic cancer cells via the BH3-only protein NOXA. Gut, 2009, 58(10), 1399-1409.
Lehmann, A.; Denkert, C.; Budczies, J.; Buckendahl, A.C.; Darb-Esfahani, S.; Noske, A.; Müller, B.M.; Bahra, M.; Neuhaus, P.; Dietel, M.; Kristiansen, G.; Weichert, W. High class I HDAC activity and expression are associated with RelA/p65 activation in pancreatic cancer in vitro and in vivo. BMC Cancer, 2009, 9, 395.
Miyake, K.; Yoshizumi, T.; Imura, S.; Sugimoto, K.; Batmunkh, E.; Kanemura, H.; Morine, Y.; Shimada, M. Expression of hypoxia-inducible factor-1alpha, histone deacetylase 1, and metastasis-associated protein 1 in pancreatic carcinoma: Correlation with poor prognosis with possible regulation. Pancreas, 2008, 36(3), e1-e9.
Ouaïssi, M.; Sielezneff, I.; Silvestre, R.; Sastre, B.; Bernard, J.P.; Lafontaine, J.S.; Payan, M.J.; Dahan, L.; Pirro, N.; Seitz, J.F.; Mas, E.; Lombardo, D.; Ouaissi, A. High Histone Deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Ann. Surg. Oncol., 2008, 15(8), 2318-2328.
Ellis, L.; Hammers, H.; Pili, R. Targeting tumor angiogenesis with Histone Deacetylase Inhibitors. Cancer Lett., 2009, 280(2), 145-153.
Mottet, D.; Bellahcène, A.; Pirotte, S.; Waltregny, D.; Deroanne, C.; Lamour, V.; Lidereau, R.; Castronovo, V. Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ. Res., 2007, 101(12), 1237-1246.
Deroanne, C.F.; Bonjean, K.; Servotte, S.; Devy, L.; Colige, A.; Clausse, N.; Blacher, S.; Verdin, E.; Foidart, J.M.; Nusgens, B.V.; Castronovo, V. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene, 2002, 21(3), 427-436.
Glozak, M.A.; Seto, E. Histone deacetylases and cancer. Oncogene, 2007, 26(37), 5420-5432.
Marks, P.A.; Richon, V.M.; Rifkind, R.A. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Natl. Cancer Inst., 2000, 92(15), 1210-1216.
Marks, P.A.; Richon, V.M.; Breslow, R.; Rifkind, R.A. Histone deacetylase inhibitors as new cancer drugs. Curr. Opin. Oncol., 2001, 13(6), 477-483.
Richon, V.M.; Zhou, X.; Rifkind, R.A.; Marks, P.A. Histone deacetylase inhibitors: Development of suberoylanilide hydroxamic acid (SAHA) for the treatment of cancers. Blood Cells Mol. Dis., 2001, 27(1), 260-264.
Richon, V.M.; Emiliani, S.; Verdin, E.; Webb, Y.; Breslow, R.; Rifkind, R.A.; Marks, P.A. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl. Acad. Sci. USA, 1998, 95(6), 3003-3007.
Cheung, P.; Allis, C.D.; Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell, 2000, 103(2), 263-271.
Marks, P.; Rifkind, R.A.; Richon, V.M.; Breslow, R.; Miller, T.; Kelly, W.K. Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer, 2001, 1(3), 194-202.
Glick, R.D.; Swendeman, S.L.; Coffey, D.C.; Rifkind, R.A.; Marks, P.A.; Richon, V.M.; La Quaglia, M.P. Hybrid polar histone deacetylase inhibitor induces apoptosis and CD95/CD95 ligand expression in human neuroblastoma. Cancer Res., 1999, 59(17), 4392-4399.
Butler, L.M.; Agus, D.B.; Scher, H.I.; Higgins, B.; Rose, A.; Cordon-Cardo, C.; Thaler, H.T.; Rifkind, R.A.; Marks, P.A.; Richon, V.M. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res., 2000, 60(18), 5165-5170.
Jordan, M.A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents, 2002, 2(1), 1-17.
Zilberman, Y.; Ballestrem, C.; Carramusa, L.; Mazitschek, R.; Khochbin, S.; Bershadsky, A. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J. Cell Sci., 2009, 122(Pt 19), 3531-3541.
Sadoul, K.; Khochbin, S. The growing landscape of tubulin acetylation: lysine 40 and many more. Biochem. J., 2016, 473(13), 1859-1868.
Griffin, J.F.; Smalley, S.R.; Jewell, W.; Paradelo, J.C.; Reymond, R.D.; Hassanein, R.E.; Evans, R.G. Patterns of failure after curative resection of pancreatic carcinoma. Cancer, 1990, 66(1), 56-61.
Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; Harris, M.; Reni, M.; Dowden, S.; Laheru, D.; Bahary, N.; Ramanathan, R.K.; Tabernero, J.; Hidalgo, M.; Goldstein, D.; Van Cutsem, E.; Wei, X.; Iglesias, J.; Renschler, M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med., 2013, 369(18), 1691-1703.
Koutsounas, I.; Giaginis, C.; Patsouris, E.; Theocharis, S. Current evidence for histone deacetylase inhibitors in pancreatic cancer. World J. Gastroenterol., 2013, 19(6), 813-828.
Park, J.H.; Shin, Y.J.; Riew, T.R.; Lee, M.Y. The indolinone MAZ51 induces cell rounding and G2/M cell cycle arrest in glioma cells without the inhibition of VEGFR-3 phosphorylation: Involvement of the RhoA and Akt/GSK3β signaling pathways. PLoS One, 2014, 9(9), e109055.
Ling, Y.H.; Liebes, L.; Jiang, J.D.; Holland, J.F.; Elliott, P.J.; Adams, J.; Muggia, F.M.; Perez-Soler, R. Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin. Cancer Res., 2003, 9(3), 1145-1154.
Liu, C.Y.; Yang, J.S.; Huang, S.M.; Chiang, J.H.; Chen, M.H.; Huang, L.J.; Ha, H.Y.; Fushiya, S.; Kuo, S.C. Smh-3 induces G(2)/M arrest and apoptosis through calciummediated endoplasmic reticulum stress and mitochondrial signaling in human hepatocellular carcinoma Hep3B cells. Oncol. Rep., 2013, 29(2), 751-762.
Hirose, T.; Sowa, Y.; Takahashi, S.; Saito, S.; Yasuda, C.; Shindo, N.; Furuichi, K.; Sakai, T. p53-independent induction of Gadd45 by histone deacetylase inhibitor: Coordinate regulation by transcription factors Oct-1 and NF-Y. Oncogene, 2003, 22(49), 7762-7773.
Santos, S.D.; Wollman, R.; Meyer, T.; Ferrell, Jr, J.E. Spatial positive feedback at the onset of mitosis. Cell, 2012, 149(7), 1500-1513.
Topham, C.H.; Taylor, S.S. Mitosis and apoptosis: How is the balance set? Curr. Opin. Cell Biol., 2013, 25(6), 780-785.
Fuchs, Y.; Steller, H. Programmed cell death in animal development and disease. Cell, 2011, 147(4), 742-758.
Blagosklonny, M.V.; Robey, R.; Sackett, D.L.; Du, L.; Traganos, F.; Darzynkiewicz, Z.; Fojo, T.; Bates, S.E. Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol. Cancer Ther., 2002, 1(11), 937-941.
Matsuyama, A.; Shimazu, T.; Sumida, Y.; Saito, A.; Yoshimatsu, Y.; Seigneurin-Berny, D.; Osada, H.; Komatsu, Y.; Nishino, N.; Khochbin, S.; Horinouchi, S.; Yoshida, M. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J., 2002, 21(24), 6820-6831.
Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon, A.; Yoshida, M.; Wang, X.F.; Yao, T.P. HDAC6 is a microtubule-associated deacetylase. Nature, 2002, 417(6887), 455-458.
Tran, A.D.; Marmo, T.P.; Salam, A.A.; Che, S.; Finkelstein, E.; Kabarriti, R.; Xenias, H.S.; Mazitschek, R.; Hubbert, C.; Kawaguchi, Y.; Sheetz, M.P.; Yao, T.P.; Bulinski, J.C. HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J. Cell Sci., 2007, 120(Pt 8), 1469-1479.
Mishra, N.; Reilly, C.M.; Brown, D.R.; Ruiz, P.; Gilkeson, G.S. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest., 2003, 111(4), 539-552.
Turner, B.M. Decoding the nucleosome. Cell, 1993, 75(1), 5-8.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy