Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry


ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Let-7a Could Serve as A Biomarker for Chemo-Responsiveness to Docetaxel in Gastric Cancer

Author(s): Najibeh Shekari, Faezeh Asghari, Navideh Haghnavaz, Dariush Shanehbandi, Vahid Khaze, Behzad Baradaran and Tohid Kazemi*

Volume 19, Issue 3, 2019

Page: [304 - 309] Pages: 6

DOI: 10.2174/1871520619666181213110258

Price: $65


Background: MicroRNAs are noncoding RNAs which play critical roles in response to anti-cancer agents. Let-7a and miR-21 are well-known tumor-suppressor and oncomiR miRNAs, respectively. They are involved in tumorigenesis of gastric cancer and have potential to be used as markers in response to the therapy.

Objective: We aimed to study alterations in the expression of Let-7a and miR-21, and their targets in gastric cancer cell lines after treatment with docetaxel.

Methods: In order to determine the IC50 of docetaxel, MTT assay was performed in AGS, MKN45 and KATO III gastric cancer cell lines. The expression levels of Let-7a and miR-21 and their target genes, HMGA2 and PDCD4, were determined by reverse-transcription quantitative real-time PCR for both treated and untreated cell lines.

Results: MTT assay showed higher IC50 concentration of docetaxel in KATO III in comparison with AGS and MKN45, indicating KATO III`s higher resistance to docetaxel. Following the treatment, the expression level of Let-7a was significantly increased in AGS and MKN45, while decreased in KATO III. Expression level of miR- 21 in the three treated cell lines was increased significantly. Not only Let-7a, but also expression level of HMGA2 and PDCD4 genes showed different patterns in KATO III in comparison with AGS and MKN45.

Conclusion: Down-regulation and up-regulation of Let-7a in docetaxel-resistant and sensitive cell lines, respectively indicates its potential usefulness as biomarker for responsiveness of gastric cancer to the therapy with docetaxel and also for predicting patient`s outcome.

Keywords: Gastric cancer, docetaxel, Let-7a, miR-21, chemoresistance, chemosensitivity.

Graphical Abstract
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends. Canc. Epidemiol. Prev. Biomarkers, 2016, 25(1), 16-27.
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA: A Canc. J. Clin., 2015, 65(2), 87-108.
Jin, Z.; Jiang, W.; Wang, L. Biomarkers for gastric cancer: Progression in early diagnosis and prognosis. (Review) Oncol. Lett., 2015, 9(4), 1502-1508.
Sakuramoto, S.; Sasako, M.; Yamaguchi, T.; Kinoshita, T.; Fujii, M.; Nashimoto, A.; Furukawa, H.; Nakajima, T.; Ohashi, Y.; Imamura, H.; Higashino, M.; Yamamura, Y.; Kurita, A.; Arai, K. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N. Engl. J. Med., 2007, 357(18), 1810-1820.
Sasako, M.; Sakuramoto, S.; Katai, H.; Kinoshita, T.; Furukawa, H.; Yamaguchi, T.; Nashimoto, A.; Fujii, M.; Nakajima, T.; Ohashi, Y. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J. Clin. Oncol., 2011, 29(33), 4387-4393.
Fauzee, N.J.S.; Dong, Z.; Wang, Y.L. Taxanes: Promising anti-cancer drugs. Asian Pac. J. Canc Prev., 2011, 12(4), 837-851.
Yared, J.A.; Tkaczuk, K.H. Update on taxane development: New analogs and new formulations. Drug Des. Develop. Ther., 2012, 6, 371.
Sato, Y.; Takayama, T.; Sagawa, T.; Takahashi, Y.; Ohnuma, H.; Okubo, S.; Shintani, N.; Tanaka, S.; Kida, M.; Sato, Y. Phase II study of S-1, docetaxel and cisplatin combination chemotherapy in patients with unresectable metastatic gastric cancer. Cancer Chemother. Pharmacol., 2010, 66(4), 721-728.
Kang, B.W.; Kwon, O-K.; Chung, H.Y.; Yu, W.; Kim, J.G. Taxanes in the treatment of advanced gastric cancer. Molecules, 2016, 21(5), 651.
Kopczynska, E. Role of microRNAs in the resistance of prostate cancer to docetaxel and paclitaxel. Contemp. Oncol. (Pozn.), 2015, 19(6), 423-427.
Han, T-S.; Hur, K.; Xu, G.; Choi, B.; Okugawa, Y.; Toiyama, Y.; Oshima, H.; Oshima, M.; Lee, H-J.; Kim, V.N. MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut, 2015, 64(2), 203-214.
Shekari, N.; Baradaran, B.; Shanehbandi, D.; Kazemi, T. Circulating MicroRNAs: Valuable biomarkers for the diagnosis and prognosis of gastric cancer. Curr. Med. Chem., 2018, 25(6), 698-714.
Hummel, R.; Hussey, D.J.; Haier, J. MicroRNAs: Predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur. J. Cancer (Oxford, England: 1990), 2010, 46(2), 298-311.
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharmaceut. Bullet., 2017, 7(3), 339-348.
Matuszcak, C.; Haier, J.; Hummel, R.; Lindner, K. MicroRNAs: Promising chemoresistance biomarkers in gastric cancer with diagnostic and therapeutic potential. World J. Gastroenterol., 2014, 20(38), 13658-13666.
Xia, L.; Zhang, D.; Du, R.; Pan, Y.; Zhao, L.; Sun, S.; Hong, L.; Liu, J.; Fan, D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer, 2008, 123(2), 372-379.
Su, J.L.; Chen, P.S.; Johansson, G.; Kuo, M.L. Function and regulation of Let-7 family microRNAs. MicroRNA (Shariqah, United Arab Emirates), 2012, 1(1), 34-39.
Ayers, D.; Vandesompele, J. Influence of microRNAs and long non-coding RNAs in cancer chemoresistance. Genes., 2017, 8(3)
da Silva Oliveira, K.C.; Thomaz Araujo, T.M.; Albuquerque, C.I.; Barata, G.A.; Gigek, C.O.; Leal, M.F.; Wisnieski, F.; Rodrigues Mello, Junior, F.A.; Khayat, A.S.; de Assumpcao, P.P.; Rodriguez Burbano, R.M.; Smith, M.C.; Calcagno, D.Q. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J. Gastroenterol., 2016, 22(35), 7951-7962.
Tsang, W.P.; Kwok, T.T. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis: Int. J. Programm. Cell Death, 2008, 13(10), 1215-1222.
Wang, X.; Cao, L.; Wang, Y.; Wang, X.; Liu, N.; You, Y. Regulation of Let-7 and its target oncogenes.(Review). Oncol. Lett., 2012, 3(5), 955-960.
Jun, K.H.; Jung, J.H.; Choi, H.J.; Shin, E.Y.; Chin, H.M. HMGA1/HMGA2 protein expression and prognostic implications in gastric cancer. Int. J. Surgery (London, England), 2015, 24(Pt A), 39-44.
Feng, Y.H.; Tsao, C.J. Emerging role of microRNA-21 in cancer. Biomed. Rep., 2016, 5(4), 395-402.
Sekar, D.; Krishnan, R.; Thirugnanasambantham, K.; Rajasekaran, B.; Islam, V.I.; Sekar, P. Significance of microRNA 21 in gastric cancer. Clinics. Res. Hepatol. Gastroenterol., 2016, 40(5), 538-545.
Liang, H.; Wang, F.; Chu, D.; Zhang, W.; Liao, Z.; Fu, Z.; Yan, X.; Zhu, H.; Guo, W.; Zhang, Y.; Guan, W.; Chen, X. miR-93 functions as an oncomiR for the downregulation of PDCD4 in gastric carcinoma. Sci. Rep., 2016, 6, 23772.
Lemoine, N.; Adenis, A.; Bouche, O.; Duhamel, A.; Heurgue, A.; Leteurtre, E.; Amela, E.; Salleron, J.; Hebbar, M. Signet ring cells and efficacy of first-line chemotherapy in advanced gastric or oesogastric junction adenocarcinoma. Anticancer Res., 2016, 36(10), 5543-5549.
Xue, F.; Liu, Y.; Zhang, H.; Wen, Y.; Yan, L.; Tang, Q.; Xiao, E.; Zhang, D. Let-7a enhances the sensitivity of hepatocellular carcinoma cells to cetuximab by regulating STAT3 expression. OncoTargets Ther., 2016, 9, 7253-7261.
Serguienko, A.; Grad, I.; Wennerstrom, A.B.; Meza-Zepeda, L.A.; Thiede, B.; Stratford, E.W.; Myklebost, O.; Munthe, E. Metabolic reprogramming of metastatic breast cancer and melanoma by Let-7a microRNA. Oncotarget, 2015, 6(4), 2451-2465.
Wu, J.; Li, S.; Jia, W.; Deng, H.; Chen, K.; Zhu, L.; Yu, F.; Su, F. Reduced Let-7a is associated with chemoresistance in primary breast cancer. PLoS One, 2015, 10(7)e0133643
Motoyama, K.; Inoue, H.; Nakamura, Y.; Uetake, H.; Sugihara, K.; Mori, M. Clinical significance of high mobility group A2 in human gastric cancer and its relationship to Let-7 microRNA family. Clin. Cancer Res., 2008, 14(8), 2334-2340.
Summer, H.; Li, O.; Bao, Q.; Zhan, L.; Peter, S.; Sathiyanathan, P.; Henderson, D.; Klonisch, T.; Goodman, S.D.; Droge, P. HMGA2 exhibits dRP/AP site cleavage activity and protects cancer cells from DNA-damage-induced cytotoxicity during chemotherapy. Nucleic Acids Res., 2009, 37(13), 4371-4384.
Yang, X.; Zhao, Q.; Yin, H.; Lei, X.; Gan, R. MiR-33b-5p sensitizes gastric cancer cells to chemotherapy drugs via inhibiting HMGA2 expression. J. Drug Targeting., 2017, 25(7), 653-660.
Wu, H.; Liang, Y.; Shen, L.; Shen, L. MicroRNA-204 modulates colorectal cancer cell sensitivity in response to 5-fluorouracil-based treatment by targeting high mobility group protein A2. Biol. Open, 2016, 5(5), 563-570.
Rossi, L.; Bonmassar, E.; Faraoni, I. Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol. Res., 2007, 56(3), 248-253.
Shi, G.H.; Ye, D.W.; Yao, X.D.; Zhang, S.L.; Dai, B.; Zhang, H.L.; Shen, Y.J.; Zhu, Y.; Zhu, Y.P.; Xiao, W.J.; Ma, C.G. Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol. Sinica., 2010, 31(7), 867-873.
Yang, S.M.; Huang, C.; Li, X.F.; Yu, M.Z.; He, Y.; Li, J. miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology, 2013, 306, 162-168.
Jin, B.; Liu, Y.; Wang, H. Antagonism of miRNA-21 sensitizes human gastric cancer cells to paclitaxel. Cell Biochem. Biophys., 2015, 72(1), 275-282.
Cai, Y.; Yu, X.; Hu, S.; Yu, J. A brief review on the mechanisms of miRNA regulation. Genom Proteom Bioinformat, 2009, 7(4), 147-154.
Folini, M.; Gandellini, P.; Longoni, N.; Profumo, V.; Callari, M.; Pennati, M.; Colecchia, M.; Supino, R.; Veneroni, S.; Salvioni, R.; Valdagni, R.; Daidone, M.G.; Zaffaroni, N. miR-21: An oncomir on strike in prostate cancer. Mol. Cancer, 2010, 9, 12.
Shah, M.Y.; Ferrajoli, A.; Sood, A.K.; Lopez-Berestein, G.; Calin, G.A. microRNA therapeutics in cancer - an emerging concept. EBioMedicine, 2016, 12, 34-42.
Pan, X.; Wang, Z.X.; Wang, R. MicroRNA-21: A novel therapeutic target in human cancer. Cancer Biol. Ther., 2010, 10(12), 1224-1232.
Shiota, M.; Izumi, H.; Tanimoto, A.; Takahashi, M.; Miyamoto, N.; Kashiwagi, E.; Kidani, A.; Hirano, G.; Masubuchi, D.; Fukunaka, Y.; Yasuniwa, Y.; Naito, S.; Nishizawa, S.; Sasaguri, Y.; Kohno, K. Programmed cell death protein 4 down-regulates Y-box binding protein-1 expression via a direct interaction with Twist1 to suppress cancer cell growth. Cancer Res., 2009, 69(7), 3148-3156.
Chen, Z.; Yuan, Y.C.; Wang, Y.; Liu, Z.; Chan, H.J.; Chen, S. Down-regulation of Programmed Cell Death 4 (PDCD4) is associated with aromatase inhibitor resistance and a poor prognosis in estrogen receptor-positive breast cancer. Breast Cancer Res. Treatm., 2015, 152(1), 29-39.
Ma, Q.Q.; Huang, J.T.; Xiong, Y.G.; Yang, X.Y.; Han, R.; Zhu, W.W. MicroRNA-96 regulates apoptosis by targeting PDCD4 in human glioma cells. Technol. Cancer Res. Treatm., 2017, 16(1), 92-98.
Jin, H.; Wang, C. MicroRNA-9 functions as an oncogene and targets PDCD4 gene in cervical cancer. Int. J. Clin. Experim. Pathol., 2016, 9(2), 2726-2734.
Zhang, X.; Gee, H.; Rose, B.; Lee, C.S.; Clark, J.; Elliott, M.; Gamble, J.R.; Cairns, M.J.; Harris, A.; Khoury, S.; Tran, N. Regulation of the tumour suppressor PDCD4 by miR-499 and miR-21 in oropharyngeal cancers. BMC Cancer, 2016, 16, 86.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy