Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Hypervalent Iodine-Mediated Synthesis of Spiroheterocycles via Oxidative Cyclization

Author(s): Linlin Xing, Yong Zhang and Yunfei Du*

Volume 23, Issue 1, 2019

Page: [14 - 37] Pages: 24

DOI: 10.2174/1385272822666181211122802

Price: $65

Abstract

Hypervalent iodine reagents have been widely used in the construction of many important building blocks and privileged scaffolds of bioactive natural products. This review article aims to briefly discuss strategies that have used hypervalent iodine reagents as oxidants to synthesize spiroheterocyclic compounds and to stimulate further study for novel syntheses of spiroheterocyclic core structures using hypervalent iodine reagents under metal-free conditions.

Keywords: Hypervalent iodine reagents, spiroheterocycles, oxidative cyclization, metal-free conditions, dearomatization, cascade annulation.

Graphical Abstract
[1]
Berthiol, F. Reagent and catalyst design for asymmetric hypervalent iodine oxidations. Synthesis, 2015, 47, 587-603.
[2]
Charpentier, J.; Früh, N.; Togni, A. Electrophilic trifluoromethylation by use of hypervalent iodine reagents. Chem. Rev., 2015, 115, 650-682.
[3]
Ding, Q.; Ye, Y.; Fan, R. Recent advances in phenol dearomatization and its application in complex syntheses. Synthesis, 2013, 45, 1-16.
[4]
Dong, D-Q.; Hao, S-H.; Wang, Z-L.; Chen, C. Hypervalent iodine: A powerful electrophile for asymmetric α-functionalization of carbonyl compounds. Org. Biomol. Chem., 2014, 12, 4278-4289.
[5]
Merritt, E.A.; Olofsson, B. Diaryliodonium salts: A journey from obscurity to fame. Angew. Chem. Int. Ed., 2009, 48, 9052-9070.
[6]
Merritt, E.A.; Olofsson, B. α-Functionalization of carbonyl compounds using hypervalent iodine reagents. Synthesis, 2011, 517-538.
[7]
Pouysegu, L.; Deffieux, D.; Quideau, S. Hypervalent iodine-mediated phenol dearomatization in natural product synthesis. Tetrahedron, 2010, 66, 2235-2261.
[8]
Romero, R.M.; Woeste, T.H.; Muniz, K. Vicinal difunctionalization of alkenes with iodine(III) reagents and catalysts. Chem. Asian J., 2014, 9, 972-983.
[9]
Satam, V.; Harad, A.; Rajule, R.; Pati, H. 2-Iodoxybenzoic acid (IBX): An efficient hypervalent iodine reagent. Tetrahedron, 2010, 66, 7659-7706.
[10]
Silva, Jr , L.F.; Olofsson, B. Hypervalent iodine reagents in the total synthesis of natural products. Nat. Prod. Rep., 2011, 28, 1722-1754.
[11]
Varvoglis, A. Hypervalent Iodine in Organic Synthesis1st Ed.; Academic Press: London,, 1997.
[12]
Zhdankin, V.V. Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC, 2009, 1-62.
[13]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116, 3328-3435.
[14]
Sun, J.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Hypervalent iodine reagents for heterocycle synthesis and functionalization. Rep. Org. Chem., 2016, 6, 25-45.
[15]
Tian, T.; Zhong, W-H.; Meng, S.; Meng, X-B.; Li, Z-J. Hypervalent iodine mediated para-selective fluorination of anilides. J. Org. Chem., 2013, 78, 728-732.
[16]
Wirth, T. Hypervalent iodine chemistry in synthesis: Scope and new directions. Angew. Chem. Int. Ed., 2005, 44, 3656-3665.
[17]
Xu, D.; Sun, W-W.; Xie, Y.; Liu, J-K.; Liu, B.; Zhou, Y.; Wu, B. Metal-free regioselective hypervalent iodine-mediated C-2 and C-3 difunctionalization of N-substituted indoles. J. Org. Chem., 2016, 81, 11081-11094.
[18]
Ariafard, A. A density functional theory (DFT) mechanistic study of gold(I)-catalyzed alkynylation of the indole and pyrrole substrates, using a hypervalent iodine reagent. ACS Catal., 2014, 4, 2896-2907.
[19]
Caramenti, P.; Nicolai, S.; Waser, J. Indole- and pyrrole-BX. Bench-stable hypervalent iodine reagents for heterocycle umpolung. Chem. - Eur. J., 2017, 23, 14702-14706.
[20]
Najda-Mocarska, E.; Zakaszewska, A.; Janikowska, K.; Makowiec, S. New thiourea organocatalysts and their application for the synthesis of 5-(1H-indol-3-yl)methyl-2,2-dimethyl-1,3-dioxane-4,6-diones a source of chiral 3-indoylmethyl ketenes. Synth. Commun., 2018, 48, 14-25.
[21]
Manna, S.; Antonchick, A.P. Organocatalytic oxidative annulation of benzamide derivatives with alkynes. Angew. Chem. Int. Ed., 2014, 53, 7324-7327.
[22]
Du, Y.; Liu, R.; Linn, G.; Zhao, K. Synthesis of N-substituted indole derivatives PIFA-mediated intramolecular cyclization. Org. Lett., 2006, 8, 5919-5922.
[23]
Yu, W.; Du, Y.; Zhao, K. PIDA-Mediated oxidative C−C bond formation. Novel synthesis of indoles from N-aryl enamines. Org. Lett., 2009, 11, 2417-2420.
[24]
Sun, J.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Synthesis of chromeno[2,3-b]indol-11(6H)-one PhI(OAc)2-mediated intramolecular oxidative C(sp2)–N(H2) bond formation. J. Org. Chem., 2015, 80, 1200-1206.
[25]
Xia, H-D.; Zhang, Y-D.; Wang, Y-H.; Zhang, C. Water-soluble hypervalent iodine(III) having an I–N bond. A reagent for the synthesis of indoles. Org. Lett., 2018, 20, 4052-4056.
[26]
Fra, L.; Millán, A.; Souto, J.A.; Muñiz, K. Indole synthesis based on a modified Koser reagent. Angew. Chem. Int. Ed., 2014, 53, 7349-7353.
[27]
Zhao, F.; Liu, X.; Qi, R.; Zhang-Negrerie, D.; Huang, J.; Du, Y.; Zhao, K. Synthesis of 2-(trifluoromethyl)oxazoles from β-monosubstituted enamines via PhI(OCOCF3)2-mediated trifluoroacetoxylation and cyclization. J. Org. Chem., 2011, 76, 10338-10344.
[28]
Hempel, C.; Nachtsheim, B.J. Iodine(III)-promoted synthesis of oxazoles through oxidative cyclization of N -styrylbenzamides. Synlett, 2013, 24, 2119-2123.
[29]
Karade, N.N.; Tiwari, G.B.; Gampawar, S.V. Efficient oxidative conversion of aldehydes to 2-substituted oxazolines and oxazines using (diacetoxyiodo)benzene. Synlett, 2007, 1921-1924.
[30]
Liu, Q.; Zhang, X.; He, Y.; Hussain, M.I.; Hu, W.; Xiong, Y.; Zhu, X. Oxidative rearrangement strategy for synthesis of 2,4,5-trisubstituted oxazoles utilizing hypervalent iodine reagent. Tetrahedron, 2016, 72, 5749-5753.
[31]
Yagyu, T.; Takemoto, Y.; Yoshimura, A.; Zhdankin, V.V.; Saito, A. Iodine(III)-catalyzed formal [2 + 2 + 1] cycloaddition reaction for metal-free construction of oxazoles. Org. Lett., 2017, 19, 2506-2509.
[32]
Saito, A.; Hyodo, N.; Hanzawa, Y. Synthesis of highly substituted oxazoles through iodine(III)-mediated reactions of ketones with nitriles. Molecules, 2012, 17, 11046-11055.
[33]
Yadav; Reddy, B.V.S.; Reddy, C.S.; Krishna. CeCl3⋅7H2O/IBX-promoted oxidation of 3-alkylindoles to 3-hydroxyoxindoles. Tetrahedron Lett., 2007, 48, 2029-2032.
[34]
Lv, J.; Zhang-Negrerie, D.; Deng, J.; Du, Y.; Zhao, K. Metal-free synthesis of 2-oxindoles PhI(OAc)2-mediated oxidative C–C bond formation. J. Org. Chem., 2014, 79, 1111-1119.
[35]
Hepples, C.; Murphy, G.K. Synthesis of 3,3-dichloro-2-oxindoles from isatin-3-p-tosylhydrazones and (dichloroiodo)benzene. Tetrahedron Lett., 2015, 56, 4971-4974.
[36]
Feldman, K.S.; Vidulova, D.B. Use of Stang’s reagent, PhI(CN)OTf, to promote Pummerer-like oxidative cyclization of 2-(phenylthio)indoles. Tetrahedron Lett., 2004, 45, 5035-5037.
[37]
Sun, X.; Zhao, X-J.; Wu, B. Metal-free hypervalent-iodine-promoted C3 difluorination and C2 oxidation of N-substituted indoles. Asian J. Org. Chem., 2017, 6, 690-693.
[38]
Li, X.; Du, Y.; Liang, Z.; Li, X.; Pan, Y.; Zhao, K. Simple conversion of enamines to 2H-azirines and their rearrangements under thermal conditions. Org. Lett., 2009, 11, 2643-2646.
[39]
Sun, X.; Lyu, Y.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Formation of functionalized 2H-azirines through PhIO-mediated trifluoroethoxylation and azirination of enamines. Org. Lett., 2013, 15, 6222-6225.
[40]
Ton, T.M.U.; Tejo, C.; Tiong, D.L.Y.; Chan, P.W.H. Copper(II) triflate catalyzed amination and aziridination of 2-alkyl substituted 1,3-dicarbonyl compounds. J. Am. Chem. Soc., 2012, 134, 7344-7350.
[41]
Kiyokawa, K.; Kosaka, T.; Minakata, S. Metal-free aziridination of styrene derivatives with iminoiodinane catalyzed by a combination of iodine and ammonium iodide. Org. Lett., 2013, 15, 4858-4861.
[42]
Takada, T.; Arisawa, M.; Gyoten, M.; Hamada, R.; Tohma, H.; Kita, Y. Oxidative biaryl coupling reaction of phenol ether derivatives using a hypervalent iodine(III) reagent. J. Org. Chem., 1998, 63, 7698-7706.
[43]
Li, X.; Yang, L.; Zhang, X.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Construction of 1,4-benzodiazepine skeleton from 2-(arylamino)benzamides through PhI(OAc)2-mediated oxidative C–N bond formation. J. Org. Chem., 2014, 79, 955-962.
[44]
Guo, X.; Zhang-Negrerie, D.; Du, Y. Iodine(III)-mediated construction of the dibenzoxazepinone skeleton from 2-(aryloxy)benzamides through oxidative C–N formation. RSC Adv, 2015, 5, 94732-94736.
[45]
Shang, S.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Intramolecular metal-free oxidative aryl–aryl coupling: An unusual hypervalent-iodine-mediated rearrangement of 2-substituted N-phenylbenzamides. Angew. Chem. Int. Ed., 2014, 53, 6216-6219.
[46]
Cho, S.H.; Yoon, J.; Chang, S. Intramolecular oxidative C-N bond formation for the synthesis of carbazoles: Comparison of reactivity between the copper-catalyzed and metal-free conditions. J. Am. Chem. Soc., 2011, 133, 5996-6005.
[47]
Kajiyama, D.; Inoue, K.; Ishikawa, Y.; Nishiyama, S. A synthetic approach to carbazoles using electrochemically generated hypervalent iodine oxidant. Tetrahedron, 2010, 66, 9779-9784.
[48]
Samanta, R.; Kulikov, K.; Strohmann, C.; Antonchick, A.P. Metal-free electrocyclization at ambient temperature: Synthesis of 1-arylcarbazoles. Synthesis, 2012, 44, 2325-2332.
[49]
Shi, H.; Guo, T.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Synthesis of substituted tetrahydron-1H-carbazol-1-one and analogs PhI(OCOCF3)2-mediated oxidative C-C bond formation. Tetrahedron, 2014, 70, 2753-2760.
[50]
Rao, D.N. Rasheed.; Vishwakarma, R.A.; Das, P. Hypervalent iodine(III) catalyzed oxidative C-N bond formation in water: Synthesis of benzimidazole-fused heterocycles. RSC Adv, 2014, 4, 25600-25604.
[51]
Sen, C.; Ghosh, S.C. Transition-metal-free regioselective alkylation of quinoline N-oxides oxidative alkyl migration and C-C Bond Cleavage of tert-/sec-Alcohols. Adv. Synth. Catal., 2018, 360, 905-910.
[52]
Zhang, D.; Gao, F.; Nian, Y.; Zhou, Y.; Jiang, H.; Liu, H. Palladium-catalyzed picolinamide-directed coupling of C(sp2)-H and C(sp2)-H: A straightforward approach to quinolinone and pyridone scaffolds. Chem. Commun., 2015, 51, 7509-7511.
[53]
Carreira, E.M.; Fessard, T.C. Four-membered ring-containing spirocycles: synthetic strategies and opportunities. Chem. Rev., 2014, 114, 8257-8322.
[54]
Shawali, A.S.; Farghaly, T.A. Reactions of hydrazonoyl halides with heterocyclic thiones. Convenient methodology for heteroannulation, synthesis of spiroheterocycles and heterocyclic ring transformation. ARKIVOC, 2008, 2008, 18-64.
[55]
Joshi, K.C.; Joshi, R. Isatin: a versatile molecule for the synthesis of novel spiroheterocycles. J. Indian Chem. Soc., 1999, 76, 643-649.
[56]
Liu, Y.; Zhang, X.; Zeng, R.; Zhang, Y.; Dai, Q.-S.; Leng, H.-J.; Gou, X.-J.; Li, J.-L. Recent advances in the synthesis of spiroheterocycles N-heterocyclic carbene organocatalysis. Molecules, 2017, 22, 1882/1-1882/23.
[57]
Majumdar, K.C. Regioselective synthesis of bioactive heterocycles by radial cyclization. J. Indian Chem. Soc., 2008, 85, 347-364.
[58]
Ziarani, G.M.; Moradi, R.; Lashgari, N. Synthesis of spiro-fused heterocyclic scaffolds through multicomponent reactions involving isatin. ARKIVOC, 2016, 1-81.
[59]
Bariwal, J.; Voskressensky, L.G.; Van der Eycken, E.V. Recent advances in spirocyclization of indole derivatives. Chem. Soc. Rev., 2018, 47, 3831-3848.
[60]
Pankaj, K.; Leena, K.; Sean, J.T.; Abdullah, M.A.; Siva, S.P. Microwave assisted synthesis of spiro heterocyclic systems: A review. Curr. Org. Chem., 2018, 22, 67-84.
[61]
Cohen, N.; Banner, B.L.; Blount, J.F.; Weber, G.; Tsai, M.; Saucy, G. Synthesis of novel spiro heterocycles. 2-Amino-7-oxa-3-thia-1-azaspiro[5.5]undec-1-enes. J. Org. Chem., 1974, 39, 1824-1833.
[62]
Behera, R.K.; Behera, A.K.; Pradhan, R.; Pati, A.; Patra, M. Studies on spiroheterocycles, part III: Synthesis of diazaspiroundecanetetraone derivatives containing biologically active heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184, 753-765.
[63]
Arya, K.; Rajesh, U.C.; Rawat, D.S. Proline confined FAU zeolite: heterogeneous hybrid catalyst for the synthesis of spiroheterocycles via a Mannich type reaction. Green Chem., 2012, 14, 3344-3351.
[64]
Padmavathi, V.; Jagan, M.R.B.; Baliah, A.; Padmaja, A.; Bhaskar, R.D. Synthesis of some novel spiro heterocycles- Part II. ARKIVOC, 2005, 2005, 1-13.
[65]
Quideau, S.; Pouységu, L.; Peixoto, P.A.; Deffieux, D. Phenol dearo-matization with hypervalent iodine reagents in: Hypervalent Iodine Chemistry; Wirth, T., Ed.; Springer: Berlin, 2016, vol. 373, pp. 25-74.
[66]
Zheng, Z.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. The applications of hypervalent iodine(III) reagents in the constructions of heterocyclic compounds through oxidative coupling reactions. Sci. China Chem., 2014, 57, 189-214.
[67]
Ficht, S.; Muelbaier, M.; Giannis, A. Development of new and efficient polymer-supported hypervalent iodine reagents. Tetrahedron, 2001, 57, 4863-4866.
[68]
Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Versatile hypervalent-iodine(III)-catalyzed oxidations with m-chloroper-benzoic acid as a cooxidant. Angew. Chem. Int. Ed., 2005, 44, 6193-6196.
[69]
Dohi, T.; Uchiyama, T.; Yamashita, D.; Washimi, N.; Kita, Y. Efficient phenolic oxidations using μ-oxo-bridged phenyliodine trifluoroacetate. Tetrahedron Lett., 2011, 52, 2212-2215.
[70]
Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; Caemmerer, S.B.; Kita, Y. A chiral hypervalent iodine(III) reagent for enantioselective dearomatization of phenols. Angew. Chem. Int. Ed., 2008, 47, 3787-3790.
[71]
Dohi, T.; Takenaga, N.; Nakae, T.; Toyoda, Y.; Yamasaki, M.; Shiro, M.; Fujioka, H.; Maruyama, A.; Kita, Y. Asymmetric dearomatizing spiro-lactonization of naphthols catalyzed by spirobiindane-based chiral hypervalent iodine species. J. Am. Chem. Soc., 2013, 135, 4558-4566.
[72]
Dohi, T.; Sasa, H.; Miyazaki, K.; Fujitake, M.; Takenaga, N.; Kita, Y. Chiral atropisomeric 8,8′-diiodobinaphthalene for asymmetric dearomatizing spirolactonizations in hypervalent iodine oxidations. J. Org. Chem., 2017, 82, 11954-11960.
[73]
Uyanik, M.; Yasui, T.; Ishihara, K. Enantioselective Kita oxidative spirolactonization catalyzed by in situ generated chiral hypervalent iodine(III) species. Angew. Chem. Int. Ed., 2010, 49, 2175-2177.
[74]
Uyanik, M.; Yasui, T.; Ishihara, K. Chiral hypervalent organoiodine-catalyzed enantioselective oxidative spirolactonization of naphthol deri-vatives. J. Org. Chem., 2017, 82, 11946-11953.
[75]
Murray, S.J.; Ibrahim, H. Asymmetric Kita spirolactonisation catalysed by anti-dimethanoanthracene-based iodoarenes. Chem. Commun., 2015, 51, 2376-2379.
[76]
Bekkaye, M.; Masson, G. Synthesis of new axially chiral iodoarenes. Synthesis, 2016, 48, 302-312.
[77]
Hempel, C.; Maichle‐Mössmer, C.; Pericàs Miquel, A.; Nachtsheim, B.J. Modular synthesis of triazole-based chiral iodoarenes for enantioselective spirocyclizations. Adv. Synth. Catal., 2017, 359, 2931-2941.
[78]
Ye, Y.; Zhang, L.; Fan, R. Application of dearomatization strategy on the synthesis of furoquinolinone and angelicin derivatives. Org. Lett., 2012, 14, 2114-2117.
[79]
Volp, K.A.; Harned, A.M. Chiral aryl iodide catalysts for the enantioselective synthesis of para-quinols. Chem. Commun., 2013, 49, 3001-3003.
[80]
Uyanik, M.; Sasakura, N.; Mizuno, M.; Ishihara, K. Enantioselective synthesis of masked benzoquinones using designer chiral hypervalent organoiodine(III) catalysis. ACS Catal., 2017, 7, 872-876.
[81]
Wipf, P.; Jung, J-K. Total synthesis of palmarumycin CP1 and (±)-Deoxypreussomerin A. J. Org. Chem., 1998, 63, 3530-3531.
[82]
Wipf, P.; Lynch, S.M.; Birmingham, A.; Tamayo, G.; Jimenez, A.; Campos, N.; Powis, G. Natural product based inhibitors of the thioredoxin-thioredoxin reductase system. Org. Biomol. Chem., 2004, 2, 1651-1658.
[83]
Ngatimin, M.; Frey, R.; Andrews, C.; Lupton, D.W.; Hutt, O.E. Iodobenzene catalysed synthesis of spirofurans and benzopyrans by oxidative cyclisation of vinylogous esters. Chem. Commun., 2011, 47, 11778-11780.
[84]
Martins, L.J.; Ferreira, B.R.V.; Almeida, W.P.; Lancellotti, M.; Coelho, F. An easy access to halogenated and non-halogenated spiro-hexadienones. Tetrahedron Lett., 2014, 55, 5264-5267.
[85]
Zhang, H.; Shen, J.; Cheng, G.; Feng, Y.; Cui, X. One-pot synthesis of benzo[b][1,4]oxazins intramolecular trapping iminoenol. Org. Lett., 2018, 20, 664-667.
[86]
Braun, N.A.; Ousmer, M.; Bray, J.D.; Bouchu, D.; Peters, K.; Peters, E-M.; Ciufolini, M.A. New oxidative transformations of phenolic and indolic oxazolines: An avenue to useful azaspirocyclic building blocks. J. Org. Chem., 2000, 65, 4397-4408.
[87]
Miyazawa, E.; Sakamoto, T.; Kikugawa, Y. Synthesis of spiro-fused nitrogen heterocyclic compounds via N-methoxy-N-acylnitrenium ions using phenyliodine(III) bis(trifluoroacetate) in trifluoroethanol. Heterocycles, 2003, 59, 149-160.
[88]
Miyazawa, E.; Sakamoto, T.; Kikugawa, Y. Synthesis of spirodienones by intramolecular ipso-cyclization of N-methoxy-(4-halogenophenyl)amides using [hydroxy(tosyloxy)iodo]benzene in trifluoroethanol. J. Org. Chem., 2003, 68, 5429-5432.
[89]
Liang, H.; Ciufolini, M.A. Oxidative spirocyclization of phenolic sulfonamides: scope and applications. Chem. Eur. J., 2010, 16, 13262-13270.
[90]
Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. First hypervalent iodine(iii)-catalyzed C-N bond forming reaction: catalytic spirocyclization of amides to N-fused spirolactams. Chem. Commun., 2007, 1224-1226.
[91]
Dohi, T.; Takenaga, N.; Fukushima, K-i.; Uchiyama, T.; Kato, D.; Motoo, S.; Fujioka, H.; Kita, Y. Designer μ-oxo-bridged hypervalent iodine(III) organocatalysts for greener oxidations. Chem. Commun., 2010, 46, 7697-7699.
[92]
Dohi, T.; Mochizuki, E.; Yamashita, D.; Miyazaki, K.; Kita, Y. Efficient oxidative spirolactamization by μ-oxo bridged heterocyclic hypervalent iodine compound. Heterocycles, 2014, 88, 245-260.
[93]
Honda, T. Development of an efficient synthetic strategy for bioactive alkaloids possessing a spirocyclic ring system. Pure Appl. Chem., 2010, 82, 1773-1783.
[94]
Deng, Y-X.; Xie, J-P.; Zhang, W-W.; Yin, P.; Yu, J.; He, L. Oxidative amidation of aromatic ethers catalyzed by Rhodium acetate. Chem. Eur. J., 2012, 18, 1077-1082.
[95]
Saito, E.; Matsumoto, Y.; Nakamura, A.; Namera, Y.; Nakada, M. Synthesis and reaction of ortho-benzoquinone monohemiaminals. Org. Lett., 2018, 20, 692-695.
[96]
Zhou, Y.; Li, D.; Tang, S.; Sun, H.; Huang, J.; Zhu, Q.PhI. (OAc)2-mediated dearomative C-N coupling: Facile construction of the spiro[indoline-3,2′-pyrrolidine] skeleton. Org. Biomol. Chem., 2018, 16, 2039-2042.
[97]
Liang, J.; Chen, J.; Du, F.; Zeng, X.; Li, L.; Zhang, H. Oxidative carbon−carbon bond formation in the synthesis of bioactive spiro β-lactams. Org. Lett., 2009, 11, 2820-2823.
[98]
Fujioka, H.; Komatsu, H.; Nakamura, T.; Miyoshi, A.; Hata, K.; Ganesh, J.; Murai, K.; Kita, Y. Organic synthesis using a hypervalent iodine reagent: unexpected and novel domino reaction leading to spiro cyclohexadienone lactones. Chem. Commun., 2010, 46, 4133-4135.
[99]
Yu, Z.; Ju, X.; Wang, J.; Yu, W. Iodobenzene-mediated intramolecular oxidative coupling of substituted 4-hydroxyphenyl-N-phenylbenzamides for the synthesis of spirooxindoles. Synthesis, 2011, 2011, 860-866.
[100]
Chabaud, L.; Hromjakova, T.; Rambla, M.; Retailleau, P.; Guillou, C. Hypervalent iodine-mediated oxidative cyclisation of p-hydroxy acetanilides to 1,2-dispirodienones. Chem. Commun., 2013, 49, 11542-11544.
[101]
Shang, S.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Intramolecular metal-free oxidative aryl-aryl coupling: An unusual hypervalent-iodine-mediated rearrangement of 2-Substituted N-phenylbenzamides. Angew. Chem. Int. Ed., 2014, 53, 6216-6219.
[102]
Zhang, D-Y.; Xu, L.; Wu, H.; Gong, L-Z. Chiral iodine-catalyzed dearomatizative spirocyclization for the enantioselective construction of an all-carbon stereogenic center. Chem. Eur. J., 2015, 21, 10314-10317.
[103]
Jin, C-Y.; Du, J-Y.; Zeng, C.; Zhao, X-H.; Cao, Y-X.; Zhang, X-Z.; Lu, X-Y.; Fan, C-A. Hypervalent iodine(III)-mediated oxidative dearomatizing cyclization of arylamines. Adv. Synth. Catal., 2014, 356, 2437-2444.
[104]
Hempel, C.; Weckenmann, N.M.; Maichle-Moessmer, C.; Nachtsheim, B.J. A hypervalent iodine-mediated spirocyclization of 2-(4-hydroxybenzamido)acrylates - unexpected formation of δ-spirolactones. Org. Biomol. Chem., 2012, 10, 9325-9329.
[105]
Tohma, H.; Harayama, Y.; Hashizume, M.; Iwata, M.; Kiyono, Y.; Egi, M.; Kita, Y. The first total synthesis of Discorhabdin A. J. Am. Chem. Soc., 2003, 125, 11235-11240.
[106]
Dohi, T.; Kato, D.; Hyodo, R.; Yamashita, D.; Shiro, M.; Kita, Y. Discovery of stabilized bisiodonium salts as intermediates in the carbon-carbon bond formation of alkynes. Angew. Chem. Int. Ed., 2011, 50, 3784-3787.
[107]
Dohi, T.; Nakae, T.; Ishikado, Y.; Kato, D.; Kita, Y. New synthesis of spirocycles by utilizing in situ forming hypervalent iodine species. Org. Biomol. Chem., 2011, 9, 6899-6902.
[108]
Zhou, Y.; Zhang, X.; Zhang, Y.; Ruan, L.; Zhang, J.; Zhang-Negrerie, D.; Du, Y. Iodocyclization of N-arylpropynamides mediated by hypervalent iodine reagent: Divergent synthesis of iodinated quinolin-2-ones and spiro[4,5]trienones. Org. Lett., 2017, 19, 150-153.
[109]
Arisawa, M.; Ramesh, N.G.; Nakajima, M.; Tohma, H.; Kita, Y. Hypervalent iodine(III)-induced intramolecular cyclization of α-(aryl)alkyl-β-dicarbonyl compounds: A convenient synthesis of benzannulated and spirobenzannulated compounds. J. Org. Chem., 2001, 66, 59-65.
[110]
Gomes, L.F.R.; Veiros, L.F.; Maulide, N.; Afonso, C.A.M. Diazo- and transition-metal-free C-H insertion: A direct synthesis of β-lactams. Chem. Eur. J., 2014, 21, 1449-1453.
[111]
Wang, K.; Fu, X.; Liu, J.; Liang, Y.; Dong, D. PIFA-mediated oxidative cyclization of 1-carbamoyl-1-oximylcycloalkanes: Synthesis of spiro-fused pyrazolin-5-one N-oxides. Org. Lett., 2009, 11, 1015-1018.
[112]
Mao, L.; Li, Y.; Xiong, T.; Sun, K.; Zhang, Q. Synthesis of tetramic acid derivatives via intramolecular sp3 C–H amination mediated by hypervalent iodine(III) reagents/Brønsted acids. J. Org. Chem., 2013, 78, 733-737.
[113]
Zhang, Z.; Zhang, Y.; Huang, G.; Zhang, G. Organoiodine reagent-promoted intermolecular oxidative amination: synthesis of cyclopropyl spirooxindoles. Org. Chem. Front., 2017, 4, 1372-1375.
[114]
Koag, M.; Lee, S. Discovery of hypoiodite-mediated aminyl radical cyclization lacking a nitrogen radical-stabilizing group: Application to synthesis of an oxazaspiroketal-containing cephalostatin analog. Org. Lett., 2011, 13, 4766-4769.
[115]
Basavaiah, D.; Lingam, H.; Babu, T.H. Baylis-Hillman acetates in organic synthesis: A simple two-step strategy for oxindole-spiro-α-arylidene-γ-butyrolactone framework. Tetrahedron, 2018, 74, 2306-2313.
[116]
Chavan, S.S.; Rupanawar, B.D.; Kamble, R.B.; Shelke, A.M.; Suryavanshi, G. Metal-free annulation of β-acylamino ketones: Facile access to spirooxazolines and oxazolines via oxidative C-O bond formation. Org. Chem. Front., 2018, 5, 544-548.
[117]
Sun, Y.; Gan, J.; Fan, R. Facile construction of oxa-aza spirobicycles via a tandem carbon-hydrogen bond oxidation. Adv. Synth. Catal., 2011, 353, 1735-1740.
[118]
Wang, J.; Yuan, Y.; Xiong, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Phenyliodine bis(trifluoroacetate)-mediated oxidative C–C bond formation: Synthesis of 3-hydroxy-2-oxindoles and spirooxindoles from anilides. Org. Lett., 2012, 14, 2210-2213.
[119]
Wu, H.; He, Y-P.; Xu, L.; Zhang, D-Y.; Gong, L-Z. Asymmetric organocatalytic direct C(sp2)-H/C(sp3)-H oxidative cross-coupling by chiral iodine reagents. Angew. Chem. Int. Ed., 2014, 53, 3466-3469.
[120]
Cao, Y.; Zhang, X.; Lin, G.; Zhang-Negrerie, D.; Du, Y. Chiral aryliodine-mediated enantioselective organocatalytic spirocyclization: Synthesis of spirofurooxindoles via cascade oxidative C–O and C–C bond formation. Org. Lett., 2016, 18, 5580-5583.
[121]
Hu, B.; Cao, Y.; Zhang, B.; Zhang-Negrerie, D.; Du, Y. Formation of phenyliodonio-substituted spirofurooxindole trifluoroacetates from N-substituted 3-oxopentanediamides via phenyliodine bis(trifluoroacetate)-mediated oxidative cascade reactions. Adv. Synth. Catal., 2017, 359, 2542-2548.
[122]
Sun, J.; Li, G.; Zhang, G.; Cong, Y.; An, X.; Zhang-Negrerie, D.; Du, Y. Cascade formation of C3-unsymmetric spirooxindoles via PhI(OAc)2-mediated oxidative C−C/C−N bond formation. Adv. Synth. Catal., 2018, 360, 2476-2481.
[123]
Sun, D.; Zhao, X.; Zhang, B.; Cong, Y.; Wan, X.; Bao, M.; Zhao, X.; Li, B.; Zhang-Negrerie, D.; Du, Y. Synthesis of spirofurooxindoles via phenyliodine(III) bis(trifluoroacetate) (PIFA)-mediated cascade oxidative C−O and C−C bond formation. Adv. Synth. Catal., 2018, 360, 1634-1638.
[124]
Zhang, X.; Yang, C.; Zhang-Negrerie, D.; Du, Y. Hypervalent-iodine-mediated cascade annulation of diarylalkynes forming spiro heterocycles under metal-free conditions. Chem. Eur. J., 2015, 21, 5193-5198.
[125]
Zhang, X.; Hou, W.; Zhang-Negrerie, D.; Zhao, K.; Du, Y. Hypervalent iodine-mediated intramolecular trans-aminocarboxylation and oxoamino-carboxylation of alkynes: Divergent cascade annulations of isocoumarins under metal-free conditions. Org. Lett., 2015, 17, 5252-5255.
[126]
Zhang, B.; Zhang, X.; Hu, B.; Sun, D.; Wang, S.; Zhang-Negrerie, D.; Du, Y.PhI. (OCOCF3)2-mediated construction of a 2-spiropseudoindoxyl skeleton via cascade annulation of 2-sulfonamido-N-phenylpropiolamide derivatives. Org. Lett., 2017, 19, 902-905.
[127]
Laevens, B.A.; Tao, J.; Murphy, G.K. Iodide-mediated synthesis of spirooxindolo dihydrofurans from iodonium ylides and 3-alkylidene-2-oxindoles. J. Org. Chem., 2017, 82, 11903-11908.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy