Generic placeholder image

Micro and Nanosystems


ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

Thermal Interface Materials Based on Vertically Aligned Carbon Nanotube Arrays: A Review

Author(s): Guangjie Yuan*, Haohao Li, Bo Shan and Johan Liu

Volume 11 , Issue 1 , 2019

Page: [3 - 10] Pages: 8

DOI: 10.2174/1876402911666181218143608


As the feature size of integrated circuit devices is shrinking to sub-7 nm node, the chip power dissipation significantly increases and mainly converted to the heat. Vertically Aligned Carbon Nanotube arrays (VACNTs) have a large number of outstanding properties, such as high axial thermal conductivity, low expansion coefficient, light-weight, anti-aging, and anti-oxidation. With a dramatic increment of chip temperature, VACNTs and their composites will be the promising materials as Thermal Interface Materials (TIMs), especially due to their high thermal conductivity. In this review, the synthesis, transfer and potential applications of VACNTs have been mentioned. Thermal Chemical Vapor Deposition (TCVD) has been selected for the synthesis of millimeter-scale VACNTs. After that, they are generally transferred to the target substrate for the application of TIMs in the electronics industry, using the solder transfer method. Besides, the preparation and potential applications of VACNTs-based composites are also summarized. The gaps of VACNTs are filled by the metals or polymers to replace the low thermal conductivity in the air and make them free-standing composites films. Compared with VACNTs- metal composites, VACNTs-polymer composites will be more suitable for the next generation TIMs, due to their lightweight, low density and good mechanical properties.

Keywords: Vertically aligned carbon nanotube arrays, chemical vapor deposition, nanocomposites, thermal interface material, thermal management, microelectronic packaging.

Graphical Abstract
Endo, K.; O’uchi, S.I.; Ishikawa, Y.; Liu, Y.X.; Matsukawa, T.; Sakamoto, K.; Tsukada, J.; Yamauchi, H.; Masahara, M. Variability analysis of TiN metal-gate FinFETs. IEEE Electron Device Lett., 2010, 31(6), 546-548.
Sachid, A.B.; Lin, H.Y.; Hu, C. Nanowire FET with corner spacer for high-performance energy-efficient applications. IEEE Trans. Electron Dev., 2017, 64(12), 5181-5187.
Choi, S.J.; Moon, D.I.; Duarte, J.P.; Ahn, J.H.; Choi, Y.K. Physical observation of a thermo-morphic transition in a silicon nanowire. ACS Nano, 2012, 6(3), 2378-2384.
Chen, S.H.; Liao, W.S.; Yang, H.C.; Wang, S.J.; Liaw, Y.G.; Wang, H.; Gu, H.S.; Wang, M.C. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure. Nanoscale Res. Lett., 2012, 7(1), 431.
Su, C.J.; Tsai, T.I.; Liou, Y.L.; Lin, Z.M.; Lin, H.C. Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channels. IEEE Electron Device Lett., 2011, 32(4), 521-523.
Kang, T.K.; Liao, T.C.; Lin, C.M.; Liu, H.W.; Cheng, H.C. High-performance single-crystal-like nanowire poly-Si TFTs with spacer pattering technique. IEEE Electron Device Lett., 2011, 32(3), 330-332.
Deshpande, V.; Barraud, S.; Jehl, X.; Wacquez, R.; Vinet, M.; Coquand, R.; Roche, B.; Voisin, B.; Triozon, F.; Vizioz, C.; Tosti, L.; Previtali, B.; Perreau, P.; Poiroux, T.; Sanquer, M.; Faynot, O. Scaling of trigate Nanowire (NW) MOSFETs to sub-7 nm width: 300 K transition to single electron transistor. Solid-State Electron., 2013, 84(84), 179-184.
Lee, C.C.; Yang, T.F.; Wu, C.S.; Kao, K.S.; Cheng, R.C.; Chen, T.H. Reliability estimation and failure mode prediction for 3D chip stacking package with the application of wafer-level underfill. Microelectron. Eng., 2013, 107, 107-113.
Fukushima, T.; Iwata, E.; Ohara, Y.; Murugesan, M.; Bea, J.; Lee, K.; Tanaka, T.; Koyanagi, M. Multichip-to-wafer three-dimensional integration technology using chip self-assembly with excimer lamp irradiation. IEEE T. Electr. Dev., 2012, 59(11), 2956-2963.
Lee, K.; Choi, H.; Kim, D.S.; Jang, M.S.; Choi, M. Vertical stacking of three-dimensional nanostructures via an aerosol lithography for advanced optical applications. Nanotechnology, 2017, 28(47), 475302.
Liang, Q.; Xuxia, Y.; Wang, W.; Liu, Y.; Wong, C.P. A three-dimensional vertically aligned functionalized nultilayer graphene architecture: An approach for graphene-based thermal interfacial materials. ACS Nano, 2011, 5(3), 2392-2401.
Haensch, W.; Nowak, E.J.; Dennard, R.H.; Dennard, P.M.; Solomon, P.M.; Bryant, A.; Dokumaci, O.H.; Kumar, A.; Wang, X.; Johnson, J.B.; Fischetti, M.V. Silicon CMOS devices beyond scaling. IBM J. Res. Develop., 2006, 50(4), 339-361.
Hamann, H.F.; Weger, A.; Lacey, J.A.; Hu, Z. Hotspot-limited microprocessors: Direct temperature and power distribution measurements. IEEE J. Solid-State Circuits, 2007, 42(1), 56-65.
Jayantha, S.M.S.; McVicker, G.; Bernstein, K.; Knickerbocker, J.U. Thermomechanical modeling of 3D electronic packages. IBM J. Res. Develop., 2008, 52(6), 623-634.
Azar, K. Power consumption and generation in the electronics industry. A perspective. In Proceedings of the 16th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA2002, pp. 154-160.
Hansson, J.; Nilsson, T.M.J.; Ye, L.L.; Liu, J. Novel nanostructured thermal interface materials: A review. Int. Mater. Rev., 2018, 37, 1-24.
Zhu, L.B.; Hess, D.W.; Wong, C.P. Assembling carbon nanotube films as thermal interface materials. In Proceedings of the 57th Electronic Components and Technology Conference, Reno, NV, USA2007, pp. 2006-2010.
Li, G.; Liu, J.; Jiang, G.; Liu, H. Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material. Adv. Mech. Eng., 2017, 7(4), 1-13.
An, X.H.; Cheng, J.H.; Yin, H.Q.; Xie, L.D.; Zhang, P. Thermal conductivity of high temperature fluoride molten salt determined by laser flash technique. Int. J. Heat Mass Transfer, 2015, 90, 872-877.
Si, Y.; Wang, X.Q.; Dou, L.; Yu, J.Y.; Ding, D. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv., 2018, 4(4), 8925.
Due, J.; Robinson, A.J. Reliability of thermal interface materials: A review. Appl. Therm. Eng., 2013, 50(1), 455-463.
Warzoha, R.J.; Zhang, D.; Feng, G.; Fleischer, A.S. Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials. Carbon, 2013, 61(11), 441-457.
Park, W.; Guo, Y.F.; Li, X.Y.; Hu, J.N.; Liu, L.W.; Ruan, X.L.; Chen, Y.P. High-performance thermal interface material based on few-layer graphene composite. J. Phys. Chem. C, 2015, 119(47), 26753-26759.
Chen, J.; Huang, X.Y.; Sun, B.; Wang, Y.X.; Zhu, Y.K.; Jiang, P.K. Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl. Mater. Interfaces, 2017, 9(36), 30909-30917.
Wang, S.; Cheng, Y.; Wang, R.; Sun, J.; Gao, L. Highly thermal conductive copper nanowire composites with ultralow loading: Toward applications as thermal interface materials. ACS Appl. Mater. Interfaces, 2014, 6(9), 6481-6486.
Liu, Z.; Chung, D.D.L. Calorimetric evaluation of phase change materials for use as thermal interface materials. Thermochim. Acta, 2001, 366(2), 135-147.
Cui, T.; Li, Q.; Xuan, Y.; Zhang, P. Preparation and thermal properties of the graphene-polyolefin adhesive composites: Application in thermal interface materials. Microelectron. Reliab., 2015, 55(12), 2569-2574.
Raj, P.M.; Gangidi, P.R.; Nataraj, N.; Kumbhat, N.; Jha, G.; Tummala, R.; Brese, N. Coelectrodeposited solder composite films for advanced thermal interface materials. IEEE T. Compon. Pack. T., 2013, 3(6), 989-996.
Prasher, R.S. Thermal interface materials: Historical perspective, status and future directions. Proc. IEEE, 2006, 98(8), 1571-1586.
Yang, D.J.; Zhang, Q.; Chen, G.; Yoon, S.F.; Ahn, J.; Wang, S.G.; Zhou, Q.; Wang, Q.; Li, J.Q. Thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B, 2002, 66(16), 165440-165445.
Jiang, L.; Gao, L. Densified multiwalled carbon nanotubes-titanium nitride composites with enhanced thermal properties. Ceram. Int., 2008, 34(1), 231-235.
Berber, S.; Kwon, Y.K.; Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett., 2000, 84(20), 4613-4616.
Kim, P.; Shi, L.; Majumdar, A.; Mceuen, P.L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett., 2001, 87(21), 215502.
Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett., 2006, 6(1), 96-100.
Cross, R.; Cola, B.A.; Fisher, T.; Xu, X.; Gall, K.; Graham, S. A metallization and bonding approach for high performance carbon nanotube thermal interface materials. Nanotechnology, 2010, 21(44), 445705.
Xu, J.; Fisher, T.S. Enhanced thermal contact conductance using carbon nanotube array interfaces. IEEE T. Compon. Pack. T., 2006, 29(2), 261-267.
Marklin, J.; Halonen, N.; Toth, G.; Sapi, A.; Kukovecz, A.; Konya, Z.; Jantunen, H.; Mikkola, J.P.; Kordas, K. Thermal diffusivity of aligned multi-walled carbon nanotubes measured by the flash method. Phys. Status Solidi,., 2011, 248(11), 2508-2511.
Panzer, M.A.; Zhang, G.; Mann, D.; Hu, X.; Pop, E.; Dai, H.; Goodson, K.E. Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J. Heat Transfer, 2008, 130(5), 1306-1313.
Quinton, B.T.; Leedy, K.D.; Lawson, J.W.; Tsao, B.; Scofield, J.D.; Merrett, J.N.; Zhang, Q.H.; Yost, K.; Mukhopadhyay, S.M. Influence of oxide buffer layers on the growth of carbon nanotube arrays on carbon substrates. Carbon, 2015, 87, 175-185.
Ohashi, T.; Kato, R.; Tokune, T.; Kawarada, H. Understanding the stability of a sputtered Al buffer layer for single-walled carbon nanotube forest synthesis. Carbon, 2013, 57(3), 401-409.
Lin, W.; Zhang, R.W.; Moon, K.S.; Wong, C.P. Synthesis of high-quality vertically aligned carbon nanotubes on bulk copper substrate for thermal management. IEEE Trans. Adv. Packag., 2010, 33(2), 370-376.
Chen, M.X.; Song, X.H.; Gan, Z.Y.; Liu, S. Low temperature thermocompression bonding between aligned carbon nanotubes and metallized substrate. Nanotechnology, 2011, 22(34), 345704.
Amama, P.B.; Pint, C.L.; Mirri, F.; Pasquali, M.; Hauge, R.H.; Maruyama, B. Catalyst-support interactions and their influence in water-assisted carbon nanotube carpet growth. Carbon, 2012, 50(7), 2396-2406.
Park, S.; Song, W.; Kim, Y.; Song, I.; Kim, S.H.; Lee, S.I.; Jang, S.W.; Parkl, C.Y. Effect of growth pressure on the synthesis of vertically aligned carbon nanotubes and their growth termination. J. Nanosci. Nanotechnol., 2014, 14(7), 5216-5220.
Kumar, M.; Ando, Y. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol., 2010, 41(22), 3739-3758.
Geohegan, D.B.; Puretzky, A.A.; Jackson, J.J.; Rouleau, C.M.; Eres, G.; More, K.L. Flux-dependent growth kinetics and diameter selectivity in single-wall carbon nanotube arrays. ACS Nano, 2011, 5(10), 8311-8321.
Cho, W.; Schulz, M.; Shanov, V. Growth termination mechanism of vertically aligned centimeter long carbon nanotube arrays. Carbon, 2014, 69(4), 609-620.
Li, W.Z.; Xie, S.S.; Qian, L.X.; Chang, B.H.; Zou, B.S.; Zhou, W.Y.; Zhao, R.A.; Wang, G. Large-scale synthesis of aligned carbon nanotubes. Science, 1996, 274(5293), 1701-1703.
Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M.H.; Ogura, M.; Okubo, T.; Maruyama, S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett., 2004, 385(3), 298-303.
Hata, K.; Futaba, D.N.; Mizumo, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 2004, 306(5700), 1362-1364.
Amama, P.B.; Pint, C.L.; Mcjitton, L.; Stach, E.A.; Murray, P.T.; Hauge, R.H.; Maruyama, B. Role of water in super growth of single-walled carbon nanotubes carpets. Nano Lett., 2008, 9(1), 44-49.
Yamada, T.; Maigne, A.; Yudasaka, M.; Mizuno, K.; Futaba, D.N.; Yumura, M.; Lijima, S.; Hata, K. Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett., 2009, 8(12), 4288-4292.
Kim, S.M.; Pint, C.L.; Amama, P.B.; Zakharov, D.; Hauge, R.; Maruyama, B.; Stach, E.A. Evolution in catalyst morphology leads to carbon nanotube growth termination. J. Phys. Chem. Lett., 2010, 1(6), 918-922.
Hofmann, S.; Ducati, C.; Robertson, J.; Kleinsorge, B. Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett., 2003, 83(1), 135-137.
Mata, D.; Silva, R.M.; Fernandes, A.J.S.; Oliveira, F.J.; Costa, P.M.F.J.; Silva, R.F. Upscaling potential of the CVD stacking growth method to produce dimensionally-controlled and catalyst-free multi-walled carbon nanotubes. Carbon, 2012, 50(10), 3585-3606.
Wang, Y.Y.; Gupta, S.; Nemanich, R.J. Role of thin Fe catalyst in the synthesis of double- and single-wall carbon nanotubes via microwave chemical vapor deposition. Appl. Phys. Lett., 2004, 85(13), 2601-2603.
Meyyappan, M.; Delzeit, L.; Cassell, A.; Hash, D. Carbon nanotube growth by PECVD: A review. Plasma Sources Sci. Technol., 2003, 12(2), 205-216.
Man, Y.H.; Chen, Z.Q.; Zhang, Y.P.; Guo, P.T. Patterned growth of vertically aligned carbon nanotube arrays using colloidal lithography and plasma enhanced chemical vapor deposition. J. Alloys Compd., 2015, 650, 86-91.
Cole, M.T.; Milne, W.I. Plasma enhanced chemical vapour deposition of horizontally aligned carbon nanotubes. Materials , 2013, 6(6), 2262-2273.
Lee, D.H.; Shin, D.O.; Lee, W.J.; Kim, S.O. Hierarchically organized carbon nanotube arrays from self-assembled block copolymer nanotemplates. Adv. Mater., 2010, 20(13), 2480-2485.
Soin, N.; Roy, S.S.; Karlsson, L.; Mclaughlin, J.A. Sputter deposition of highly dispersed platinum nanoparticles on carbon nanotube arrays for fuel cell electrode material. Diamond Related Materials, 2010, 19(5), 595-598.
Loffler, R.; Haffner, M.; Visanescu, G.; Weigand, H.; Wang, X.; Zhang, D.; Fleischer, M.; Meixner, A.J.; Fortagh, J.; Kern, D.P. Optimization of plasma-enhanced chemical vapor deposition parameters for the growth of individual vertical carbon nanotubes as field emitters. Carbon, 2011, 49(13), 4197-4203.
Wand, H.; Ren, Z.F. The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Nanotechnology, 2011, 22(40), 405601.
Duraia, E.S.M.; Mansurov, Z.; Tokmoldin, S.Z. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced vapour deposition. Phys. Status Solidi., C , 2011, 7(3-4), 1222-1226.
Iacobucci, S.; Fratini, M.; Rizzo, A.; Scarinci, F.; Zhang, Y.; Mann, M.; Li, C.; Milne, W.I.; Gomati, M.M.; Lagomarsino, S.; Stefani, G. Angular distribution of field emitted electrons from vertically aligned carbon nanotube arrays. Appl. Phys. Lett., 2012, 100(25), 053116.
Ren, Z.F.; Huang, Z.P.; Xu, J.W.; Wang, J.H.; Bush, P.; Siegal, M.P.; Provencio, P.P. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 1998, 282(5391), 1105-1107.
Kim, C.D.; Lee, H.R.; Choi, S.K.; Park, H.; Sohn, Y.S. The growth of patterned carbon nanotube arrays on Si pillar arrays. Mol. Cryst. Liq. Cryst. , 2017, 645(1), 225-230.
Yen, J.H.; Leu, I.C.; Wu, M.T.; Lin, C.C.; Hon, M.H. Growth characteristics of carbon nanotube arrays synthesized by ICP-CVD using anodic aluminum oxide on silicon as a nanotemplate. Chem. Vap. Depos., 2005, 11(4), 219-225.
Penza, M.; Rossi, R.; Alvisi, M.; Serra, E. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Nanotechnology, 2010, 21(10), 105501.
Duraia, E.S.M.; Hannora, A.; Mansurov, Z.; Beall, G.W. Direct growth of carbon nanotubes on hydroxyapatite using MPECVD. Mater. Chem. Phys., 2012, 132(1), 119-124.
Zhang, K.; Chai, Y.; Yuen, M.M.; Xiao, D.G.; Chan, P.C. Carbon nanotube thermal interface material for high brightness light-emitting-diode cooling. Nanotechnology, 2008, 19(21), 215706-215710.
Xu, J.; Fisher, T.S. Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat Mass Transfer, 2006, 49(9-10), 1658-1666.
Huang, S.M.; Dai, L.L.; Mau, A.W.H. Patterned growth and contact transfer of well-aligned carbon nanotube films. J. Phys. Chem. B, 1999, 103(21), 4223-4227.
Chai, Y.; Gong, J.; Zhang, K.; Chan, P.C.H.; Yuen, M.M.F. Flexible transfer of aligned carbon nanotube films for integration at lower temperature. Nanotechnology, 2007, 18(35), 355709-355714.
Wang, T.; Carlberg, B.; Jonsson, M.; Jeong, G.H.; Campbell, E.E.B.; Liu, J. Low temperature transfer and formation of carbon nanotube arrays by imprinted conductive adhesive. Appl. Phys. Lett., 2007, 91(9), 0931231-0931233.
Zhu, Y.W.; Lim, X.D.; Sim, M.C.; Lim, C.T.; Sow, C.H. Versatile transfer of aligned carbon nanotubes with polydimethylsiloxane as the intermediate. Nanotechnology, 2008, 19(32), 325304-325311.
Kumar, A.; Pushparaj, V.L.; Kar, S.; Nalamasu, O.; Ajayan, P.M.; Baskaran, R. Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl. Phys. Lett., 2006, 89(16), 163120-163123.
Fu, Y.F.; Qin, Y.H.; Wang, T.; Chen, S.; Liu, J. Ultrafast transfer of metal-enhanced carbon nanotubes at low temperature for large-scale electronics assembly. Adv. Mater., 2010, 22(44), 5039-5042.
Ye, Y.; Mao, Y.; Wang, F.; Lu, H.B.; Qu, L.T.; Dai, L.M. Solvent-free functionalization and transfer of aligned carbon nanotubes with vapor-deposited polymer nanocoatings. J. Mater. Chem., 2010, 21(3), 837-842.
Tong, T.; Zhao, Y.; Delzeit, L.; Kashani, A.; Meyyappan, M.; Majumdar, A. Dense vertically aligned multiwalled carbon nanotube arrays thermal interface materials. IEEE T. Compon. Pack. T., 2007, 30(1), 92-100.
Li, Q.; Liu, C.; Fan, S. Thermal boundary resistances of carbon nanotubes in contact with metals and polymers. Nano Lett., 2009, 9(11), 3805-3809.
Ni, Y.; Le Khanh, H.; Chalopin, Y.; Bai, J.B.; Lebarny, P.; Divay, L.; Volz, S. Highly efficient thermal glue for carbon nanotubes based on azide polymers. Appl. Phys. Lett., 2012, 100(19), 193118.
Kaur, S.; Raravikar, N.; Helms, B.A.; Prasher, R.; Ogletree, D.F. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat. Commun., 2014, 5(2), 1661-1667.
Hodson, S.L.; Bhuvana, T.; Cola, B.A.; Xu, X.F.; Kulkami, G.U.; Fisher, T.S. Palladium thiolate bonding of carbon nanotube thermal interfaces. J. Electron. Packag., 2011, 133(2), 020907.
Ngo, Q.; Cruden, B.A.; Cassell, A.M.; Walker, M.D.; Ye, Q.; Koehne, J.E.; Meyyappan, M.; Li, J.; Yang, C.Y. Thermal conductivity of carbon nanotube composite films; Mater. Res. Soc. Symp. Proc.,. , 2004. 812, F 3.18.
Lee, Y.T.; Shanmugan, S.; Mutharasu, D. Thermal resistance of CNTs-based thermal interface material for high power solid state device packages. Appl. Phys., A ., 2014, 114(4), 1145-1152.
Hinds, B.J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.; Bachas, L.G. Aligned multiwalled carbon nanotube membranes. Science, 2004, 303(5654), 62-65.
Li, L.; Yang, Z.; Gao, H.; Zhang, H.; Ren, J.; Sun, X.; Chen, T.; Kia, H.C.; Peng, H. Vertically aligned and penetrated carbon nanotube/polymer composite film and promising electronic applications. Adv. Mater., 2011, 23(32), 3730-3735.
Wang, M.; Chen, H.Y.; Lin, W.; Li, Z.; Li, Q.; Chen, M.H.; Meng, F.C.; Xing, Y.J.; Yao, Y.G.; Wong, C.P.; Li, Q.W. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film. ACS Appl. Mater. Interfaces, 2014, 6(1), 539-544.
Huang, H.; Liu, C.; Wu, Y.; Fan, S. Aligned carbon nanotube composite films for thermal management. Adv. Mater., 2010, 17(13), 1652-1656.
Borca-Tasciuc, T.; Mazumder, M.; Son, Y.; Pal, S.K.; Schadler, L.S.; Ajayan, P. Anisotropic thermal diffusivity characterization of aligned carbon nanotube-polymer composites. J. Nanosci. Nanotechnol., 2007, 7(4-5), 1581-1588.
Cola, B.A.; Xu, J.; Fisher, T.S. Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int. J. Heat Mass Transfer, 2009, 52(15), 3490-3503.
Lin, W.; Moon, K.S.; Wong, C.P. A combined process of in situ functionalisation and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube-polymer nanocomposites: Toward applications as thermal interface materials. Adv. Mater., 2009, 21(23), 2421-2424.
Wang, C.Y.; Chen, T.H.; Chang, S.C.; Cheng, S.Y.; Chin, T.S. Strong carbon-nanotube-polymer bonding by microwave irradiation. Adv. Funct. Mater., 2010, 17(12), 1979-1983.

© 2022 Bentham Science Publishers | Privacy Policy