Generic placeholder image

Current Nanoscience


ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Novel Green Micro-Synthesis of Graphene-Titanium Dioxide Nano- Composites with Photo-Electrochemical Properties

Author(s): Nourwanda M. Serour*, Ahmed S.E. Hammad, Ahmed H. El-Shazly, Dina A. El-Gayar and Shaaban A. Nosier

Volume 15 , Issue 6 , 2019

Page: [606 - 617] Pages: 12

DOI: 10.2174/1573413715666181212123137

Price: $65


Background: Graphene-Titanium dioxide nano-composite forms a very promising material in the field of photo-electrochemical research.

Methods: In this study, a novel environment-friendly synthesis method was developed to produce well-distributed anatase nano-titanium dioxide spherical particles on the surface of graphene sheets. This novel method has great advantages over previously developed methods of producing graphenetitanium dioxide nanocomposites (GTNCs). High calcination temperature 650°C was used in the preparation of nano titanium dioxide, and chemical exfoliation for graphene synthesis and GTNC was performed by our novel method of depositing titanium dioxide nanoparticles on graphene sheets using a Y-shaped micro-reactor under a controlled pumping rate with minimal use of chemicals.

Results: The physiochemical and crystallographic properties of the GTNC were confirmed by TEM, XRD, FTIR and EDX measurements, confirming process repeatability. Spherical nano-titanium dioxide was produced in the anatase phase with very high crystallinity and small particle diameters ranging from 9 nm to 25 nm, also the as prepared graphene (RGO) exhibited minimal flake folding and a high carbon content of 81.28% with a low oxygen-to-carbon atomic ratio of 0.172 and GTNCs produced by our novel method had a superior loading content, a homogeneous distribution and a 96.6% higher content of titanium dioxide particles on the graphene sheets compared with GTNCs prepared with the one-pot method.

Conclusion: For its photoelectrochemical properties, chronoamperometry showed that GTNC sample (2) had a higher peak current of 60 μA compared with that of GTNC sample (1), which indicates that the separation and transfer of electron-hole pairs are better in the case of GTNC sample (2) and according to the LSV results, the generation of photocurrent in the samples can be observed through multiple on-off cycles, which indicates that the electrodes are stable and that the photocurrent is quite reversible.

Keywords: Micro-synthesis, graphene-titanium dioxide nanocomposite, chemical exfoliation, sol-gel, energy-dispersive X-ray spectroscopy, chronoamperometry, linear sweep voltammetry.

Graphical Abstract
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater., 2010, 22(35), 3906-3924.
Huc, V.; Bendiab, N.; Rosman, N.; Ebbesen, T.; Delacour, C.; Bouchiat, V. Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite. Nanotechnology, 2008, 19(45)455601
Francesco, B.; Antonio, L.; Tawfique, H.; Zhipeie, S.; Luigi, C.; Andrea, C.F. Production and processing of graphene and 2d crystals. Mater. Today, 2012, 15(12), 564-589.
Parvez, K.; Wu, Z.S.; Li, R.; Liu, X.; Graf, R.; Feng, X.; Mullen, K. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc., 2014, 136(16), 6083-6091.
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M. Gun’Ko, Y.K.; Boland, J.J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A.C.; Coleman, J.N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9), 563-568.
Warner, J.H.; Schaffel, F.; Rummeli, M. Bachmatiuk, A. Graphene: Fundamentals and emergent applications; (1st Ed.) Newness. Technology and Engineering, Elsevier; 2012.
Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J., 2009, 15, 6116-6120.
Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.H.; Kim, P.; Choi, J.Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230), 706-710.
Strudwick, A.J.; Weber, N.E.; Schwab, M.G.; Kettner, M.; Weitz, R.T.; Wünsch, J.R.; Mullen, K.; Sachdev, H. Chemical vapour deposition of high-quality graphene films from carbon dioxide atmospheres. ACS Nano, 2014, 9(1), 31-42.
Wen, T.; Gao, J.; Shen, J.; Zhou, Z. Preparation and characterisation of TiO2 thin films by the sol-gel process. J. Mater. Sci., 2001, 36(24), 5923-5926.
Sharmila, D.R.; Venkatesh, R.; Sivaraj, R. Synthesis of titanium dioxide nanoparticles by sol-gel technique. Int. J. Innov. Res. Sci. Eng. Technol., 2014, 3(8), 15206-15211.
Niederberger, M.; Bartl, M.H.; Stucky, G.D. Benzyl alcohol and titanium tetrachloride: A versatile reaction system for the non-aqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem. Mater., 2002, 14(10), 4364-4370.
Tacchini, I.; Ansón, C.A.; Yu, Y.; Martinez, M.T.; Lira, C.M. Hydrothermal synthesis of 1D TiO2 nanostructures for dye-sensitised solar cells. Mater. Sci. Eng. B, 2012, 177(1), 19-26.
Dinh, C.T.; Nguyen, T.D.; Kleitz, F.; Do, T. Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano, 2009, 3(11), 3737-3743.
Goel, P.; Yadav, K.L. A comparative analysis of PBZT synthesised by coprecipitation and sol-gel method. Indian J. Eng. Mater. Sci., 2005, 12, 552-556.
Aydin, F.A.; Soylak, M. A novel multi-element coprecipitation technique for separation and enrichment of metal ions in environmental samples. Talanta, 2007, 73(1), 134-141.
Shimizu, T.; Ito, H.; Kawaguchi, H.; Shijo, Y. Determination of trace molybdenum in water samples by electrothermal atomic absorption spectrometry after pre-concentration with miniaturised coprecipitation. Bull. Chem. Soc. Jpn., 1999, 72(1), 43-46.
Akagi, T.; Haraguchi, H. Simultaneous multielement determination of trace metals using ten mL of seawater by inductively coupled plasma atomic emission spectrometry with gallium coprecipitation. Anal. Chem., 1990, 62(1), 81-85.
Yu, J.C.; Yu, J.; Ho, W.; Zhang, L. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem. Commun., 2001, 7(19), 1942-1943.
Stefan, S.; Markus, W.; Horst, H. Nanocrystalline titania films and particles by chemical vapor synthesis. Chem. Vap. Depos., 2000, 6(5), 239-244.
Xiaobo, C.; Samuel, S.M. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and application’s. Chem. Rev., 2007, 107, 2891-2959.
Wojtoniszak, M.; Zielinska, B.; Chen, X.; Kalenczuk, R.J.; Borowiak, P.E. Synthesis and photocatalytic performance of TiO2 nanospheres–graphene nanocomposite under visible and UV light irradiation. J. Mater. Sci., 2012, 47(7), 3185-3190.
Zhang, X.; Sun, Y.; Cui, X.; Jiang, Z. A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. Int. J. Hydrogen Energy, 2012, 37(1), 811-815.
Chin, W.L.; Foo, W.L.; Soon, W.C.; Christelle, P.P.; Siti, Z.B.; Joon, C.J.; Sharifah, B. An overview: Recent development of titanium dioxide loaded graphene nanocomposite film for solar application. Curr. Org. Chem., 2015, 19, 1882-1895.
Dey, A.; Nangare, V.M.; Khan, M.A.S.; Khanna, P.K.; Skider, A.K.; Chattopadhyay, S. A graphene titanium dioxide nanocomposite (GTNC): One pot green synthesis and its application in a solid rocket propellant. RSC Advances, 2015, 5, 63777-63785.
Kiarii, E.; Govender, K.; Ndungu, P.; Govender, P.P. Recent advances in titanium dioxide/graphene photocatalyst materials as potentials of energy generation. Bull. Mater. Sci., 2018, 41, 75.
Li, W.; Zeng, T. Preparation of TiO2 anatase nanocrystals by TiCl4 hydrolysis with additive H2SO4. PLoS One, 2011, 6(6), 21082.
Hammad, A.S.; Haitham, M.B.; El-Shazly, A.H.; Elkady, M.F. Effect of WO3 morphological structure on its photoelectrochemical properties. Int. J. Electrochem. Sci., 2018, 13, 362-372.
Munuera, J.M.; Paredes, J.I.; Villar-Rodil, S.; Ayán-Varela, M.; Pagán, A.; Aznar-Cervantes, S.D.; Cenis, J.L.; Martínez-Alonso, A.; Tascón, J.M.D. High quality, low oxygen content and biocompatible graphene nanosheets obtained by anodic exfoliation of different graphite types. Carbon, 2015, 94, 729-739.
Gopalakrishnan, A.; Binitha, N.N.; Yaakob, Z.; Akbar, P.M.; Padikkaparambil, S. Excellent photocatalytic activity of titania-graphene nanocomposites prepared by a facile route. J. Sol-Gel Sci. Technol., 2016, 80(1), 189-200.
Samira, B.; Kamyar, S.; Sharifah, B.A.H. Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. J. Chem., 2013, 6, 48205.
Melian, E.P.; Lopez, C.R.; Mendez, A.O.; Diaz, O.G.; Suarez, M.N.; Rodriguez, J.M.D.; Navio, J.A.; Hevia, D.F. Hydrogen production using Pt-loaded TiO2 photocatalysts. Int. J. Hydrogen Energy, 2013, 38, 11737.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy