Generic placeholder image

Current Pharmaceutical Biotechnology


ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Optimization of Silver Nanoparticle Synthesis by Banana Peel Extract Using Statistical Experimental Design, and Testing of their Antibacterial and Antioxidant Properties

Author(s): Nickolas Rigopoulos*, Eleni Thomou, Αntonios Kouloumpis, Eleni Rafaela Lamprou, Varvara Petropoulea, Dimitrios Gournis, Efthymios Poulios, Haralampos C. Karantonis and Efstathios Giaouris

Volume 20, Issue 10, 2019

Page: [858 - 873] Pages: 16

DOI: 10.2174/1389201020666181210113654

Price: $65


Background: In this study, silver nanoparticles (AgNPs) were synthesized using Banana Peel Extract (BPE), and characterized using UV- Vis absorbance spectroscopy, X-Ray Powder Diffraction (XRD), Atomic Force Microscopy (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). UV-Vis absorbance spectroscopy showed the characteristic plasmon resonance of AgNPs at 433 nm. The synthesized AgNPs were tested for their antibacterial and antioxidant properties.

Methods: Nanoparticle size (between 5 and 9 nm) was measured using AFM, whereas their crystallinity was shown by XRD. FTIR identified the ligands that surround the nanoparticle surface. The synthesis conditions were optimised using Central Composite Design (CCD) under Response Surface Methodology (RSM). Silver nitrate (AgNO3) and BPE concentrations (0.25-2.25 mM, 0.2-1.96 % v/v respectively), incubation period (24-120 h) and pH level (2.3-10.1) were chosen as the four independent factors. The fitting parameters (i.e. the wavelength at peak maximum, the peak area, and the peak width) of a Voigt function of the UV- Vis spectra were chosen as the responses. The antibacterial properties of the AgNPs were tested against Escherichia coli and Staphylococcus aureus using the tube dilution test. The synthesized nanoparticles were tested for total phenolic composition (TPC) using the Folin - Ciocalteau method, whereas their radical scavenging activity using the 1,1-diphenyl-2- picrylhydrazyl (DPPH) free radical assay.

Results: An optimum combination of all independent factors was identified (BPE concentration 1.7 % v/v, AgNO3 concentration 1.75 mM, incubation period 48 h, pH level 4.3), giving minimum peak wavelength and peak width. The nanoparticles inhibited the growth of E. coli, whereas S. aureus growth was not affected. However, no superiority of AgNPs compared to AgNO3 used for their fabrication (1.75 mM), with respect to antibacterial action, could be here demonstrated. AgNPs were found to present moderate antioxidant activity (44.71± 3.01%), as measured using DPPH assay, while the BPE (used for their fabrication) presented alone (100%) an antioxidant action equal to 86±1%, something expected due to its higher total phenolic content (TPC) compared to that of nanoparticles.

Conclusion: Altogether, the results of this study highlight the potential of an eco-friendly method to synthesize nanoparticles and its promising optimization through statistical experimental design. Future research on the potential influence of other synthesis parameters on nanoparticles yield and properties could further promote their useful biological activities towards their successful application in the food industry and other settings.

Keywords: Silver nanoparticles, central composite design, optimisation, banana peel extract, green synthesis, antibacterial activity, antioxidant activity.

Graphical Abstract
Kaphingst, K.A.; Persky, S.; Lachance, C. Testing communication strategies to convey genomic concepts using virtual reality technology. J. Health Commun., 2010, 14(4), 384-399.
Ravichandran, R. Nanotechnology applications in food and food processing: Innovative green approaches, opportunities and uncertainties for Global Market. Int. J. Green Nanotechnol. Phys. Chem., 2010, 1(2), 72-96.
Cushen, M.; Kerry, J.; Morris, M.; Cruz-Romero, M.; Cummins, E. Nanotechnologies in the food industry - recent developments, risks and regulation. Trends Food Sci. Technol., 2012, 24(1), 30-46.
Alfadul, S.; Elneshwy, A. Use of nanotechnology in food processing, packaging and safety - review. Afr. J. Food Agric. Nutr. Dev., 2010, 10(6)
Wang, Q.Y.; Kang, Y.J. Bioprobes based on aptamer and silica fluorescent nanoparticles for bacteria Salmonella typhimurium detection. Nanoscale Res. Lett., 2016, 11(1)
Bouwmeester, H.; Dekkers, S.; Noordam, M.; Hagens, W.; Bulder, A.S.; de Heer, C.; ten Voorde, S.E.; Wijnhoven, S.W.; Marvin, H.J.; Sips, A.J. Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol., 2009, 53(1), 52-62.
Zhang, X-F.; Liu, Z-G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534.
Iravani, S. “Green” Nanotechnologies: Synthesis of metal nanoparticles using plants. Green Chem., 2011, 13, 2638-2650.
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
He, X.; Hwang, H.M. Nanotechnology in food science: Functionality, applicability, and safety assessment J. Food Drug Anal., 2016, 24(4), 671-681.
Hamad, A.F.; Han, J.H.; Kim, B.C.; Rather, I.A. The intertwine of nanotechnology with the food industry. Saudi J. Biol. Sci., 2018, 25(1), 27-30.
Pathakoti, K.; Manubolu, M.; Hwang, H.M. Nanostructures: Current uses and future applications in food science. J. Food Drug Anal., 2017, 25(2), 245-253.
Carbone, M.; Donia, D.T.; Sabbatella, G.; Antiochia, R. Silver nanoparticles in polymeric matrices for fresh food packaging. J. King Saud Univ. -. Sci., 2016, 28(4), 273-279.
Abou El-Nour, K.M.M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem., 2010, 3(3), 135-140.
Xu, H.; Wang, L.; Su, H.; Gu, L.; Han, T.; Meng, F.; Liu, C. Making good use of food wastes: Green synthesis of highly stabilized silver nanoparticles from grape seed extract and their antimicrobial activity. Food Biophys., 2014, 10(1), 12-18.
Shet, A.R.; Tantri, S.; Bennal, A. Economical biosynthesis of silver nanoparticles using fruit waste. J. Chem. Pharm. Sci., 2016, 9(4), 2306-2311.
Ibrahim, H.M.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci., 2015, 8(3), 265-275.
Czitrom, V. One-Factor-at a tim versus designed experiments. Am. Stat., 1999, 53(2), 126-131.
Montgomery, D.C. Design and Analysis of Experiments, 8th ed; , 1984.
El-Naggar, N.E.A.; Abdelwahed, N.A.M. Application of statistical experimental design for optimization of silver nanoparticles biosynthesis by a nanofactory Streptomyces viridochromogenes. J. Microbiol., 2014, 52(1), 53-63.
Biswas, S.; Mulaba-Bafubiandi, A.F. Optimization of process variables for the biosynthesis of silver nanoparticles by Aspergillus wentii using statistical experimental design. Adv. Nat. Sci. Nanosci. Nanotechnol., 2016, 7(4)045005
Chowdhury, S.; Yusof, F.; Faruck, M.O.; Sulaiman, N. Process optimization of silver nanoparticle synthesis using response surface methodology. Procedia Eng., 2016, 148, 992-999.
Ondari Nyakundi, E.; Padmanabhan, M.N. Green chemistry focus on optimization of silver nanoparticles using Response Surface Methodology (RSM) and mosquitocidal activity: Anopheles stephensi (Diptera: Culicidae). Spectrochim. Acta - Part A Mol. Biomol. Spectrosc, 2015, 149, 978-984.
Rajeshkumar, S.; Bharath, L.V. Mechanism of plant-mediated synthesis of silver nanoparticles - a review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact., 2017, 273, 219-227.
Durán, N.; Nakazato, G.; Seabra, A.B. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: An overview and comments. Appl. Microbiol. Biotechnol., 2016, 100(15), 6555-6570.
Koduru, J.R.; Kailasa, S.K.; Bhamore, J.R.; Kim, K.H.; Dutta, T.; Vellingiri, K. Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: A review. Adv. Colloid Interface Sci., 2018, 256, 326-339.
Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14.
Mahanty, A.; Mishra, S.; Bosu, R.; Maurya, U.K.; Netam, S.P.; Sarkar, B. Phytoextracts-synthesized silver nanoparticles inhibit bacterial fish pathogen Aeromonas hydrophila. Indian J. Microbiol., 2013, 53(4), 438-446.
Mohanta, Y.K.; Panda, S.K.; Jayabalan, R.; Sharma, N.; Bastia, A.K.; Mohanta, T.K. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front. Mol. Biosci., 2017, 4, 1-9.
Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules, 2015, 20(5), 8856-8874.
Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1803-1815.
Anbukkarasi, M.; Thomas, P.A.; Sheu, J.R.; Geraldine, P. In vitro antioxidant and anticataractogenic potential of silver nanoparticles biosynthesized using an ethanolic extract of Tabernaemontana divaricata leaves. Biomed. Pharmacother., 2017, 91, 467-475.
Wang, L.; Wu, Y.; Xie, J.; Wu, S.; Wu, Z. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. Leaf aqueous extracts. Mater. Sci. Eng. C, 2018, 86, 1-8.
Reddy, N.J.; Nagoor Vali, D.; Rani, M.; Rani, S.S. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum Fruit. Mater. Sci. Eng. C, 2014, 34(1), 115-122.
Saratale, R.G.; Benelli, G.; Kumar, G.; Kim, D.S.; Saratale, G.D. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ. Sci. Pollut. Res. , 2017, 10392-10406.
Bankar, A.; Joshi, B.; Kumar, A.R.; Zinjarde, S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 2010, 368(1-3), 58-63.
Aboul-Enein, A.M.; Salama, Z.A.; Gaafar, A.A.; Aly, H.F.; Bou-Elella, F.A.; Ahmed, H.A. Identification of phenolic compounds from banana peel (Musa paradaisica L.) as antioxidant and antimicrobial agents. J. Chem. Pharm. Res., 2016, 8(4), 46-55.
Karvela, E.; Makris, D.P.; Kalogeropoulos, N.; Karathanos, V.T. Deployment of response surface methodology to optimise recovery of grape (Vitis vinifera) Stem polyphenols. Talanta, 2009, 79(5), 1311-1321.
Belafhal, A. Shape of spectral lines: Widths and equivalent widths of the voigt profile. Opt. Commun., 2000, 177(1), 111-118.
Siqueira, M.C.; Coelho, G.F.; de Moura, M.R.; Bresolin, J.D.; Hubinger, S.Z.; Marconcini, J.M.; Mattoso, L.H. Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging. J. Nanosci. Nanotechnol., 2014, 14(7), 5512-5517.
McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem., 2001, 73(1), 73-84.
Spanos, G.A.; Wrolstad, R.E. influence of variety, maturity, processing, and storage on the phenolic composition of pear juice†. J. Agric. Food Chem., 1990, 38(3), 817-824.
Amendola, V.; Bakr, O.M.; Stellacci, F. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics, 2010, 5(1), 85-97.
Bindhu, M.R.; Umadevi, M. synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2013, 101, 184-190.
Basiuk, V.A.; Basiuk, E.V. Green processes for nanotechnology: from inorganic to bioinspired nanomaterials; Green Process. Nanotechnol. From Inorg. Bioinspired Nanomater, 2015, pp. 1-446.
Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 2014, 4(8), 3974-3983.
Valenti, L.E.; Giacomelli, C.E. Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions. J. Nanopart. Res., 2017, 19(5)
Khan, M.A.M.; Kumar, S.; Ahamed, M.; Alrokayan, S.A.; AlSalhi, M.S. Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res. Lett., 2011, 6(1), 1-8.
Molleman, B.; Hiemstra, T. Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver ions. Langmuir, 2015, 31(49), 13361-13372.
Quinten, M. Optical Properties of Nanoparticle Systems; Wiley VCH- Verlag, Singapore,, 2011.
Kaushik, R.; Saran, S.; Isar, J.; Saxena, R.K. Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J. Mol. Catal., B Enzym., 2006, 40(3-4), 121-126.
Chan, Y.S.; Don, M.M. Optimization of process variables for the synthesis of silver nanoparticles by Pycnoporus sanguineus using statistical experimental design. J. Korean Soc. Appl. Biol. Chem., 2013, 56(1), 11-20.
Pourmortazavi, S.M.; Taghdiri, M.; Makari, V.; Rahimi-Nasrabadi, M. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2015, 136(PC), 1249-1254.
Kokila, T.; Ramesh, P.S.; Geetha, D. Biosynthesis of silver nanoparticles from cavendish banana peel extract and its antibacterial and free radical scavenging assay: A novel biological approach. Appl. Nanosci., 2015, 5(8), 911-920.
Deokar, G.; Ingale, A.C. Green synthesis of gold nanoparticles (elixir of life) from banana fruit waste extract - an efficient multifunctional agent. RSC Advances, 2016, 6, 74620-74629.
Supraja, N.; Prasad, T.N.V.K.V.; Soundariya, M.; Babujanarthanam, R. Synthesis, characterization and dose dependent antimicrobial and anti-cancerous activity of phycogenic silver nanoparticles against human hepatic carcinoma (HepG2) cell line. AIMS Bioeng., 2016, 3(4), 425-440.
Umadevi, M.; Shalini, S.; Bindhu, M.R. Synthesis of silver nanoparticle using D. carota extract. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2012, 3025008
Raut, R.W.; Lakkakula, J.R.; Kolekar, N.S.; Mendhulkar, V.D.; Kashid, S.B. Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Curr. Nanosci., 2009, 5, 117-122.
Pavani, K.V.; Gayathramma, K.; Aparajitha, B.; Shah, S. Phyto-synthesis of silver nanoparticles using extracts of Ipomoea indica flowers. Am. J. Nanomat, 2013, 1(1), 5-8.
Schacht, V.J.; Neumann, L.V.; Sandhi, S.K.; Chen, L.; Henning, T.; Klar, P.J.; Theophel, K.; Schnell, S.; Bunge, M. Effects of silver nanoparticles on microbial growth dynamics. J. Appl. Microbiol., 2013, 114(1), 25-35.
Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C, 2014, 44, 278-284.
Maillard, J.Y.; Hartemann, P. Silver as an antimicrobial: Facts and gaps in knowledge. Crit. Rev. Microbiol., 2013, 39(4), 373-383.
Pourali, P.; Baserisalehi, M.; Afsharnezhad, S.; Behravan, J.; Ganjali, R.; Bahador, N.; Arabzadeh, S. The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles. Biometals, 2013, 26(1), 189-196.
Bose, D.; Chatterjee, S. Antibacterial activity of green synthesized silver nanoparticles using vasaka (Justicia Adhatoda L.) leaf extract. Indian J. Microbiol., 2015, 55(2), 163-167.
Benakashani, F.; Allafchian, A.R.; Jalali, S.A.H. Biosynthesis of silver nanoparticles using Capparis spinosa l. leaf extract and their antibacterial activity. Karbala Int. J. Mod. Sci., 2016, 2(4), 251-258.
Levard, C.; Hotze, E.M.; Lowry, G.V.; Brown, G.E. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol., 2012, 46(13), 6900-6914.
Zhang, X-F.; Liu, Z-G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534.
Khalandi, B.; Asadi, N.; Milani, M.; Davaran, S.; Abadi, A.J.; Abasi, E.; Akbarzadeh, A. A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug. Res., (Stuttg.). 2017, 67, 70-76.
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
Sowmya, C.; Lavakumar, V.; Venkateshan, N.; Ravichandiran, V. Exploration of Phyllanthus acidus mediated silver nanoparticles and its activity against infectious bacterial pathogen. Chem. Cent. J., 2018, 1-9.
Chang, C.L.; Lin, C.S.; Lai, G.H. Phytochemical characteristics, free radical scavenging activities, and neuroprotection of five medicinal plant extracts. Evidence-based Complement. Altern. Med., 2012, 2012
El Gharras, H. Polyphenols: Food sources, properties and applications - a review. Int. J. Food Sci. Technol., 2009, 44(12), 2512-2518.
Chanda, S.; Dave, R. In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview. Afr. J. Microbiol. Res., 2009, 3(13), 981-996.
Della Pelle, F.; Scroccarello, A.; Sergi, M.; Mascini, M.; Del Carlo, M.; Compagnone, D. Simple and rapid silver nanoparticles based antioxidant capacity assays: Reactivity study for phenolic compounds. Food Chem., 2018, 256, 342-349.
Eklund, P.C.; Langvik, O.K.; Warna, J.P.; Salmi, T.O.; Wilfor, S.M.; Sjoholm, R.E. Chemical studies on antioxidant mechanisms and free radical scavenging properties of ligands. Org. Biomol. Chem., 2005, 21, 3336-3347.
Karioti, A.; Hadjipavlou-Litina, D.; Mensah, M.L.K.; Fleischer, T.C.; Skaltsa, H. Composition and antioxidant activity of the essential oils of Xylopia aethiopica (Dun) A. Rich. (Annonaceae) leaves, stem bark, root bark, and fresh and dried fruits, growing in Ghana. J. Agric. Food Chem., 2004, 52(26), 8094-8098.
Priya, R.S.; Geetha, D.; Ramesh, P.S. Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs - a comparative study. Ecotoxicol. Environ. Saf., 2016, 134, 308-318.
Patra, J.K.; Das, G.; Baek, K.H. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. . Photochem. Photobiol. B Biol, 2016, 161, 200-210.
Venkatesan, J.; Kim, S-K.; Shim, M. Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava. Nanomaterials , 2016, 6(12), 235.
Sangaonkar, G.M.; Pawar, K.D. Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities. Colloids Surf. B Biointerfaces, 2018, 164, 210-217.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy